Structures and Multiaxial Fatigue Analysis. Timothy Langlais

Size: px
Start display at page:

Download "Structures and Multiaxial Fatigue Analysis. Timothy Langlais"

Transcription

1 Computational Methods for Multiaxial Fatigue 1 Structures and Multiaxial Fatigue Analysis Timothy Langlais University of Minnesota langlais@me.umn.edu Advisers: J. H. Vogel and T. R. Chase langlais/

2 Computational Methods for Multiaxial Fatigue 2 Outline 1. undergraduate work on SAE Mini-Baja 2. graduate work on multiaxial fatigue (a) project outline (b) strain-based approach to multiaxial fatigue (c) overview of contributions to process (d) building an empirical plasticity model

3 Computational Methods for Multiaxial Fatigue 3 SAE Mini-Baja Competition 9-month project to design and build an off-road vehicle with the following constraints: unmodified Briggs & Stratton Engine rollcage safety requirements $1500 cost limit Project culminates with competition that includes acceleration braking durability flotation

4 Computational Methods for Multiaxial Fatigue 4 Mini-Baja Design Observation: nearly all Mini-Baja designs use a tubular skeleton design fitted with caulked/riveted sheet aluminum skin for flotation skin adds approximately 30 lbs. of extra weight Idea: build main hull using a structural skin aluminum honeycomb panel

5 Computational Methods for Multiaxial Fatigue 5 Mini-Baja Testing? How does one connect the panels? P create a baseline 90 o each connection design specimen for test in static 3-pt bending measure failure load

6 Computational Methods for Multiaxial Fatigue 6 Mini-Baja Testing Test several designs: cut inside panel sheet, fold outside panel sheet rivet aluminum doublers to the panels bond aluminum doublers to the panels Final Design: bond and rivet aluminum doublers to the panels

7 Computational Methods for Multiaxial Fatigue 7 Graduate Work on Multiaxial Fatigue Goal: design and create a validated multiaxial fatigue analysis tool program funded by Deere & Co. application to isotropic steels used in axles, rods, etc. focus on variable-amplitude service histories with many thousands of samples

8 Computational Methods for Multiaxial Fatigue 8 Why Is Fatigue Important? Fact: more than 80% of all failures in the ground vehicle industry are fatigue-related Thus: industry must understand and be able to predict fatigue in order to design for product life cycle

9 Computational Methods for Multiaxial Fatigue 9 Why Computational Multiaxial Fatigue Methods? 1. Computation is much cheaper/faster than experimentation. But answers are only as good as the underlying models. 2. Most components are subjected to multiple loads, leading to a multiaxial σ-ɛ state (e.g., tractor axle in bending and torsion). Can only be partially accounted for using equivalent uniaxial methods. 3. Many components are subjected to multiple loads with varying phase. Cannot be accounted for using uniaxial or equivalent methods.

10 Computational Methods for Multiaxial Fatigue 10 Loads, P (t) Strains, ɛ(t) The Computational Approach to Fatigue stress concentrations notch correction σ + ɛ plasticity σ(t), ɛ(t) ɛ cycle counting t Ci(σ, ɛ), i =0...n N i, i =0...n material properties ɛ γ damage model n i=0 f(n i) material properties summation N f

11 Computational Methods for Multiaxial Fatigue 11 Project Contributions 1. infinite-surface plasticity model 2. combined notch correction and plasticity models 3. multiaxial cycle counting algorithm 4. robust numerical implementation of damage models 5. experiments on multiaxial behavior under constrained plasticity 6. empirical plasticity modeling

12 Computational Methods for Multiaxial Fatigue 12 Infinite-Surface Plasticity Model s α active s u Model based on the work of Mróz and Chu each surface represents a unique value of the plastic modulus, H model captures material memory behavior geometric implementation reduces system to single tensor differential equation model inaccurate for repeated nonproportional cycling

13 Computational Methods for Multiaxial Fatigue 13 Combining Notch Correction and Plasticity σ Notch Problem: Given nominal strains, e, find notch σ and ɛ. e ɛ p e ɛ e e ɛ Köttgen s Hypothesis: The governing equations of plasticity can be used as a structural model to relate elastically-calculated strains ( e ɛ = K t e) to nonlinear notch stresses (σ). It is possible to simultaneously solve Köttgen s structural model and the material model

14 Computational Methods for Multiaxial Fatigue 14 Multiaxial Cycle Counting strain stress Sample Number uniaxial methods assume that all channels are in-phase only need to identify reversals on one channel uniaxial rainflow methods can only count cycles on peaks and valleys intermediate samples must be removed uniaxial methods fail to identify important peaks and valleys on other channels

15 Computational Methods for Multiaxial Fatigue 15 Numerical Implementation of Damage Models Usual numerical implementation establishes an explicit relation between the damage parameter and the life: P = σ f E (2N f ) b + ɛ f (2N f ) c requires re-fit of material properties σ f, b, ɛ f,andc for each damage parameter assumes a relationship between the ɛ N f and σ ɛ material properties

16 Computational Methods for Multiaxial Fatigue 16 Numerical Implementation of Damage Models Instead, establish implicit relation P = f ( N f ; σ f,b,ɛ f,c ) requires only one fit of the material properties the uniaxial ɛ N f properties will do robust: assumes nothing about how ɛ N f and σ ɛ material properties were fit

17 Computational Methods for Multiaxial Fatigue 17 Multiaxial Experiments collect ɛ-gage data in area of constrained plasticity near hole measure load input, P attempt to predict ɛ response using P input

18 Computational Methods for Multiaxial Fatigue 18 Outline Empirical Plasticity Model Goal describe the process for building an empirical plasticity model 1. Plasticity Models 2. Building an Empirical Plasticity Model 3. Preliminary Results

19 Computational Methods for Multiaxial Fatigue 19 What Is a Plasticity Model? A plasticity model is used to compute nonlinear stresses from measured strains via a set of governing differential equations 3τ σ = f ( ɛ,a,σ,h) ȧ = µ ˆβ σ 2 y = (σ a) :(σ a) σ von Mises yield criterion: a center a σ y σ σ y radius kinematic hardening: the yield surface may move but cannot grow during loading

20 Computational Methods for Multiaxial Fatigue 20 What Defines a Plasticity Model ˆn σ a σ ȧ direction of yield surface motion ˆβ = ȧ ȧ magnitude of yield surface motion or H = f ( ȧ ) µ = ȧ Note ˆβ and H or µ are both free parameters

21 Computational Methods for Multiaxial Fatigue 21 Experiments Behind Multiaxial Plasticity Modeling T τ,γ σ,ɛ cannot measure yield surface motion ( ˆβ and H or µ) directly thin-walled tube experiments can measure ɛ = ( ɛ, γ/ 3 ) P using strain gages can measure σ = ( σ, 3τ ) from loads

22 Computational Methods for Multiaxial Fatigue 22 Conventional Method for Building a Plasticity Model 1. propose functions for ˆβ and H or µ based on theory or experimental observations 2. program a plasticity model based on those functions 3. compare plasticity model s predicted stresses against measured stresses for strain-controlled histories

23 Computational Methods for Multiaxial Fatigue 23 Determination of Yield Surface Motion from Experimental Data 1. use curve fits to find derivatives 2. Hooke s Law: ɛ p = ɛ ɛ e 3. Normality: 4. Kinematic Hardening: ˆn = ɛp ɛ p a = σ σ y ˆn H = σ :ˆn ɛ p :ˆn ˆβ = ȧ ȧ

24 Computational Methods for Multiaxial Fatigue 24 Building an Empirical Model Find: functions or state variables that correlate the experimentally-derived values of H or µ and ˆβ tensor that correlates the direction, ˆβ ˆβ = f(?) scalar variable/function that correlates the magnitude, H or µ H = f(?) µ = f(?)

25 Computational Methods for Multiaxial Fatigue 25 Correlating Direction of Yield Surface Motion Axial Stress Rate, σ Torsional Stress Rate, 3 τ Axial Backstress Rate, ˆβ a Torsional Backstress Rate, ˆβ t Conclusion: Yield surface center moves in the direction of the stress rate, ˆβ σ

26 Computational Methods for Multiaxial Fatigue 26 Correlating Magnitude of Motion Mróz Active Surface σ σ act 3 τ σ Plastic Modulus, H 1e uniaxial proportional nonproportional H is a function of the size of the largest loading surface in contact with stress point, σ act Mroz Active Surface

27 Computational Methods for Multiaxial Fatigue 27 Correlating Magnitude of Motion Dafalias-Popov 2-Surface Distance 1e+06 3 τ β δ σ β in σ Plastic Modulus, H uniaxial proportional nonproportional H is a nonlinear function of β δ and β in Dafalias-Popov 2 Surface

28 Computational Methods for Multiaxial Fatigue 28 Correlating Magnitude of Motion Bannantine 2-Surface Distance 3 τ 1e+06 D σ H is a function of the distance to the limit surface, D σ Plastic Modulus, H uniaxial proportional nonproportional Bannantine 2 Surface

29 Computational Methods for Multiaxial Fatigue 29 Correlating Magnitude of Motion McDowell/Dafalias-Popov Accumulated Plastic Strain 3 τ 1e+06 uniaxial proportional nonproportional σ σ Plastic Modulus, H H is a function of the accumulated plastic strain, ɛ p dt McDowell/Dafalias-Popov Accumulated Plastic Strain

30 Computational Methods for Multiaxial Fatigue 30 Conclusions computational analysis is an inexpensive way to evaluate fatigue it is possible to determine plasticity model parameters using thin-walled tube data the direction of the yield surface motion roughly follows the motion of the stress point, ˆβ = ȧ ȧ σ the magnitude of the yield surface motion, H, is best correlated by the accumulated plastic strain

Predicting Fatigue Life with ANSYS Workbench

Predicting Fatigue Life with ANSYS Workbench Predicting Fatigue Life with ANSYS Workbench How To Design Products That Meet Their Intended Design Life Requirements Raymond L. Browell, P. E. Product Manager New Technologies ANSYS, Inc. Al Hancq Development

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Multiaxial Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2001-2011 Darrell Socie, All Rights Reserved Contact Information

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

Volume 2 Fatigue Theory Reference Manual

Volume 2 Fatigue Theory Reference Manual Volume Fatigue Theory Reference Manual Contents 1 Introduction to fatigue 1.1 Introduction... 1-1 1. Description of the applied loading... 1-1.3 Endurance curves... 1-3 1.4 Generalising fatigue data...

More information

Siping Road 1239, , Shanghai, P.R. China

Siping Road 1239, , Shanghai, P.R. China COMPARISON BETWEEN LINEAR AND NON-LINEAR KINEMATIC HARDENING MODELS TO PREDICT THE MULTIAXIAL BAUSCHINGER EFFECT M.A. Meggiolaro 1), J.T.P. Castro 1), H. Wu 2) 1) Department of Mechanical Engineering,

More information

Analysis Handbook. Metal Fatigue. for Computer-Aided Engineering. Barkey. Yung-Li Lee. Practical Problem-Solving Techniques. Hong-Tae Kang. Mark E.

Analysis Handbook. Metal Fatigue. for Computer-Aided Engineering. Barkey. Yung-Li Lee. Practical Problem-Solving Techniques. Hong-Tae Kang. Mark E. Metal Fatigue Analysis Handbook Practical Problem-Solving Techniques for Computer-Aided Engineering Yung-Li Lee Mark E. Barkey Hong-Tae Kang ms- ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD

More information

* Many components have multiaxial loads, and some of those have multiaxial loading in critical locations

* Many components have multiaxial loads, and some of those have multiaxial loading in critical locations Why do Multiaxial Fatigue Calculations? * Fatigue analysis is an increasingly important part of the design and development process * Many components have multiaxial loads, and some of those have multiaxial

More information

Lecture #8: Ductile Fracture (Theory & Experiments)

Lecture #8: Ductile Fracture (Theory & Experiments) Lecture #8: Ductile Fracture (Theory & Experiments) by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Ductile

More information

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly.

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly. Quick Fatigue Analysis Guide This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly. Experienced FEA analysts can also use this

More information

A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction. of Homogeneous and Heterogeneous Materials. Haoyang Wei

A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction. of Homogeneous and Heterogeneous Materials. Haoyang Wei A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials by Haoyang Wei A Thesis Presented in Partial Fulfillment of the Requirements for the Degree

More information

Calculating and Displaying Fatigue Results

Calculating and Displaying Fatigue Results Calculating and Displaying Fatigue Results The ANSYS Fatigue Module has a wide range of features for performing calculations and presenting analysis results. By Raymond Browell Product Manager New Technologies

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

Multiaxial Fatigue Life Prediction Methods for Notched Bars of Ti-6Al-4V ABSTRACT

Multiaxial Fatigue Life Prediction Methods for Notched Bars of Ti-6Al-4V ABSTRACT Multiaxial Fatigue Life Prediction Methods for Notched Bars of Ti-6Al-4V Dr. Alan Kallmeyer 1, Mr. Ahmo Krgo 1, and Dr. Peter Kurath 2 1 Department of Mechanical Engineering, North Dakota State University,

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM 1 INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM Influence of anisotropy Daniel Riemensperger, Adam Opel AG Paul Du Bois, PDB 2 www.opel.com CONTENT Introduction/motivation Isotropic & anisotropic material

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

Load Determination. Fatigue Life Predictions Infinite Life, Stress Life, Strain Life

Load Determination. Fatigue Life Predictions Infinite Life, Stress Life, Strain Life Durability Agenda Durability Basics Fatigue, Stress, Strain Load Determination Measurements, Multi-Body Simulation Loads and Damage S-N Curve, Cycle Counting Load Characterization Establishing Durability

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Life Prediction Under Multiaxial Fatigue

Life Prediction Under Multiaxial Fatigue Lie Prediction Under Multiaxial Fatigue D. Ramesh and M.M. Mayuram Department o Mechanical Engineering Indian Institute o Technology, Madras Chennai-600 036 (India) e-mail: mayuram@iitm.ac.in ABSTRACT

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Fatigue Life Assessment of 30CrNiMo8HH Steel Under Variable Amplitude Loading

Fatigue Life Assessment of 30CrNiMo8HH Steel Under Variable Amplitude Loading Fatigue Life Assessment of 3CrNiMo8HH Steel Under Variable Amplitude Loading by Elfaitori Ibrahim A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

The Finite Element Method II

The Finite Element Method II [ 1 The Finite Element Method II Non-Linear finite element Use of Constitutive Relations Xinghong LIU Phd student 02.11.2007 [ 2 Finite element equilibrium equations: kinematic variables Displacement Strain-displacement

More information

Kliment Ohridski Blvd No 10, 1756 Sofia, Bulgaria; Fax:

Kliment Ohridski Blvd No 10, 1756 Sofia, Bulgaria; Fax: Multiaxial Fatigue Life Assessment of Components of Forged Steel Ck 45 (SAE 1045) and of Sintered Steel Fe-1.5Cu by Integration of Damage Differentials (IDD) S. H. Stefanov 1, C. M. Sonsino 1 Department

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved Stress Concentration Professor Darrell F. Socie 004-014 Darrell Socie, All Rights Reserved Outline 1. Stress Concentration. Notch Rules 3. Fatigue Notch Factor 4. Stress Intensity Factors for Notches 5.

More information

MECHANICAL TESTING METHODS CONCERNING THE STRESS ANALYSIS FOR A VEHICLE WHEEL RIM

MECHANICAL TESTING METHODS CONCERNING THE STRESS ANALYSIS FOR A VEHICLE WHEEL RIM Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 2, 33-39 MECHANICAL TESTING METHODS CONCERNING THE STRESS ANALYSIS FOR A VEHICLE WHEEL RIM Alexandru Valentin RADULESCU 1), Sorin CANANAU

More information

Definition of Stress and Strain Ranges for Multiaxial Fatigue Life Evaluation under Non-Proportional Loading

Definition of Stress and Strain Ranges for Multiaxial Fatigue Life Evaluation under Non-Proportional Loading (Journal of the Society of Materials Science, Japan), Vol. 62, No. 2, pp. 117-124, Feb. 2013 Original Papers Definition of Stress and Strain Ranges for Multiaxial Fatigue Life Evaluation under Non-Proportional

More information

ONERA Fatigue Model. December 11, 2017

ONERA Fatigue Model. December 11, 2017 December 11, 2017 Plan 1 ONERA Model 2 Manson-Coffin Model 3 Basic Tools Multiaxial stress amplitude (SEH) Multiaxial rainflow 4 Z-post input commands process onera process fatigue_rainflow process manson_coffin

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

2.1 Background of Piping Stresses

2.1 Background of Piping Stresses 2 Research Review One of the major additions to Tmin was the inclusion of analysis of a 2-Dimensional vertical piping span. The original plan from Dupont was to include several types of 2-D and 3-D vertical

More information

FME461 Engineering Design II

FME461 Engineering Design II FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

More information

Finite Element Modeling of an Aluminum Tricycle Frame

Finite Element Modeling of an Aluminum Tricycle Frame Finite Element Modeling of an Aluminum Tricycle Frame A. Rodríguez, B. Chiné*, and J. A. Ramírez Costa Rica Institute of Technology, School of Materials Science and Engineering, Cartago, Costa Rica *Corresponding

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Theory of Plasticity. Lecture Notes

Theory of Plasticity. Lecture Notes Theory of Plasticity Lecture Notes Spring 2012 Contents I Theory of Plasticity 1 1 Mechanical Theory of Plasticity 2 1.1 Field Equations for A Mechanical Theory.................... 2 1.1.1 Strain-displacement

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Engineering MECHANICS, Vol. 19, 2012, No. 2/3, p. 87 97 87 CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Radim Halama*, Michal Šofer*, František Fojtík* Plasticity

More information

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS INTERNATIONAL ESIGN CONFERENCE - ESIGN ubrovnik, May 14-17,. APPLICATION OF AMAGE MOEL FOR NUMERICAL ETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS Robert Kunc, Ivan Prebil, Tomaž Rodic and

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation

3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation 3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation Bipul Barua, Subhasish Mohanty 1, Joseph T. Listwan, Saurindranath Majumdar, and

More information

Evaluation of HCF Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V

Evaluation of HCF Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V Evaluation of HCF Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V Mr. Ahmo Krgo and Dr. Alan R. Kallmeyer Graduate Research Assistant and Assistant Professor, respectively Department of

More information

SIZE EFFECTS IN THE COMPRESSIVE CRUSHING OF HONEYCOMBS

SIZE EFFECTS IN THE COMPRESSIVE CRUSHING OF HONEYCOMBS 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con 22-25 April 2002, Denver, Colorado SIZE EFFECTS IN THE COMPRESSIVE CRUSHING OF HONEYCOMBS Erik C. Mellquistand Anthony M.

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1 TMHL6 204-08-30 (Del I, teori; p.). Fig.. shows three cases of sharp cracks in a sheet of metal. In all three cases, the sheet is assumed to be very large in comparison with the crack. Note the different

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING ME 354, MECHANICS OF MATERIALS LABATY COMPRESSION AND BUCKLING PURPOSE 01 January 2000 / mgj The purpose of this exercise is to study the effects of end conditions, column length, and material properties

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Model of Fatigue Crack and Effect of Triaxiality

Model of Fatigue Crack and Effect of Triaxiality Model of Fatigue Crack and Effect of Triaxiality STEPAN MAJOR, MICHAL RUZICKA, Department of Technical Education University Hradec Králové Rokitanského 6, Hradec Králové CZECH REPUBLIC s.major@seznam.cz

More information

Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM

Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Thomas Siegmund Purdue University 1 Funding JOINT CENTER OF EXCELLENCE for ADVANCED MATERIALS, FAA Cooperative Agreement 04-C-AM-PU.

More information

Fatigue estimation for beam structures using BS5400

Fatigue estimation for beam structures using BS5400 Fatigue estimation for beam structures using BS5400 Ervin Kerekes and József Petrovics NABI Rt., Engineering Department H-1165, Budapest, Újszász u. 45, HUNGARY Received: November 8, 2000. ABSTRACT In

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 1 June 2006 1.30 to 4.30 PAPER 76 NONLINEAR CONTINUUM MECHANICS Attempt FOUR questions. There are SIX questions in total. The questions carry equal weight. STATIONERY

More information

MULTIAXIAL ASSESSMENT METHOD FOR FATIGUE CALCULATIONS IN COMPOSITE COMPONENTS

MULTIAXIAL ASSESSMENT METHOD FOR FATIGUE CALCULATIONS IN COMPOSITE COMPONENTS MULTIAXIAL ASSESSMENT METHOD FOR FATIGUE CALCULATIONS IN COMPOSITE COMPONENTS Peter Heyes HBM-nCode Abstract Fatigue analysis methods are well-established as part of the product development process for

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

Chapter 6: Plastic Theory

Chapter 6: Plastic Theory OHP Mechanical Properties of Materials Chapter 6: Plastic Theory Prof. Wenjea J. Tseng 曾文甲 Department of Materials Engineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W. F.

More information

HERCULES-2 Project. Deliverable: D4.4. TMF model for new cylinder head. <Final> 28 February March 2018

HERCULES-2 Project. Deliverable: D4.4. TMF model for new cylinder head. <Final> 28 February March 2018 HERCULES-2 Project Fuel Flexible, Near Zero Emissions, Adaptive Performance Marine Engine Deliverable: D4.4 TMF model for new cylinder head Nature of the Deliverable: Due date of the Deliverable:

More information

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS SHEN R. WU and LEI GU WILEY A JOHN WILEY & SONS, INC., PUBLICATION ! PREFACE xv PARTI FUNDAMENTALS 1 1 INTRODUCTION 3

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

A Sample Durability Study of a Circuit Board under Random Vibration and Design Optimization

A Sample Durability Study of a Circuit Board under Random Vibration and Design Optimization A Sample Durability Study of a Circuit Board under Random Vibration and Design Optimization By: MS.ME Ahmad A. Abbas Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, March 07, 2010 Advanced CAE

More information

Analysis of local stress concentration at transitions

Analysis of local stress concentration at transitions Analysis of local stress concentration at transitions ESIS TC24 Meeting 1-2 October, 2014, POLIMI (Milano) Aitor Landaberea CAF S.A. Wheels, Axles and Gearboxes Business Unit Contents Introduction Axle

More information

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements Lecture #10: 151-0735: Dynamic behavior of materials and structures Anisotropic plasticity Crashworthiness Basics of shell elements by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering,

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

Size Effects In the Crushing of Honeycomb Structures

Size Effects In the Crushing of Honeycomb Structures 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference 19-22 April 2004, Palm Springs, California AIAA 2004-1640 Size Effects In the Crushing of Honeycomb Structures Erik C.

More information

Available online at ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17)

Available online at   ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 74 ( 2014 ) 165 169 XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) Fatigue of Solder Interconnects

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

C:\W\whit\Classes\304_2012_ver_3\_Notes\6_FailureAnalysis\1_failureMechanics_intro.doc p. 1 of 1 Failure Mechanics

C:\W\whit\Classes\304_2012_ver_3\_Notes\6_FailureAnalysis\1_failureMechanics_intro.doc p. 1 of 1 Failure Mechanics C:\W\whit\Classes\304_01_ver_3\_Notes\6_FailureAnalysis\1_failureMechanics_intro.doc p. 1 of 1 Failure Mechanics Performance can be affected by temperature (high and low), corrosion, light, moisture, contact

More information

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Compact energy absorbing cellular structure

Compact energy absorbing cellular structure Structures Under Shock and Impact IX 413 Compact energy absorbing cellular structure M. Ali 1, A. Qamhiyah 2, D. Flugrad 1 & M. Shakoor 1 1 Department of Mechanical Engineering, Iowa State University,

More information

The Introduction of Pro-EMFATIC For Femap

The Introduction of Pro-EMFATIC For Femap Che-Wei L. Chang PhD The Introduction of Pro-EMFATIC For Femap Femap Symposium 2014 May 14-16, Atlanta, GA, USA FEMAP SYMPOSIUM 2014 Discover New Insights Table of Contents What Is Pro-EMFATIC? What Is

More information

Effect of Deformation Mode of Cylindrical Tubes with Corrugated Surface Dimensional Errors

Effect of Deformation Mode of Cylindrical Tubes with Corrugated Surface Dimensional Errors Proceedings of the 8th International Conference on Innovation & Management 5 Effect of Deformation Mode of Cylindrical Tubes with Corrugated Surface Dimensional Errors Shigeyuki Haruyama, Daiheng Chen,

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

2002 Pavement Design

2002 Pavement Design 2002 Pavement Design Federal Highway Administration June 2001 Thomas P. Harman Asphalt Team Leader Predicting Pavement Performance Pavements are designed to fail But how do they perform? Defining Performance

More information

A novel approach to predict the growth rate of short cracks under multiaxial loadings

A novel approach to predict the growth rate of short cracks under multiaxial loadings A novel approach to predict the growth rate of short cracks under multiaxial loadings F. Brugier 1&2, S. Pommier 1, R. de Moura Pinho 2, C. Mary 2 and D. Soria 2 1 LMT-Cachan, ENS Cachan / CNRS / UPMC

More information

HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling

HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling TID: 2016-28-10, kl 14.00-19.00 Maximalt 60 poäng kan erhållas på denna tenta. För godkänt krävs 30 poäng. Tillåtet hjälpmedel: räknare

More information

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA Durability of bonded aircraft structure AMTAS Fall 216 meeting October 27 th 216 Seattle, WA Durability of Bonded Aircraft Structure Motivation and Key Issues: Adhesive bonding is a key path towards reduced

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information