Dynamic Causal Models

Size: px
Start display at page:

Download "Dynamic Causal Models"

Transcription

1 Dynamic Causal Models V1 SPC Will Penny V1 SPC V5 V5 Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Wellcome Department of Imaging Neuroscience, ION, UCL, UK. Mathematics in Brain Imaging, IPAM, UCLA, USA, July

2 Contents Neurodynamic model Hemodynamic model Model estimation and comparison Attention to visual motion Single word processing Friston et al.(2003) Neuro- Image, 19 (4), pp

3 Contents Neurodynamic model Hemodynamic model Model estimation and comparison Attention to visual motion Single word processing

4 Single region z = a z + cu u 1 c a 11 u 1 z 1 u 2 z 1 z 2

5 Multiple regions z 1 a11 0 z1 c u1 = + z a a z 0 u u 1 c a 11 u 1 z 1 u 2 a 21 z 1 z 2 z 2 a 22

6 Modulatory inputs z 1 a11 0 z1 0 0 z1 c u1 u2 z = 2 a21 a 22 z b21 0 z 2 0 u 2 u 1 u 2 c a 11 u 1 z 1 b 21 u 2 a 21 z 1 z 2 z 2 a 22

7 Reciprocal connections z 1 a11 a12 z1 0 0 z1 c u1 u2 z = 2 a21 a 22 z b21 0 z 2 0 u 2 u 1 u 2 c a 11 u 1 a 12 z 1 b 21 u 2 a 21 z 1 z 2 z 2 a 22

8 Neurodynamics Change in Neuronal Activity z Az ub z Cu Intrinsic Connectivity Matrix Neuronal Activity = + i i + i Modulatory Connectivity Matrices Inputs Input Connectivity Matrix SPC V1 V5

9 Contents Neurodynamic model Hemodynamic model Model estimation and comparison Attention to visual motion Single word processing

10 Hemodynamics For each region: x Hemodynamic variables = [ s, f, v, q ] Dynamics x = g( x, z, h ) y= b( x ) Hemodynamic parameters Seconds

11 Hemodynamic saturation Neuronal impulse Equivalent input-output functions Neuronal impulses Sub-linear and super-linear responses to pairs of stimuli

12 Why have explicit models for neurodynamics and hemodynamics? For 4 event types u 1, u 2, u 3, u 4 : In a GLM for a single region, y=xβ+e, with 3 basis functions per event type (canonical,shifter, stretcher) there are 12 parameters to estimate. These relate hemodynamics directly to each stimulus. In a (single region) DCM there are 4 neuronal efficacy parameters relating neuronal activity to each stimulus z = az + c u c2u2 + c3u3 c4u4 And 5 hemodynamic parameters relating neuronal activity to the BOLD signal. A total of 9 parameters. y = b( z, h)

13 DCM Priors Hemodynamics E[h] Rate of signal decay: 0.65 Elimination rate: 0.41 Transit time: 0.98 Grubbs exponent: 0.32 Oxygenation fraction: 0.34 Cov[h] Neurodynamics Stability priors ensure principal Lyapunov exponent is less than zero with high probability.

14 Contents Neurodynamic model Hemodynamic model Model estimation and comparison Attention to visual motion Single word processing

15 Bayesian Estimation p Normal densities 2 ( θ) = N( θ ; µ p, σp ) y = θ + e µ pyθ = Nyθ σ e 2 ( ) ( ;, ) y p y N 2 ( θ ) = ( θ ; µ, σ ) µ p = + σ σ σ e p = µ σ y µ 2 2 p σe σ p Relative Precision Weighting

16 Multiple parameters p( θ) = N( θ ; µ, C ) p p General Linear Model y = Xθ + e p( y θ) = N( yxθ ;, C ) e p( θ y) = N( θ ; µc, ) θ(1) C = X C X+ C 1 T 1 1 e p T 1 1 ( e p p ) µ = C X C y + C µ One-step if C e, C p and µ p are known θ(2)

17 Nonlinear models θ = { ABCh,,, } Current Estimates µ, C i i y = b( θ) + e p( θ) = N( θ ; µ, C ) p p( θ) = N( θ ; µ µ, C ) p p i p p( y θ) = N( y; b( θ), C ) p( r θ) = N( rj ; θ, C ) C = J C J+ C 1 T 1 1 i+ 1 e p e e ( T 1 1( )) µ = µ + C J C r+ C µ µ i+ 1 i i+ 1 e p p i Gauss-Newton ascent with priors Linearization b( µ i ) b( θ ) = b( µ i) + ( θ µ i) θ b( µ i ) J = θ θ= θ µ i r r = y b( µ i ) r = J θ + e θ Friston et al.(2002) Neuro- Image, 16 (2), pp

18 Model Comparison I Model, m Parameters: θ = { ABCh,,, } SPC Posterior Likelihood Prior V1 V5 p( θ y, m) = p( y θ, mp ) ( θ m) p( y m) Evidence p( y m) = p( y θ, m) p( θ m) dθ Laplace, AIC, BIC approximations Penny et al. (2004) NeuroImage, 22 (3), pp Model fit + complexity

19 Model Comparison II Model, m Parameters: θ = { ABCh,,, } SPC Parameter Posterior Likelihood Parameter Prior V1 V5 p( θ y, m) = p( y θ, mp ) ( θ m) p( y m) Model Posterior Evidence Model Prior pm ( y) = p( y m) p( m) p( y)

20 Model Comparison III Model, m=i Model Evidences: V1 V5 SPC p( y m= i) = p( y θ, m= i) p( θ m= i) dθ p( y m= j) = p( y θ, m= j) p( θ m= j) dθ Bayes factor: Model, m=j SPC B ij = p( y m= i) p( y m= j) V1 V5 1 to 3: Weak 3 to 20: Positive 20 to 100: Strong >100: Very Strong

21 Contents Neurodynamic model Hemodynamic model Bayesian estimation Attention to visual motion Single word processing

22 Attention to Visual Motion Buchel et al STIMULI 250 radially moving dots at 4.7 degrees/s PRE-SCANNING 5 x 30s trials with 5 speed changes (reducing to 1%) Task - detect change in radial velocity SCANNING (no speed changes) 6 normal subjects, scan sessions; each session comprising 10 scans of 4 different condition Experimental Factors 1. Photic 2. Motion 3. Attention

23 Specify regions of interest GLM analysis Model 1 Photic SPC V1 Motion Att V5 Identify regions of Interest eg. V1, V5, SPC

24 Estimation 10 5 Model 1 V1 0 5 Photic SPC V1 V5 0 2 Motion Att V5 SPC Time (seconds)

25 Posterior Inference γ 6 P(B 3 21 y) How much attention (input 3) changes connection from V1 (region 1) to V5 (region(2) B 3 21

26 Very Strong Bayes Factor B 12 > Model 1 Model 2 Photic SPC Photic SPC V1 V1 Motion Att V5 Motion Att V5

27 Positive Bayes Factor B 13 =3.6 Model 1 Model 3 Photic SPC Photic SPC V1 V1 Att Motion Att V5 Motion V5

28 Penny et al. (2004) NeuroImage, Special Issue. Weak Bayes Factor B 14 =2.8 Model 1 Model 4 Photic SPC Photic SPC V1 V1 Att Motion Att V5 Motion Att V5

29 Contents Neurodynamic model Hemodynamic model Bayesian estimation Attention to visual motion Single word processing

30 Single word processing dog radio gate. SPM{F} 10,15,30, 60 and 90 words per minute

31 Estimated Model A Input 1: Word Presentation Input WA A Intrinsic connections: Full connectivity assumed only significant connections shown. Modulatory connections: modulation of all self-connections, only A1 and WA significant

32 Hemodynamic saturation in A1 Individual Stimuli Summed individual responses y Pair of Stimuli Response to pair Seconds

33 Neuronal Saturation in A1 With or z t without modulation of A1 self connection Seconds A1

34 Identifiability c u 1 z 1 -τ u 2 A = τ a a a 12 1 a 32 a a a 12 z 2 a 21 b 21 Estimation of relative intrinsic connections and modulatory connections is robust to errors in estimation of hemodynamics due to eg. slice timing problems -τ Indeterminacy in neurodynamic and hemodynamic time constants is soaked up in τ

35 Summary Neurodynamic model Hemodynamic model Bayesian estimation Attention to visual motion Single word processing

36 Neuronal Transients and BOLD 300ms 500ms Seconds Seconds More enduring transients produce bigger BOLD signals

37 Neurodynamics Hemodynamics Seconds BOLD is sensitive to frequency content of transients Relative timings of transients are amplified in BOLD Seconds

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y.

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. June 2nd 2011 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule p(m y) = p(y m)p(m)

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

Dynamic causal modeling for fmri

Dynamic causal modeling for fmri Dynamic causal modeling for fmri Methods and Models for fmri, HS 2015 Jakob Heinzle Structural, functional & effective connectivity Sporns 2007, Scholarpedia anatomical/structural connectivity - presence

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Comparing Dynamic Causal Models

Comparing Dynamic Causal Models Comparing Dynamic Causal Models W.D. Penny, K.E. Stephan, A. Mechelli and K.J. Friston, Wellcome Department of Imaging Neuroscience, University College London. October 17, 2003 Abstract This article describes

More information

Dynamic Causal Modelling for EEG and MEG

Dynamic Causal Modelling for EEG and MEG Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Ma Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications Overview

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Stochastic Dynamic Causal Modelling for resting-state fmri

Stochastic Dynamic Causal Modelling for resting-state fmri Stochastic Dynamic Causal Modelling for resting-state fmri Ged Ridgway, FIL, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London Overview Connectivity in the brain Introduction to

More information

Dynamic causal modeling for fmri

Dynamic causal modeling for fmri Dynamic causal modeling for fmri Methods and Models for fmri, HS 2016 Jakob Heinzle Structural, functional & effective connectivity Sporns 2007, Scholarpedia anatomical/structural connectivity - presence

More information

Models of effective connectivity & Dynamic Causal Modelling (DCM)

Models of effective connectivity & Dynamic Causal Modelling (DCM) Models of effective connectivit & Dnamic Causal Modelling (DCM Presented b: Ariana Anderson Slides shared b: Karl Friston Functional Imaging Laborator (FIL Wellcome Trust Centre for Neuroimaging Universit

More information

Will Penny. SPM short course for M/EEG, London 2015

Will Penny. SPM short course for M/EEG, London 2015 SPM short course for M/EEG, London 2015 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure The model evidence is given by integrating out the dependence on model parameters p(y m) = p(y,

More information

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction Bayesian Treatments of 5 Neuroimaging Data Will Penny and Karl Friston 5.1 Introduction In this chapter we discuss the application of Bayesian methods to neuroimaging data. This includes data from positron

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Will Penny. SPM short course for M/EEG, London 2013

Will Penny. SPM short course for M/EEG, London 2013 SPM short course for M/EEG, London 2013 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated

More information

Models of effective connectivity & Dynamic Causal Modelling (DCM)

Models of effective connectivity & Dynamic Causal Modelling (DCM) Models of effective connectivit & Dnamic Causal Modelling (DCM) Slides obtained from: Karl Friston Functional Imaging Laborator (FIL) Wellcome Trust Centre for Neuroimaging Universit College London Klaas

More information

DCM: Advanced topics. Klaas Enno Stephan. SPM Course Zurich 06 February 2015

DCM: Advanced topics. Klaas Enno Stephan. SPM Course Zurich 06 February 2015 DCM: Advanced topics Klaas Enno Stephan SPM Course Zurich 06 February 205 Overview DCM a generative model Evolution of DCM for fmri Bayesian model selection (BMS) Translational Neuromodeling Generative

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

Dynamic causal models of neural system dynamics:current state and future extensions.

Dynamic causal models of neural system dynamics:current state and future extensions. Dynamic causal models of neural system dynamics:current state and future extensions. Klaas Stephan, Lee Harrison, Stefan Kiebel, Olivier David, Will Penny, Karl Friston To cite this version: Klaas Stephan,

More information

Bayesian Estimation of Dynamical Systems: An Application to fmri

Bayesian Estimation of Dynamical Systems: An Application to fmri NeuroImage 16, 513 530 (2002) doi:10.1006/nimg.2001.1044, available online at http://www.idealibrary.com on Bayesian Estimation of Dynamical Systems: An Application to fmri K. J. Friston The Wellcome Department

More information

Chapter 35: Bayesian model selection and averaging

Chapter 35: Bayesian model selection and averaging Chapter 35: Bayesian model selection and averaging W.D. Penny, J.Mattout and N. Trujillo-Barreto May 10, 2006 Introduction In Chapter 11 we described how Bayesian inference can be applied to hierarchical

More information

Dynamic Causal Modelling : Advanced Topics

Dynamic Causal Modelling : Advanced Topics Dynamic Causal Modelling : Advanced Topics Rosalyn Moran Virginia Tech Carilion Research Institute Department of Electrical & Computer Engineering, Virginia Tech Zurich SPM Course, Feb 19 th 2016 Overview

More information

Will Penny. DCM short course, Paris 2012

Will Penny. DCM short course, Paris 2012 DCM short course, Paris 2012 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated to a

More information

Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses

Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering University and ETH Zürich

More information

Will Penny. SPM for MEG/EEG, 15th May 2012

Will Penny. SPM for MEG/EEG, 15th May 2012 SPM for MEG/EEG, 15th May 2012 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule

More information

An Implementation of Dynamic Causal Modelling

An Implementation of Dynamic Causal Modelling An Implementation of Dynamic Causal Modelling Christian Himpe 24.01.2011 Overview Contents: 1 Intro 2 Model 3 Parameter Estimation 4 Examples Motivation Motivation: How are brain regions coupled? Motivation

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

Dynamic causal models of brain responses

Dynamic causal models of brain responses Okinawa Computational Neuroscience Course; Thurs 13 th Nov. 2004 Dynamic causal models of brain responses Klaas E. Stephan, Lee M. Harrison, Will D. Penny, Karl J. Friston The Wellcome Dept. of Imaging

More information

Modelling functional integration: a comparison of structural equation and dynamic causal models

Modelling functional integration: a comparison of structural equation and dynamic causal models www.elsevier.com/locate/ynimg NeuroImage 23 (2004) S264 S274 Modelling functional integration: a comparison of structural equation and dynamic causal models W.D. Penny,* K.E. Stephan, A. Mechelli, and

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Empirical Bayes for DCM: A Group Inversion Scheme

Empirical Bayes for DCM: A Group Inversion Scheme METHODS published: 27 November 2015 doi: 10.3389/fnsys.2015.00164 : A Group Inversion Scheme Karl Friston*, Peter Zeidman and Vladimir Litvak The Wellcome Trust Centre for Neuroimaging, University College

More information

Biophysical models of fmri responses Klaas E Stephan, Lee M Harrison, Will D Penny and Karl J Friston

Biophysical models of fmri responses Klaas E Stephan, Lee M Harrison, Will D Penny and Karl J Friston Biophysical models of fmri responses Klaas E Stephan, Lee M Harrison, Will D Penny and Karl J Friston Functional magnetic resonance imaging (fmri) is used to investigate where the neural implementation

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Comparing Families of Dynamic Causal Models

Comparing Families of Dynamic Causal Models Comparing Families of Dynamic Causal Models Will D. Penny 1 *, Klaas E. Stephan 1,2, Jean Daunizeau 1, Maria J. Rosa 1, Karl J. Friston 1, Thomas M. Schofield 1, Alex P. Leff 1 1 Wellcome Trust Centre

More information

Continuous Time Particle Filtering for fmri

Continuous Time Particle Filtering for fmri Continuous Time Particle Filtering for fmri Lawrence Murray School of Informatics University of Edinburgh lawrence.murray@ed.ac.uk Amos Storkey School of Informatics University of Edinburgh a.storkey@ed.ac.uk

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

NeuroImage. Nonlinear dynamic causal models for fmri

NeuroImage. Nonlinear dynamic causal models for fmri NeuroImage 42 (2008) 649 662 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Nonlinear dynamic causal models for fmri Klaas Enno Stephan a,b,, Lars

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

Bayesian modelling of fmri time series

Bayesian modelling of fmri time series Bayesian modelling of fmri time series Pedro A. d. F. R. Højen-Sørensen, Lars K. Hansen and Carl Edward Rasmussen Department of Mathematical Modelling, Building 321 Technical University of Denmark DK-28

More information

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs

Overview. Experimental Design. A categorical analysis. A taxonomy of design. A taxonomy of design. A taxonomy of design. 1. A Taxonomy of Designs Experimental Design Overview Rik Henson With thanks to: Karl Friston, Andrew Holmes 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs designs designs - and nonlinear interactions

More information

Dynamic causal models of neural system dynamics. current state and future extensions

Dynamic causal models of neural system dynamics. current state and future extensions Dynamic causal models of neural system dynamics: current state and future etensions Klaas E. Stephan 1, Lee M. Harrison 1, Stefan J. Kiebel 1, Olivier David, Will D. Penny 1 & Karl J. Friston 1 1 Wellcome

More information

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation. 26th May 2011 Dynamic Causal Modelling Dynamic Causal Modelling is a framework studying large scale brain connectivity by fitting differential equation models to brain imaging data. DCMs differ in their

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Comparing hemodynamic models with DCM

Comparing hemodynamic models with DCM www.elsevier.com/locate/ynimg NeuroImage 38 (2007) 387 401 Comparing hemodynamic models with DCM Klaas Enno Stephan, a, Nikolaus Weiskopf, a Peter M. Drysdale, b,c Peter A. Robinson, b,c,d and Karl J.

More information

DCM for fmri Advanced topics. Klaas Enno Stephan

DCM for fmri Advanced topics. Klaas Enno Stephan DCM for fmri Advanced topics Klaas Enno Stephan Overview DCM: basic concepts Evolution of DCM for fmri Bayesian model selection (BMS) Translational Neuromodeling Dynamic causal modeling (DCM) EEG, MEG

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Uncertainty, precision, prediction errors and their relevance to computational psychiatry

Uncertainty, precision, prediction errors and their relevance to computational psychiatry Uncertainty, precision, prediction errors and their relevance to computational psychiatry Christoph Mathys Wellcome Trust Centre for Neuroimaging at UCL, London, UK Max Planck UCL Centre for Computational

More information

John Ashburner. Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.

John Ashburner. Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. FOR MEDICAL IMAGING John Ashburner Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. PIPELINES V MODELS PROBABILITY THEORY MEDICAL IMAGE COMPUTING

More information

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References 24th February 2011 Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities p(b A) = p(a B) = p(a, B) p(a) p(a, B) p(b) Eliminating p(a, B) gives p(b

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics 9. Model Selection - Theory David Giles Bayesian Econometrics One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters. Can't do

More information

arxiv: v1 [q-bio.nc] 15 Mar 2018

arxiv: v1 [q-bio.nc] 15 Mar 2018 Effective Connectivity from Single Trial fmri Data by Sampling Biologically Plausible Models H.C. Ruiz Euler, H.J. Kappen September 16, 2018 arxiv:1803.05840v1 [q-bio.nc] 15 Mar 2018 Abstract The estimation

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Correspondence*: W. Penny 12 Queen Square, London WC1N 3BG, United Kingdom,

Correspondence*: W. Penny 12 Queen Square, London WC1N 3BG, United Kingdom, Frontiers in Neuroinformatics Research Article 15 April 2014 1 Estimating Neural Response Functions from fmri S. Kumar 1,2 and W. Penny 1, 1 Wellcome Trust Centre for Neuroimaging, University College London,

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

A test for a conjunction

A test for a conjunction A test for a conjunction K.J. Worsley a,, K.J. Friston b a Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 2K6 b Wellcome Department of Cognitive Neurology, Institute

More information

Bayesian modeling of learning and decision-making in uncertain environments

Bayesian modeling of learning and decision-making in uncertain environments Bayesian modeling of learning and decision-making in uncertain environments Christoph Mathys Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK Wellcome Trust Centre for

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides

More information

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Younesse Kaddar. Covariance and Correlation Assume that we have recorded two neurons in the two-alternative-forced

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

HGF Workshop. Christoph Mathys. Wellcome Trust Centre for Neuroimaging at UCL, Max Planck UCL Centre for Computational Psychiatry and Ageing Research

HGF Workshop. Christoph Mathys. Wellcome Trust Centre for Neuroimaging at UCL, Max Planck UCL Centre for Computational Psychiatry and Ageing Research HGF Workshop Christoph Mathys Wellcome Trust Centre for Neuroimaging at UCL, Max Planck UCL Centre for Computational Psychiatry and Ageing Research Monash University, March 3, 2015 Systems theory places

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL Attractors in song: 1 New Mathematics and Natural Computation Vol. 5, No. 1 (9) 1-3 World Scientific Publishing Company ATTRACTORS IN SONG KARL FRISTON and STEFAN KIEBEL The Wellcome Trust Centre of Neuroimaging

More information

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides)

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides) Bayesian inference Justin Chumbley ETH and UZH (Thanks to Jean Denizeau for slides) Overview of the talk Introduction: Bayesian inference Bayesian model comparison Group-level Bayesian model selection

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Revealing Interactions Among Brain Systems With Nonlinear PCA

Revealing Interactions Among Brain Systems With Nonlinear PCA Human Brain Mapping 8:92 97(1999) Revealing Interactions Among Brain Systems With Nonlinear PCA Karl Friston,* Jacquie Phillips, Dave Chawla, and Christian Büchel The Wellcome Department of Cognitive Neurology,

More information

A Frequentist Assessment of Bayesian Inclusion Probabilities

A Frequentist Assessment of Bayesian Inclusion Probabilities A Frequentist Assessment of Bayesian Inclusion Probabilities Department of Statistical Sciences and Operations Research October 13, 2008 Outline 1 Quantitative Traits Genetic Map The model 2 Bayesian Model

More information

The connected brain: Causality, models and intrinsic dynamics

The connected brain: Causality, models and intrinsic dynamics The connected brain: Causality, models and intrinsic dynamics Adeel Razi + and Karl J. Friston The Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG. +

More information

Mixed-effects and fmri studies

Mixed-effects and fmri studies Mixed-effects and fmri studies Technical Note www.elsevier.com/locate/ynimg NeuroImage 24 (2005) 244 252 K.J. Friston, a K.E. Stephan, a, * T.E. Lund, b A. Morcom, c and S. Kiebel a a The Wellcome Department

More information

NeuroImage. Tractography-based priors for dynamic causal models

NeuroImage. Tractography-based priors for dynamic causal models NeuroImage 47 (2009) 1628 1638 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Tractography-based priors for dynamic causal models Klaas Enno Stephan

More information

Functional Causal Mediation Analysis with an Application to Brain Connectivity. Martin Lindquist Department of Biostatistics Johns Hopkins University

Functional Causal Mediation Analysis with an Application to Brain Connectivity. Martin Lindquist Department of Biostatistics Johns Hopkins University Functional Causal Mediation Analysis with an Application to Brain Connectivity Martin Lindquist Department of Biostatistics Johns Hopkins University Introduction Functional data analysis (FDA) and causal

More information

Morphometrics with SPM12

Morphometrics with SPM12 Morphometrics with SPM12 John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. What kind of differences are we looking for? Usually, we try to localise regions of difference.

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

The Joy of Path Diagrams Doing Normal Statistics

The Joy of Path Diagrams Doing Normal Statistics Intro to SEM SEM and fmri DBN Effective Connectivit Theor driven process Theor is specified as a model Alternative theories can be tested Specified as models Theor A Theor B Data The Jo of Path Diagrams

More information

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG Integration of /MEG/fMRI Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The MIND Institute Outline fmri/ data Three Approaches to integration/fusion Prediction Constraints 2 nd Level Fusion

More information

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data

Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Robust regression and non-linear kernel methods for characterization of neuronal response functions from limited data Maneesh Sahani Gatsby Computational Neuroscience Unit University College, London Jennifer

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Annealed Importance Sampling for Neural Mass Models

Annealed Importance Sampling for Neural Mass Models for Neural Mass Models, UCL. WTCN, UCL, October 2015. Generative Model Behavioural or imaging data y. Likelihood p(y w, Γ). We have a Gaussian prior over model parameters p(w µ, Λ) = N (w; µ, Λ) Assume

More information

arxiv: v1 [cs.sy] 13 Feb 2018

arxiv: v1 [cs.sy] 13 Feb 2018 The role of noise modeling in the estimation of resting-state brain effective connectivity G. Prando M. Zorzi A. Bertoldo A. Chiuso Dept. of Information Engineering, University of Padova (e-mail: {prandogi,zorzimat,bertoldo,chiuso}@dei.unipd.it)

More information