Quantum Algorithms Lecture #3. Stephen Jordan

Size: px
Start display at page:

Download "Quantum Algorithms Lecture #3. Stephen Jordan"

Transcription

1 Quantum Algorithms Lecture #3 Stephen Jordan

2 Summary of Lecture 1 Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries Reversible computing Phase kickback Phase estimation

3 Summary of Lecture 2 Introduced more building blocks Used these blocks to build quantum algorithms: Oracles & Recursion Hadamard Test Hadamard Transform Fourier Transform Deutsch-Jozsa Algorithm Bernstein-Vazirani Algorithm Shor's Algorithm Introduced Hidden Subgroup and Hidden Shift

4 This Time Quantum Algorithms for Topological Invariants knot invariants 3-manifold invariants BQP-hardness DQC1-hardness

5 Knot Theory A knot is an embedding of the circle into. Knots are considered equivalent if one can be deformed into another without cutting.

6 Knot Equivalence

7 Links A link is an embedding of an arbitrary number of circles into. unlink of two strands Hopf link Borromean rings

8 Knot Equivalence Problem Given two knots, decide equivalence. Knots can be specified by knot diagrams, which are degree-4 graphs with each vertex labeled as either or.

9 Reidemeister Moves Diagrams of equivalent knots are always reachable by some sequence of the three Reidemeister moves. Move 1: Move 2: Move 3:

10 Unknot Problem Unknot problem: decide whether a given knot is equivalent to the unknot. UNKNOT NP. [Lagarias & Pippenger, 1999] UNKNOT conp (assuming GRH). [Kuperberg, 2011] UNKNOT is not known to be in P.

11 Knot Invariants Lacking an algorithm for UNKNOT, one can make partial progress with knot invariants. If are equivalent knots then. If f always maps inequivalent knots to different values then it is a complete invariant.

12 Jones Polynomial The Jones polynomial is an invariant maps oriented links to polynomials in a single-variable. The Jones polynomial is a strong invariant, but is known not to be complete for links.

13

14 Jones Polynomial The degree of the Jones polynomial is linear in the number of crossings in the knot diagram. (Thus it can be written down efficiently.) However, the coefficients can be exponentially large, and hard to compute. Exact computation of the Jones polynomial is #P-hard.

15 Jones Polynomial as Physics 1985: Jones discovers the Jones Polynomial 1989: Witten discovers Jones polynomial arises as an amplitude in Chern-Simons Theory Church-Turing-Deutsch Thesis: Every physically realizable computation can be simulated by quantum circuits with polynomial overhead. 2000: Freedman, Kitaev, Larsen, and Wang find quantum algorithm and hardness result for Jones polynomials.

16 Anyons In (2+1)-D winding number is well-defined Particle exchange can induce phase

17 Non-Abelian Anyons Two-dimensional condensed-matter systems may have anyonic quasiparticle excitations. Braiding can induce unitary transformations within degenerate ground space.

18 Non-Abelian Anyons Non-abelian anyons give us a unitary representation of the braid group. In some cases the set of unitary transformations induced by elementary crossings is a universal set of quantum gates. topological quantum computation

19 The Braid Group

20 The Artin Generators Artin's theorem: these relations capture all topological equivalences of braids.

21 Commutation

22 Yang-Baxter Equation

23 A braid: Its plat closure: Its trace closure:

24 Alexander's Theorem: Any link can be obtained as the trace closure of some braid. Corollary: Any link can be obtained as the plat closure of some braid. trace plat

25 Alexander's Theorem: Any link can be obtained as the trace closure of some braid. Corollary: Any link can be obtained as the plat closure of some braid. Exercise: prove it. trace plat

26 Alexander's Theorem: Any link can be obtained as the trace closure of some braid. Corollary: Any link can be obtained as the plat closure of some braid. Proof:

27 Markov Moves A function on braids is an invariant of the corresponding trace closures if it is invariant under the two Markov moves. Move 1: Move 2:

28 Markov Moves Move 2:

29 Link Invariants from Braid Group Representations Let be a family of representations of the braid groups is automatically invariant under the first Markov move.

30 The Jones Representation The Jones polynomial is a polynomial in t. Coefficients c,d are functions of t. If t is a root of unity, then the representation is unitary.

31 The Jones Representation This example is for. In general the labels can take values beyond 0,1. The Jones polynomial is a polynomial in t. Coefficients c,d are functions of t. If t is a root of unity, then the representation is unitary.

32 Quantum Algorithm for Jones We can implement the Jones representation by invoking gate universality. Church-Turing-Deutsch principle says this is natural - not just a lucky coincidence. We can estimate any diagonal matrix element of the representation using the Hadamard test.

33 Choose random x:

34 Choose random x:

35 Approximating Jones Polynomials The preceeding algorithm achieves an additive approximation to the Jones polynomial. By sampling If times one obtains: is a random element of then:

36 Approximating Jones Polynomials Our algorithm yields: Is this nontrivial? Probably: Arbitrary quantum circuits can be approximated by braids. Thus, we can estimate the trace of quantum circuits. This is DQC1-complete. Also: we can do better.

37 Plat Closures The Jones polynomial of this knot is. The Jone polynomial of this knot is.

38 O(n) samples yields:

39 The Jone polynomial of this knot is. Given a quantum circuit of G gates on n qubits, one can efficiently find a braid of poly(g) crossings on poly(n) strands such that: If we could additively approximate the Jones polynomial of a plat closure classically then we could simulate all of quantum computation!

40 The Jone polynomial of this knot is. Given a quantum circuit of G gates on n qubits, one can efficiently find a braid of poly(g) crossings on poly(n) strands such that: Additively approximating the Jones polynomial of a plat closre to 1/poly(n) precision is BQP-complete.

41 Additively approximating the Jones polynomial of the plat closures of braids is BQP-complete. Additively approximating the Jones polynomial of the trace closures braids is BQP-complete.??? Any knot can be constructed as either braid or plat closure.

42 Additively approximating the Jones polynomial of the plat closures of braids is BQP-complete. Additively approximating the Jones polynomial of the trace closures braids is BQP-complete. These problems differ in precision.??? Any knot can be constructed as either braid or plat closure.

43 One Clean Qubit One qubit starts in a pure state. n qubits are maximally mixed. Apply a polynomial size quantum circuit. Measure the first qubit.

44 DQC1 The class of problems solvable with one clean qubit is called DQC1. Loosely corresponds to NMR computers. Probably looks like this: If so, estimating the Jones polynomial of the trace closure of braids to polynomial additive precision is classically intractable for hardest instances.

45 3-Manifold Equivalence Three manifold: topological space locally like Homeomorphism: continuous map with continuous inverse. Fundamental question: given two manifolds, are they homeomorphic ( the same ).

46 How do we describe a 3-manifold to a computer? One way is to use a triangulation: A set of tetrahedra. A gluing of the faces.

47 Two triangulations yield equivalent 3-manifolds iff they are connected by a finite sequence of Pachner moves.

48 Two triangulations yield equivalent 2-manifolds iff they are connected by a finite sequence of Pachner moves.

49 Pachner's Theorem Two triangulations yield equivalent n-manifolds iff they are connected by a finite sequence of Pachner moves. The Pachner moves correspond to the ways of gluing together n-simplices to obtain an (n+1)-simplex.

50 complexity of topological equivalence problems: knots in 2-manifolds in P 3-manifolds computable 4-manifolds uncomputable partial solution: manifold invariant if manifolds A and B are homeomorphic then f(a) = f(b)

51 Constructing Invariants To each tetrahedron associate a 6-index tensor. For each glued face, contract (sum over) the corresponding indices. We just need to find a tensor such that this sum is invariant under the Pachner moves.

52 Constructing Invariants To each tetrahedron associate a 6-index tensor. 6j tensor from : Ponzano-Regge 6j tensor from : Turaev-Viro

53 A TQFT maps n-manifolds to vector spaces and (n+1)-manifolds to linear maps between the vector spaces of its boundaries.

54 Functorial property: the gluing of two manifolds yields the composition of the associated linear maps.

55 Exercise Q. Argue that: is a projector

56 Exercise Q. Argue that: is a projector A. glue = functor

57 Exercise The empty boundary corresponds to is a projector is a vector is a dual vector Closed manifolds map to scalars..

58 Spin Foam Gravity Boundary is triangulated surface with labeled edges. These specify the geometry of space. The value of the tensor network is the transition amplitude between geometries.

59 Every physical system can be efficiently simulated by a standard quantum computer. t We should be able to estimate this amplitude with an efficient quantum circuit.

60 Turaev-Viro Additively estimating the Turaev-Viro invariant is a BQP-complete problem. There is an efficient quantum algorithm. Simulating a quantum computer reduces to estimating the Turaev-Viro Invariant. The easiest proof is by reformulating the problem in terms of Heegaard splittings.

61 Heegaard Splitting Specify: genus g gluing map between genus-g surfaces Every 3-manifold can be obtained this way.

62 Small changes to gluing map don't affect topology of resulting 3-manifold. It suffices to specify gluing map modulo those small changes. Result is element of mapping class group. Fairly intuitive: generated by Dehn twists:

63 Alternative Definition of TV invariant t genus g handlebody mapping class group element t genus g handlebody is a unitary representation of MCG

64 Quantum Algorithm for TV Invariant Problem size: genus g and number of Dehn twists n Algorithm: Build from standard state using poly(g) gates Approximate unitary using polylog(g,n) gates Estimate using Hadamard test.

65 TV Invariant is BQP-hard The images of the Dehn twist generators are like universal quantum gates. They act on O(1) local degrees of freedom. They generate a dense subgroup of the unitaries. Simulate a quantum circuit by translating each gate into a corresponding sequence of Dehn twists. Implies nontriviality of quantum algorithm for TV even though approximation is trivial-on-average!

66 BQP-complete DQC1-complete

67 Ponzano-Regge Invariant Ponzano-Regge invariant can be efficiently approximated on a quantum computer. Actually only need a permutational computer. Probably an easier problem than estimating Turaev-Viro invariant. Turaev-Viro: 6j tensor from Ponzano-Regge: 6j tensor from

68 Approximate Ponzano-Regge as follows: Prepare a state of spin-1/2 particles with definite total angular momentum Permute them around Measure total angular momentum of subsets permutational computation Analogous to topological computation, but doesn't need anyons Dual to Aaronson's boson-sampling

69 I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

70 Further Reading Surveys: Childs & van Dam, Quantum algorithms for algebraic problems [arxiv: ] Mosca, Quantum algorithms [arxiv: ] Jordan, Quantum algorithm zoo math.nist.gov/quantum/zoo/ Childs, lecture notes ~amchilds/teaching/w13/qic823.html

Quantum Algorithms Lecture #2. Stephen Jordan

Quantum Algorithms Lecture #2. Stephen Jordan Quantum Algorithms Lecture #2 Stephen Jordan Last Time Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries

More information

Topological Quantum Computation. Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015

Topological Quantum Computation. Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015 Topological Quantum Computation Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015 Classical Physics Turing Model Quantum Mechanics Quantum Computing Quantum Field Theory??? String

More information

CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago!

CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago! CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago! Content! Introduction to Knot, Link and Jones Polynomial! Surgery theory! Axioms of Topological Quantum Field Theory! Wilson loopsʼ expectation

More information

Realizing non-abelian statistics in quantum loop models

Realizing non-abelian statistics in quantum loop models Realizing non-abelian statistics in quantum loop models Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

How hard is it to approximate the Jones polynomial?

How hard is it to approximate the Jones polynomial? How hard is it to approximate the Jones polynomial? Greg Kuperberg UC Davis June 17, 2009 The Jones polynomial and quantum computation Recall the Jones polynomial ( = Kauffman bracket): = q 1/2 q 1/2 =

More information

Evgeniy V. Martyushev RESEARCH STATEMENT

Evgeniy V. Martyushev RESEARCH STATEMENT Evgeniy V. Martyushev RESEARCH STATEMENT My research interests lie in the fields of topology of manifolds, algebraic topology, representation theory, and geometry. Specifically, my work explores various

More information

Topological order from quantum loops and nets

Topological order from quantum loops and nets Topological order from quantum loops and nets Paul Fendley It has proved to be quite tricky to T -invariant spin models whose quasiparticles are non-abelian anyons. 1 Here I ll describe the simplest (so

More information

Topological quantum computation

Topological quantum computation NUI MAYNOOTH Topological quantum computation Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Tutorial Presentation, Symposium on Quantum Technologies, University

More information

Topological Quantum Computation from non-abelian anyons

Topological Quantum Computation from non-abelian anyons Topological Quantum Computation from non-abelian anyons Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

Knots and Physics. Lifang Xia. Dec 12, 2012

Knots and Physics. Lifang Xia. Dec 12, 2012 Knots and Physics Lifang Xia Dec 12, 2012 Knot A knot is an embedding of the circle (S 1 ) into three-dimensional Euclidean space (R 3 ). Reidemeister Moves Equivalent relation of knots with an ambient

More information

arxiv:quant-ph/ v5 19 Feb 2011

arxiv:quant-ph/ v5 19 Feb 2011 The BQP-hardness of approximating the Jones Polynomial arxiv:quant-ph/0605181v5 19 Feb 2011 Dorit Aharonov and Itai Arad Department of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

More information

Anyonic Quantum Computing

Anyonic Quantum Computing Anyonic Quantum Computing 1. TQFTs as effective theories of anyons 2. Anyonic models of quantum computing (anyon=particle=quasi-particle) Topological quantum computation: 1984 Jones discovered his knot

More information

Why should anyone care about computing with anyons? Jiannis K. Pachos

Why should anyone care about computing with anyons? Jiannis K. Pachos Why should anyone care about computing with anyons? Jiannis K. Pachos Singapore, January 2016 Computers ntikythera mechanism Robotron Z 9001 nalogue computer Digital computer: 0 & 1 Computational complexity

More information

Topological Quantum Computation

Topological Quantum Computation Texas A&M University October 2010 Outline 1 Gates, Circuits and Universality Examples and Efficiency 2 A Universal 3 The State Space Gates, Circuits and Universality Examples and Efficiency Fix d Z Definition

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Non-abelian statistics

Non-abelian statistics Non-abelian statistics Paul Fendley Non-abelian statistics are just plain interesting. They probably occur in the ν = 5/2 FQHE, and people are constructing time-reversal-invariant models which realize

More information

Fourier Sampling & Simon s Algorithm

Fourier Sampling & Simon s Algorithm Chapter 4 Fourier Sampling & Simon s Algorithm 4.1 Reversible Computation A quantum circuit acting on n qubits is described by an n n unitary operator U. Since U is unitary, UU = U U = I. This implies

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein. RIMS-1776 The state sum invariant of 3-manifolds constructed from the E 6 linear skein By Kenta OKAZAKI March 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan THE STATE

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

Topological Qubit Design and Leakage

Topological Qubit Design and Leakage Topological Qubit Design and National University of Ireland, Maynooth September 8, 2011 Topological Qubit Design and T.Q.C. Braid Group Overview Designing topological qubits, the braid group, leakage errors.

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006 1 Ph 219b/CS 219b Exercises Due: Wednesday 22 February 2006 6.1 Estimating the trace of a unitary matrix Recall that using an oracle that applies the conditional unitary Λ(U), Λ(U): 0 ψ 0 ψ, 1 ψ 1 U ψ

More information

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem Quantum Computing Lecture Notes, Extra Chapter Hidden Subgroup Problem Ronald de Wolf 1 Hidden Subgroup Problem 1.1 Group theory reminder A group G consists of a set of elements (which is usually denoted

More information

Research Statement. Seung-Moon Hong Department of Mathematics and Statistics University of Toledo

Research Statement. Seung-Moon Hong Department of Mathematics and Statistics University of Toledo esearch Statement Seung-Moon Hong Department of Mathematics and Statistics University of Toledo seungmoon.hong@utoledo.edu 1. Introduction Quantum topology/algebra has developed over the last few decades

More information

Topological order of a two-dimensional toric code

Topological order of a two-dimensional toric code University of Ljubljana Faculty of Mathematics and Physics Seminar I a, 1st year, 2nd cycle Topological order of a two-dimensional toric code Author: Lenart Zadnik Advisor: Doc. Dr. Marko Žnidarič June

More information

Category theory and topological quantum computing

Category theory and topological quantum computing Categor theor and topological quantum computing Gregor Schaumann Group seminar QOS Freiburg 7..3 Introduction Conformal field theor Invariants of manifolds and knots Topological field theor Tensor categories

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 7: Complexity & Algorithms I 13th October 016 School of Informatics, University of Edinburgh Complexity - Computational Complexity: Classification

More information

A Polynomial Quantum Algorithm for Approximating the Jones Polynomial

A Polynomial Quantum Algorithm for Approximating the Jones Polynomial A Polynomial Quantum Algorithm for Approximating the Jones Polynomial Dorit Aharonov Vaughan Jones Zeph Landau November 10, 2005 Abstract The Jones polynmial, discovered in 1984 [17], is an important knot

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Simulation of quantum computers with probabilistic models

Simulation of quantum computers with probabilistic models Simulation of quantum computers with probabilistic models Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. April 6, 2010 Vlad Gheorghiu (CMU) Simulation of quantum

More information

Lecture 4: Elementary Quantum Algorithms

Lecture 4: Elementary Quantum Algorithms CS 880: Quantum Information Processing 9/13/010 Lecture 4: Elementary Quantum Algorithms Instructor: Dieter van Melkebeek Scribe: Kenneth Rudinger This lecture introduces several simple quantum algorithms.

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009 1 Ph 219b/CS 219b Exercises Due: Wednesday 11 February 2009 5.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

Hard Problems in 3-Manifold Topology

Hard Problems in 3-Manifold Topology Hard Problems in 3-Manifold Topology Einstein Workshop on Discrete Geometry and Topology Arnaud de Mesmay 1 Yo av Rieck 2 Eric Sedgwick 3 Martin Tancer 4 1 CNRS, GIPSA-Lab 2 University of Arkansas 3 DePaul

More information

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, Lecture A3 Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, S CS = k tr (AdA+ 3 ) 4π A3, = k ( ǫ µνρ tr A µ ( ν A ρ ρ A ν )+ ) 8π 3 A µ[a ν,a ρ

More information

Topological quantum computation and quantum logic

Topological quantum computation and quantum logic Topological quantum computation and quantum logic Zhenghan Wang Microsoft Station Q UC Santa Barbara Microsoft Project Q: Search for non-abelian anyons in topological phases of matter, and build a topological

More information

On the growth of Turaev-Viro 3-manifold invariants

On the growth of Turaev-Viro 3-manifold invariants On the growth of Turaev-Viro 3-manifold invariants E. Kalfagianni (based on work w. R. Detcherry and T. Yang) Michigan State University Redbud Topology Conference, OSU, April 018 E. Kalfagianni (MSU) J

More information

Computation in a Topological Quantum Field Theory

Computation in a Topological Quantum Field Theory Computation in a Topological Quantum Field Theory Daniel Epelbaum and Raeez Lorgat December 2015 Abstract This report investigates the computational power of the particle excitations of topological phases

More information

Geometric structures of 3-manifolds and quantum invariants

Geometric structures of 3-manifolds and quantum invariants Geometric structures of 3-manifolds and quantum invariants Effie Kalfagianni Michigan State University ETH/Zurich, EKPA/Athens, APTH/Thessalonikh, June 2017 Effie Kalfagianni (MSU) J 1 / 21 Settings and

More information

CHERN-SIMONS THEORY AND WEYL QUANTIZATION Răzvan Gelca

CHERN-SIMONS THEORY AND WEYL QUANTIZATION Răzvan Gelca CHERN-SIMONS THEORY AND WEYL QUANTIZATION Răzvan Gelca CHERN-SIMONS THEORY AND WEYL QUANTIZATION Răzvan Gelca this talk is based on joint work and discussions with Alejandro Uribe, Alastair Hamilton, Charles

More information

arxiv: v2 [math.gt] 18 Nov 2017

arxiv: v2 [math.gt] 18 Nov 2017 QUANTUM REPRESENTATIONS AND MONODROMIES OF FIBERED LINKS RENAUD DETCHERRY AND EFSTRATIA KALFAGIANNI arxiv:1711.03251v2 [math.gt] 18 Nov 2017 Abstract. Andersen, Masbaum and Ueno conjectured that certain

More information

arxiv: v1 [math.gt] 27 Sep 2018

arxiv: v1 [math.gt] 27 Sep 2018 NP HARD PROBLEMS NATURALLY ARISING IN KNOT THEORY arxiv:1809.10334v1 [math.gt] 27 Sep 2018 DALE KOENIG AND ANASTASIIA TSVIETKOVA Abstract. We prove that certain problems naturally arising in knot theory

More information

Subfactors and Modular Tensor Categories

Subfactors and Modular Tensor Categories UNSW Topological matter, strings, K-theory and related areas University of Adelaide September 2016 Outline Motivation What is a modular tensor category? Where do modular tensor categories come from? Some

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

Is the Universe Uniquely Determined by Invariance Under Quantisation?

Is the Universe Uniquely Determined by Invariance Under Quantisation? 24 March 1996 PEG-09-96 Is the Universe Uniquely Determined by Invariance Under Quantisation? Philip E. Gibbs 1 Abstract In this sequel to my previous paper, Is String Theory in Knots? I explore ways of

More information

Quantum Lower Bound for Recursive Fourier Sampling

Quantum Lower Bound for Recursive Fourier Sampling Quantum Lower Bound for Recursive Fourier Sampling Scott Aaronson Institute for Advanced Study, Princeton aaronson@ias.edu Abstract One of the earliest quantum algorithms was discovered by Bernstein and

More information

THE ABC OF COLOR CODES

THE ABC OF COLOR CODES THE ABC OF COLOR CODES Aleksander Kubica ariv:1410.0069, 1503.02065 work in progress w/ F. Brandao, K. Svore, N. Delfosse 1 WHY DO WE CARE ABOUT QUANTUM CODES? Goal: store information and perform computation.

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

. An introduction to Quantum Complexity. Peli Teloni

. An introduction to Quantum Complexity. Peli Teloni An introduction to Quantum Complexity Peli Teloni Advanced Topics on Algorithms and Complexity µπλ July 3, 2014 1 / 50 Outline 1 Motivation 2 Computational Model Quantum Circuits Quantum Turing Machine

More information

QUANTUM REPRESENTATIONS AND MONODROMIES OF FIBERED LINKS

QUANTUM REPRESENTATIONS AND MONODROMIES OF FIBERED LINKS QUANTUM REPRESENTATIONS AND MONODROMIES OF FIBERED LINKS RENAUD DETCHERRY AND EFSTRATIA KALFAGIANNI Abstract. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping

More information

1 The fundamental group Topology I

1 The fundamental group Topology I Fundamental group 1 1 The fundamental group Topology I Exercise: Put the picture on the wall using two nails in such a way that removing either of the nails will make the picture fall down to the floor.

More information

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams By John Dougherty X Abstract: The goal of this paper is to understand the topological meaning of Jacobi diagrams in relation to knot theory and

More information

Short Course in Quantum Information Lecture 5

Short Course in Quantum Information Lecture 5 Short Course in Quantum Information Lecture 5 Quantum Algorithms Prof. Andrew Landahl University of New Mexico Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html

More information

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1 6.080/6.089 GITCS May 6-8, 2008 Lecturer: Scott Aaronson Lecture 22/23 Scribe: Chris Granade 1 Quantum Mechanics 1.1 Quantum states of n qubits If you have an object that can be in two perfectly distinguishable

More information

Jiannis K. Pachos. Introduction. Berlin, September 2013

Jiannis K. Pachos. Introduction. Berlin, September 2013 Jiannis K. Pachos Introduction Berlin, September 203 Introduction Quantum Computation is the quest for:» neat quantum evolutions» new quantum algorithms Why? 2D Topological Quantum Systems: How? ) Continuum

More information

arxiv:cs/ v1 [cs.cc] 31 Oct 2006

arxiv:cs/ v1 [cs.cc] 31 Oct 2006 Coupling of quantum angular momenta: an insight into analogic/discrete and local/global models of computation arxiv:cs/0610171v1 [cs.cc] 31 Oct 2006 Annalisa Marzuoli Dipartimento di Fisica Nucleare e

More information

arxiv:quant-ph/ v2 10 Apr 2006

arxiv:quant-ph/ v2 10 Apr 2006 A Polynomial Quantum Algorithm for Approximating the Jones Polynomial Dorit Aharonov Vaughan Jones Zeph Landau arxiv:quant-ph/0511096v2 10 Apr 2006 February 1, 2008 Abstract The Jones polynomial, discovered

More information

Loop Quantum Gravity 2. The quantization : discreteness of space

Loop Quantum Gravity 2. The quantization : discreteness of space Loop Quantum Gravity 2. The quantization : discreteness of space Karim NOUI Laboratoire de Mathématiques et de Physique Théorique, TOURS Astro Particules et Cosmologie, PARIS Clermont - Ferrand ; january

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME EFSTRATIA KALFAGIANNI Abstract. For a closed, oriented 3-manifold M and an integer r > 0, let τ r(m) denote the SU(2) Reshetikhin-Turaev-Witten

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P Quantum Circuits Based on notes by John Watrous and also Sco8 Aaronson: www.sco8aaronson.com/democritus/ John Preskill: www.theory.caltech.edu/people/preskill/ph229 Outline Simulating classical circuits

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Topological Quantum Computation, Yang-Baxter Operators and. Operators and Modular Categories

Topological Quantum Computation, Yang-Baxter Operators and. Operators and Modular Categories Topological Quantum Computation, Yang-Baxter Operators and Modular Categories March 2013, Cordoba, Argentina Supported by USA NSF grant DMS1108725 Joint work with C. Galindo, P. Bruillard, R. Ng, S.-M.

More information

Geometric Topology. Harvard University Fall 2003 Math 99r Course Notes

Geometric Topology. Harvard University Fall 2003 Math 99r Course Notes Geometric Topology Harvard University Fall 2003 Math 99r Course Notes Contents 1 Introduction: Knots and Reidemeister moves........... 1 2 1-Dimensional Topology....................... 1 3 2-Dimensional

More information

Anyons and topological quantum computing

Anyons and topological quantum computing Anyons and topological quantum computing Statistical Physics PhD Course Quantum statistical physics and Field theory 05/10/2012 Plan of the seminar Why anyons? Anyons: definitions fusion rules, F and R

More information

Quantum Computation. Michael A. Nielsen. University of Queensland

Quantum Computation. Michael A. Nielsen. University of Queensland Quantum Computation Michael A. Nielsen University of Queensland Goals: 1. To eplain the quantum circuit model of computation. 2. To eplain Deutsch s algorithm. 3. To eplain an alternate model of quantum

More information

The Satellite crossing number conjecture for cables of knots

The Satellite crossing number conjecture for cables of knots The Satellite crossing number conjecture for cables of knots Alexander Stoimenow Department of Mathematical Sciences, KAIST April 25, 2009 KMS Meeting Aju University Contents Crossing number Satellites

More information

Polynomials in knot theory. Rama Mishra. January 10, 2012

Polynomials in knot theory. Rama Mishra. January 10, 2012 January 10, 2012 Knots in the real world The fact that you can tie your shoelaces in several ways has inspired mathematicians to develop a deep subject known as knot theory. mathematicians treat knots

More information

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives:

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives: Solutions to sheet 4 Solution to exercise 1: We have seen in the lecture that the Kauffman bracket is invariant under Reidemeister move 2. In particular, we have chosen the values in the skein relation

More information

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin Remarks on Chern-Simons Theory Dan Freed University of Texas at Austin 1 MSRI: 1982 2 Classical Chern-Simons 3 Quantum Chern-Simons Witten (1989): Integrate over space of connections obtain a topological

More information

Modular Categories and Applications I

Modular Categories and Applications I I Modular Categories and Applications I Texas A&M University U. South Alabama, November 2009 Outline I 1 Topological Quantum Computation 2 Fusion Categories Ribbon and Modular Categories Fusion Rules and

More information

RE-NORMALIZED LINK INVARIANTS FROM THE UNROLLED QUANTUM GROUP. 1. Introduction

RE-NORMALIZED LINK INVARIANTS FROM THE UNROLLED QUANTUM GROUP. 1. Introduction RE-NORMALIZED LINK INARIANS FROM HE UNROLLED QUANUM GROUP NAHAN GEER 1 Introduction In the last several years, C Blanchet, F Costantino, B Patureau, N Reshetikhin, uraev and myself (in various collaborations)

More information

Zhenghan Wang Microsoft Station Q Santa Barbara, CA

Zhenghan Wang Microsoft Station Q Santa Barbara, CA Zhenghan Wang Microsoft Station Q Santa Barbara, CA Quantum Information Science: 4. A Counterexample to Additivity of Minimum Output Entropy (Hastings, 2009) ---Storage, processing and communicating information

More information

6.896 Quantum Complexity Theory September 18, Lecture 5

6.896 Quantum Complexity Theory September 18, Lecture 5 6.896 Quantum Complexity Theory September 18, 008 Lecturer: Scott Aaronson Lecture 5 Last time we looked at what s known about quantum computation as it relates to classical complexity classes. Today we

More information

Classical simulations of non-abelian quantum Fourier transforms

Classical simulations of non-abelian quantum Fourier transforms Classical simulations of non-abelian quantum Fourier transforms Diploma Thesis Juan Bermejo Vega December 7, 2011 Garching First reviewer: Prof. Dr. J. Ignacio Cirac Second reviewer: Prof. Dr. Alejandro

More information

Topological Quantum Computation

Topological Quantum Computation QUANTUM COMPUTING (CS682) PROJECT REPORT 1 Topological Quantum Computation Vatshal Srivastav, 14790 Mentor: Prof Dr. Rajat Mittal, Department of Computer Science and Engineering, Indian Institute of Technology,

More information

Hamiltonian simulation and solving linear systems

Hamiltonian simulation and solving linear systems Hamiltonian simulation and solving linear systems Robin Kothari Center for Theoretical Physics MIT Quantum Optimization Workshop Fields Institute October 28, 2014 Ask not what you can do for quantum computing

More information

Quantum Computing with Non-Abelian Quasiparticles

Quantum Computing with Non-Abelian Quasiparticles International Journal of Modern Physics B c World Scientific Publishing Company Quantum Computing with Non-Abelian Quasiparticles N. E. Bonesteel, L. Hormozi, and G. Zikos Department of Physics and NHMFL,

More information

THETA FUNCTIONS AND KNOTS Răzvan Gelca

THETA FUNCTIONS AND KNOTS Răzvan Gelca THETA FUNCTIONS AND KNOTS Răzvan Gelca THETA FUNCTIONS AND KNOTS Răzvan Gelca based on joint work with Alejandro Uribe and Alastair Hamilton B. Riemann: Theorie der Abel schen Funktionen Riemann s work

More information

Quantum Algorithms. 1. Definition of the Subject and Its Importance. 4. Factoring, Discrete Logarithms, and the Abelian Hidden Subgroup Problem

Quantum Algorithms. 1. Definition of the Subject and Its Importance. 4. Factoring, Discrete Logarithms, and the Abelian Hidden Subgroup Problem Quantum Algorithms Michele Mosca Institute for Quantum Computing and Dept. of Combinatorics & Optimization University of Waterloo and St. Jerome s University, and Perimeter Institute for Theoretical Physics

More information

Topological quantum computation with anyons

Topological quantum computation with anyons p. 1/6 Topological quantum computation with anyons Éric Oliver Paquette (Oxford) p. 2/6 Outline: 0. Quantum computation 1. Anyons 2. Modular tensor categories in a nutshell 3. Topological quantum computation

More information

BRAID GROUPS ALLEN YUAN. 1. Introduction. groups. Furthermore, the study of these braid groups is also both important to mathematics

BRAID GROUPS ALLEN YUAN. 1. Introduction. groups. Furthermore, the study of these braid groups is also both important to mathematics BRAID GROUPS ALLEN YUAN 1. Introduction In the first lecture of our tutorial, the knot group of the trefoil was remarked to be the braid group B 3. There are, in general, many more connections between

More information

After first studying an example of a topological phase and its underlying structures, we study effective field theories for 2D topological phases.

After first studying an example of a topological phase and its underlying structures, we study effective field theories for 2D topological phases. 1 Boulder notes by Victor V Albert I CHETAN NAYAK After first studying an example of a topological phase and its underlying structures, we study effective field theories for D topological phases I1 Example

More information

arxiv: v4 [math.qa] 14 Jan 2018

arxiv: v4 [math.qa] 14 Jan 2018 COMPARING SKEIN AND QUANTUM GROUP REPRESENTATIONS AND THEIR APPLICATION TO ASYMPTOTIC FAITHFULNESS WADE BLOOMQUIST AND ZHENGHAN WANG arxiv:1611.04551v4 [math.qa] 14 Jan 2018 Abstract. We make two related

More information

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen

Quantum computation in topological Hilbertspaces. A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Quantum computation in topological Hilbertspaces A presentation on topological quantum computing by Deniz Bozyigit and Martin Claassen Introduction In two words what is it about? Pushing around fractionally

More information

Topological Quantum Computation in TGD Universe

Topological Quantum Computation in TGD Universe CONTENTS 1 Topological Quantum Computation in TGD Universe M. Pitkänen, February 14, 2018 Email: matpitka6@gmail.com. http://tgdtheory.com/public_html/. Recent postal address: Rinnekatu 2-4 A 8, 03620,

More information

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2 School of Mathematics Spring 017 QUANTUM COMPUTATION Exercise sheet 1 Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk 1. The quantum circuit model. (a) Consider the following quantum

More information

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

arxiv: v1 [cond-mat.str-el] 7 Aug 2011 Topological Geometric Entanglement of Blocks Román Orús 1, 2 and Tzu-Chieh Wei 3, 4 1 School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia 2 Max-Planck-Institut für Quantenoptik,

More information

Towards a modular functor from quantum higher Teichmüller theory

Towards a modular functor from quantum higher Teichmüller theory Towards a modular functor from quantum higher Teichmüller theory Gus Schrader University of California, Berkeley ld Theory and Subfactors November 18, 2016 Talk based on joint work with Alexander Shapiro

More information

Observables in the Turaev-Viro and Crane-Yetter models

Observables in the Turaev-Viro and Crane-Yetter models Observables in the Turaev-Viro and Crane-Yetter models arxiv:math/0411281v1 [math.qa] 12 Nov 2004 John W. Barrett School of Mathematical Sciences, University Park, Nottingham NG7 2RD, UK J. Manuel García-Islas

More information

On the study of the Potts model, Tutte and Chromatic Polynomials, and the Connections with Computation Complexity and Quantum Computing.

On the study of the Potts model, Tutte and Chromatic Polynomials, and the Connections with Computation Complexity and Quantum Computing. On the study of the Potts model, Tutte and Chromatic Polynomials, and the Connections with Computation Complexity and Quantum Computing Marina von Steinkirch Institute of Physics and Astronomy, State University

More information

Quantum Groups and Link Invariants

Quantum Groups and Link Invariants Quantum Groups and Link Invariants Jenny August April 22, 2016 1 Introduction These notes are part of a seminar on topological field theories at the University of Edinburgh. In particular, this lecture

More information

Bi-partite vertex model and multi-colored link invariants

Bi-partite vertex model and multi-colored link invariants Prepared for submission to JHEP Bi-partite vertex model and multi-colored link invariants arxiv:80758v [hep-th] 9 Nov 08 Saswati Dhara a, Romesh K Kaul b, P Ramadevi a, and Vivek Kumar Singh a a Department

More information

On the query complexity of counterfeiting quantum money

On the query complexity of counterfeiting quantum money On the query complexity of counterfeiting quantum money Andrew Lutomirski December 14, 2010 Abstract Quantum money is a quantum cryptographic protocol in which a mint can produce a state (called a quantum

More information

arxiv: v1 [math.gt] 30 Jul 2015

arxiv: v1 [math.gt] 30 Jul 2015 BRIDGE TRISECTIONS OF KNOTTED SURFACES IN S 4 JEFFREY MEIER AND ALEXANDER ZUPAN arxiv:1507.08370v1 [math.gt] 30 Jul 2015 Abstract. We introduce bridge trisections of knotted surfaces in the four-sphere.

More information

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski (IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE Aleksander Kubica, B. Yoshida, F. Pastawski MOTIVATION Topological quantum codes - non-local DOFs, local generators. Toric code: high threshold, experimentally

More information

Topological Quantum Computation

Topological Quantum Computation Topological Quantum Computation arxiv:quant-ph/0101025v2 20 Sep 2002 Michael H. Freedman, Alexei Kitaev, Michael J. Larsen and Zhenghan Wang February 1, 2008 Microsoft Research, One Microsoft Way, Redmond,

More information