Quantum Algorithms Lecture #2. Stephen Jordan

Size: px
Start display at page:

Download "Quantum Algorithms Lecture #2. Stephen Jordan"

Transcription

1 Quantum Algorithms Lecture #2 Stephen Jordan

2 Last Time Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries Reversible computing Phase kickback Phase estimation

3 This Time We'll expand our collection of building blocks Oracles & Recursion Hadamard Test Hadamard Transform Fourier Transform We'll use these blocks to build quantum algorithms: Deutsch-Jozsa Algorithm Bernstein-Vazirani Algorithm Shor's Algorithm

4 Oracles Oracles are analogous to function calls. As in the classical case, functions can be used recursively but there are new issues, without classical analogue.

5 Hadamard Test Suppose we wish to estimate. If can be implemented by gates and and can be constructed by and gates, respectively, then we can estimate and to precision in time

6 Hadamard Test Suppose: Then: So, it suffices to estimate quantities of the form:

7 Exercise #1 Q. Given a circuit for circuit for? how do we make a

8 Exercise #1 Q. Given a circuit for circuit for? A. Gate by gate: how do we make a

9 Hadamard Test Probability of measuring is

10 Hadamard Test Probability of measuring is

11 Hadamard Test Probability of measuring is

12 Hadamard Test Probability of measuring is

13 Hadamard Test Probability of measuring is

14 Hadamard Test Probability of measuring is

15 Hadamard Test Probability of measuring is Probability of measuring is

16 Hadamard Test If can be implemented by gates and and can be constructed by and gates, respectively, then we can estimate and to precision in time

17 An Application Applying the Hadamard test to a quantum simulation yields a transition amplitude. In particular, certain transition amplitudes of anyons encode Jones polynomials.

18 Deutsch's Algorithm Given: oracle for Goal: determine whether Classical: must query twice: f(0) and f(1) Quantum: query once

19 Deutsch's Algorithm Recall:

20 Deutsch's Algorithm Recall:

21 Deutsch's Algorithm

22 Parity Given: oracle for Goal: determine whether odd Classical: must query is even or times Idea: can we use Deutsch's algorithm recursively?

23 Recursion We can use one quantum algorithm as the oracle for another...but it needs to be clean. Deutsch's algorithm yielded: Global phases are unobservable in QM. However, in controlled-operations they aren't global!

24 Recursion Our oracle has the form: The phase kicked-back in Deutsch's circuit is then.

25 Clean Oracles An oracle can always be cleaned up by uncomputation. Dirty: Clean: (double

26 Parity Idea: can we use Deutsch's algorithm recursively? NO: Input-dependent phase spoils the interference. Cleaning up the oracle cancels the speedup. We now know that any quantum algorithm for Cleve, Mosca, de Wolf, 1998] parity requires at[beals, leastbuhrman, N/2 queries. [Farhi, Goldstone, Gutmann, Sipser, 1998]

27 Hadamard Transform Recall: Let:

28 Hadamard Transform Examples: (Hadamard transform is self-inverse.)

29 Deutsch-Jozsa Algorithm Given: oracle for Promise: f is balanced or constant i.e. Goal: determine balanced vs. constant Classical exact: query times Classical probabilistic: query O(1) times

30 Deutsch-Jozsa Algorithm Step 1: prepare

31 Deutsch-Jozsa Algorithm Step 1: prepare Step 2: Hadamard transform Recall: Thus :

32 Deutsch-Jozsa Algorithm Step 1: prepare Step 2: Hadamard transform

33 Deutsch-Jozsa Algorithm Step 1: prepare Step 2: Hadamard transform Step 3: Measure in the computational basis

34 The Deutsch-Jozsa algorithm looks like this: The same algorithm can distinguish other interesting properties of f. Bernstein-Vazirani Problem: Promise: Goal: find k Classically: we need n queries

35 Bernstein-Vazirani Algorithm Bernstein-Vazirani Problem: Promise: Goal: find k Recall:

36 Bernstein-Vazirani Algorithm Bernstein-Vazirani Problem: Promise: Goal: find k Recall:

37 Bernstein-Vazirani Algorithm Bernstein-Vazirani Problem: Promise: Goal: find k One query! (vs. n classically)

38 Estimating Gradients We can generalize the Bernstein-Vazirani algorithm to solve a more natural problem. Gradient Problem: Oracle: Promise: Goal: find Classically: we need n+1 queries

39 Estimating Gradients

40 Estimating Gradients Now consider arbitrary differentiable Over a small enough region is linear:

41 Estimating Gradients Now consider arbitrary differentiable Over a small enough region is linear:

42 An Optical Analogy

43 An Optical Analogy

44 The Quantum Fourier Transform We've seen many applications: We'll see even more Switching to the momentum basis to simulate chemistry Preparing initial states for phase kickback Phase estimation Gradient estimation Period finding Discrete Logarithms & Factoring So...let's look at the actual quantum circuit.

45 The Quantum Fourier Transform (This is a unitary transformation.)

46 The Quantum Fourier Transform Written abstractly: Written with binary place-value: If we achieve this for basis states, correct behavior for arbitrary states follows by linearity.

47 The Quantum Fourier Transform

48 The Quantum Fourier Transform Classically, we have fast algorithms for Fourier transforms. They transform a vector of N amplitudes in time. Our quantum circuit acts on uses quantum gates. amplitudes and This is an exponential speedup...but it is not directly usable for computing Fourier transforms!

49 Period Finding Oracle: Promise: Goal: find Classically: we need O(N) queries Quantum complexity:

50 Period Finding If N is not a power of 2 then the state preparation and Fourier transforms are slight generalizations of what I have shown you. For simplicity, I'll assume M divides N. (We don't need this.)

51 Period Finding

52 Period Finding r

53 Period Finding r

54 Period Finding r

55 Period Finding r Random multiple of N/M.

56 Period Finding Measuring yields random multiples of N/M. We can compute gcd! After not many samples, gcd is likely to be N/M.

57 Multidimensional Periodicity Find basis for. solution: Create superposition over. d-dimensional quantum Fourier transform. Measurement samples from dual lattice.

58 Order Finding Given, find smallest s.t. Examples:,,... Reduce this to period finding:

59 Order Finding Given, find smallest s.t. Examples:,,... Reduces to period finding:

60 Exercise #2: Discrete Logarithms Given, find smallest s.t. Q. Reduce to 2-dimensional period finding:

61 Exercise #2: Discrete Logarithms Given, find smallest s.t. A. Reduces to 2-dimensional period finding:

62 Factorization or is a nontrivial factor of N

63 Summary Building blocks Oracles & Recursion Hadamard Test Hadamard Transform Fourier Transform Quantum algorithms: Deutsch-Jozsa Algorithm Bernstein-Vazirani Algorithm Shor's Algorithm

64 Hidden Subgroup Problem Let: G be a finite group S be a finite set H be a subgroup of G We're given an oracle for. Promise: f is constant and distinct on (left-)cosets of H. Goal: Find a generating set for H.

65 Hidden Subgroup Problem Example: integers mod n under addition for some In this case, f is a function with period M. Our goal is to find m (since It's period finding. We just did this! ).

66 Hidden Subgroup Problem Solved for Abelian groups in time polylog( G ). This is multidimensional period finding. For symmetric group would solve graph isomorphism. (unsolved) Dihedral group HSP is closely related to lattice problems. (Best algorithm is Kuperberg's sieve, which runs in subexponential time.)

67 Hidden Shift Given: oracles for Promise: Find s. and Quantumly, this is closely related to dihedral hidden shift. Build Preimage state:

68 Hidden Shift By Kuperberg's sieve, we can solve hidden shift for arbitrary injective functions in time. For certain functions we can do better: Legendre symbols [van Dam et al.] This breaks Damgard's pseudorandom function Multiplicative characters of finite rings or fields Random Boolean functions [Gavinsky, Roetteler, Roland]

69 Fourier Convolution Theorem Let Theorem: and

70 Hidden Shift by Deconvolution 1)Create: 2)Fourier transform: 3)Divide by : 4)Transform back:

71 Hidden Shift by Deconvolution Steps 2 and 4 are just Fourier transforms... No problem. 1)Create: If f(x+s) is a phase 3)Divide by If, we can do this. : is an efficiently computable phase, we can do this.

72 Legendre Symbol Just right for deconvolution!

73 Random Boolean Hidden Shift For a random such function, with high probability, a quantum algorithm can, by querying f(x+s) find s in O(n) time. Also relies on flatness of

Lecture 15: The Hidden Subgroup Problem

Lecture 15: The Hidden Subgroup Problem CS 880: Quantum Information Processing 10/7/2010 Lecture 15: The Hidden Subgroup Problem Instructor: Dieter van Melkebeek Scribe: Hesam Dashti The Hidden Subgroup Problem is a particular type of symmetry

More information

Quantum Algorithms Lecture #3. Stephen Jordan

Quantum Algorithms Lecture #3. Stephen Jordan Quantum Algorithms Lecture #3 Stephen Jordan Summary of Lecture 1 Defined quantum circuit model. Argued it captures all of quantum computation. Developed some building blocks: Gate universality Controlled-unitaries

More information

Quantum algorithms for hidden nonlinear structures

Quantum algorithms for hidden nonlinear structures Quantum algorithms for hidden nonlinear structures Andrew Childs Waterloo Leonard Schulman Caltech Umesh Vazirani Berkeley Shor s algorithm finds hidden linear structures [Shor 94]: Efficient quantum algorithms

More information

Short Course in Quantum Information Lecture 5

Short Course in Quantum Information Lecture 5 Short Course in Quantum Information Lecture 5 Quantum Algorithms Prof. Andrew Landahl University of New Mexico Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

Lecture 4: Elementary Quantum Algorithms

Lecture 4: Elementary Quantum Algorithms CS 880: Quantum Information Processing 9/13/010 Lecture 4: Elementary Quantum Algorithms Instructor: Dieter van Melkebeek Scribe: Kenneth Rudinger This lecture introduces several simple quantum algorithms.

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 7: Complexity & Algorithms I 13th October 016 School of Informatics, University of Edinburgh Complexity - Computational Complexity: Classification

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introduction to Quantum Information Processing Lecture 6 Richard Cleve Overview of Lecture 6 Continuation of teleportation Computation and some basic complexity classes Simple quantum algorithms in the

More information

Factoring integers with a quantum computer

Factoring integers with a quantum computer Factoring integers with a quantum computer Andrew Childs Department of Combinatorics and Optimization and Institute for Quantum Computing University of Waterloo Eighth Canadian Summer School on Quantum

More information

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2 School of Mathematics Spring 017 QUANTUM COMPUTATION Exercise sheet 1 Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk 1. The quantum circuit model. (a) Consider the following quantum

More information

Fourier Sampling & Simon s Algorithm

Fourier Sampling & Simon s Algorithm Chapter 4 Fourier Sampling & Simon s Algorithm 4.1 Reversible Computation A quantum circuit acting on n qubits is described by an n n unitary operator U. Since U is unitary, UU = U U = I. This implies

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009 1 Ph 219b/CS 219b Exercises Due: Wednesday 11 February 2009 5.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem Quantum Computing Lecture Notes, Extra Chapter Hidden Subgroup Problem Ronald de Wolf 1 Hidden Subgroup Problem 1.1 Group theory reminder A group G consists of a set of elements (which is usually denoted

More information

Quantum Lower Bound for Recursive Fourier Sampling

Quantum Lower Bound for Recursive Fourier Sampling Quantum Lower Bound for Recursive Fourier Sampling Scott Aaronson Institute for Advanced Study, Princeton aaronson@ias.edu Abstract One of the earliest quantum algorithms was discovered by Bernstein and

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

1 Bernstein-Vazirani Algorithm

1 Bernstein-Vazirani Algorithm CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Yongshan Ding, Pranav Gokhale Scribe: Shankar G. Menon Lecture 08: More on Algorithms November 1, 018 1 Bernstein-Vazirani Algorithm

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP Quantum algorithms (CO 78, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP So far, we have considered the hidden subgroup problem in abelian groups.

More information

The Hunt for a Quantum Algorithm for Graph Isomorphism

The Hunt for a Quantum Algorithm for Graph Isomorphism The Hunt for a Quantum Algorithm for Graph Isomorphism Cristopher Moore, University of New Mexico Alexander Russell, University of Connecticut Leonard J. Schulman, Caltech The Hidden Subgroup Problem Given

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013 1 Ph 219b/CS 219b Exercises Due: Wednesday 4 December 2013 4.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method

Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method So far, we have discussed several different kinds of

More information

Quantum Circuits and Algorithms

Quantum Circuits and Algorithms Quantum Circuits and Algorithms Modular Arithmetic, XOR Reversible Computation revisited Quantum Gates revisited A taste of quantum algorithms: Deutsch algorithm Other algorithms, general overviews Measurements

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006 1 Ph 219b/CS 219b Exercises Due: Wednesday 22 February 2006 6.1 Estimating the trace of a unitary matrix Recall that using an oracle that applies the conditional unitary Λ(U), Λ(U): 0 ψ 0 ψ, 1 ψ 1 U ψ

More information

. An introduction to Quantum Complexity. Peli Teloni

. An introduction to Quantum Complexity. Peli Teloni An introduction to Quantum Complexity Peli Teloni Advanced Topics on Algorithms and Complexity µπλ July 3, 2014 1 / 50 Outline 1 Motivation 2 Computational Model Quantum Circuits Quantum Turing Machine

More information

Shor s Prime Factorization Algorithm

Shor s Prime Factorization Algorithm Shor s Prime Factorization Algorithm Bay Area Quantum Computing Meetup - 08/17/2017 Harley Patton Outline Why is factorization important? Shor s Algorithm Reduction to Order Finding Order Finding Algorithm

More information

The non-injective hidden shift problem

The non-injective hidden shift problem The non-injective hidden shift problem by Mirmojtaba Gharibi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Computer

More information

Quantum Algorithms. 1. Definition of the Subject and Its Importance. 4. Factoring, Discrete Logarithms, and the Abelian Hidden Subgroup Problem

Quantum Algorithms. 1. Definition of the Subject and Its Importance. 4. Factoring, Discrete Logarithms, and the Abelian Hidden Subgroup Problem Quantum Algorithms Michele Mosca Institute for Quantum Computing and Dept. of Combinatorics & Optimization University of Waterloo and St. Jerome s University, and Perimeter Institute for Theoretical Physics

More information

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 1 Readings Benenti et al, Ch 310 Stolze and Suter, Quantum Computing, Ch 84 ielsen and Chuang, Quantum Computation and Quantum

More information

A better lower bound for quantum algorithms searching an ordered list

A better lower bound for quantum algorithms searching an ordered list A better lower bound for quantum algorithms searching an ordered list Andris Ambainis Computer Science Division University of California Berkeley, CA 94720, e-mail: ambainis@cs.berkeley.edu Abstract We

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing The lecture notes were prepared according to Peter Shor s papers Quantum Computing and Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

The quantum threat to cryptography

The quantum threat to cryptography The quantum threat to cryptography Ashley Montanaro School of Mathematics, University of Bristol 20 October 2016 Quantum computers University of Bristol IBM UCSB / Google University of Oxford Experimental

More information

An Introduction to Quantum Information and Applications

An Introduction to Quantum Information and Applications An Introduction to Quantum Information and Applications Iordanis Kerenidis CNRS LIAFA-Univ Paris-Diderot Quantum information and computation Quantum information and computation How is information encoded

More information

6.896 Quantum Complexity Theory October 2, Lecture 9

6.896 Quantum Complexity Theory October 2, Lecture 9 6896 Quantum Complexity heory October, 008 Lecturer: Scott Aaronson Lecture 9 In this class we discuss Grover s search algorithm as well as the BBBV proof that it is optimal 1 Grover s Algorithm 11 Setup

More information

Graph isomorphism, the hidden subgroup problem and identifying quantum states

Graph isomorphism, the hidden subgroup problem and identifying quantum states 1 Graph isomorphism, the hidden subgroup problem and identifying quantum states Pranab Sen NEC Laboratories America, Princeton, NJ, U.S.A. Joint work with Sean Hallgren and Martin Rötteler. Quant-ph 0511148:

More information

Quantum Computing. Winter Quarter, 2011 and Spring Quarter, 2013

Quantum Computing. Winter Quarter, 2011 and Spring Quarter, 2013 Quantum Computing Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu Course Homepage: http://people.cs.uchicago.edu/~razborov/teaching/winter11.html Winter Quarter, 2011 and

More information

Simulation of quantum computers with probabilistic models

Simulation of quantum computers with probabilistic models Simulation of quantum computers with probabilistic models Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. April 6, 2010 Vlad Gheorghiu (CMU) Simulation of quantum

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2 Quadratic speedup for unstructured search - Grover s Al- CS 94- gorithm /8/07 Spring 007 Lecture 11 01 Unstructured Search Here s the problem: You are given an efficient boolean function f : {1,,} {0,1},

More information

Nothing Here. Fast Quantum Algorithms

Nothing Here. Fast Quantum Algorithms Nothing Here Fast Quantum Algorithms or How we learned to put our pants on two legs at a time. Dave Bacon Institute for Quantum Information California Institute of Technology ? A prudent question is one-half

More information

From the Shortest Vector Problem to the Dihedral Hidden Subgroup Problem

From the Shortest Vector Problem to the Dihedral Hidden Subgroup Problem From the Shortest Vector Problem to the Dihedral Hidden Subgroup Problem Curtis Bright December 9, 011 Abstract In Quantum Computation and Lattice Problems [11] Oded Regev presented the first known connection

More information

Quantum-secure symmetric-key cryptography based on Hidden Shifts

Quantum-secure symmetric-key cryptography based on Hidden Shifts Quantum-secure symmetric-key cryptography based on Hidden Shifts Gorjan Alagic QMATH, Department of Mathematical Sciences University of Copenhagen Alexander Russell Department of Computer Science & Engineering

More information

New Quantum Algorithm Solving the NP Complete Problem

New Quantum Algorithm Solving the NP Complete Problem ISSN 070-0466, p-adic Numbers, Ultrametric Analysis and Applications, 01, Vol. 4, No., pp. 161 165. c Pleiades Publishing, Ltd., 01. SHORT COMMUNICATIONS New Quantum Algorithm Solving the NP Complete Problem

More information

6.896 Quantum Complexity Theory September 18, Lecture 5

6.896 Quantum Complexity Theory September 18, Lecture 5 6.896 Quantum Complexity Theory September 18, 008 Lecturer: Scott Aaronson Lecture 5 Last time we looked at what s known about quantum computation as it relates to classical complexity classes. Today we

More information

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009 Quantum Searching Robert-Jan Slager and Thomas Beuman 24 november 2009 1 Introduction Quantum computers promise a significant speed-up over classical computers, since calculations can be done simultaneously.

More information

QIP Note: On the Quantum Fourier Transform and Applications

QIP Note: On the Quantum Fourier Transform and Applications QIP ote: On the Quantum Fourier Transform and Applications Ivan Damgård 1 Introduction This note introduces Fourier transforms over finite Abelian groups, and shows how this can be used to find the period

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Hidden Symmetry Subgroup Problems

Hidden Symmetry Subgroup Problems 1/27 Hidden Symmetry Subgroup Problems Miklos Santha CNRS, Université Paris Diderot, France and Centre for Quantum Technologies, NUS, Singapore joint work with Thomas Decker Gábor Ivanyos Pawel Wocjan

More information

How behavior of systems with sparse spectrum can be predicted on a quantum computer

How behavior of systems with sparse spectrum can be predicted on a quantum computer How behavior of systems with sparse spectrum can be predicted on a quantum computer arxiv:quant-ph/0004021v2 26 Jun 2000 Yuri Ozhigov Abstract Call a spectrum of Hamiltonian sparse if each eigenvalue can

More information

Lecture 10: Eigenvalue Estimation

Lecture 10: Eigenvalue Estimation CS 880: Quantum Information Processing 9/7/010 Lecture 10: Eigenvalue Estimation Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený Last time we discussed the quantum Fourier transform, and introduced

More information

Hamiltonian simulation and solving linear systems

Hamiltonian simulation and solving linear systems Hamiltonian simulation and solving linear systems Robin Kothari Center for Theoretical Physics MIT Quantum Optimization Workshop Fields Institute October 28, 2014 Ask not what you can do for quantum computing

More information

Classical simulations of non-abelian quantum Fourier transforms

Classical simulations of non-abelian quantum Fourier transforms Classical simulations of non-abelian quantum Fourier transforms Diploma Thesis Juan Bermejo Vega December 7, 2011 Garching First reviewer: Prof. Dr. J. Ignacio Cirac Second reviewer: Prof. Dr. Alejandro

More information

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1 6.080/6.089 GITCS May 6-8, 2008 Lecturer: Scott Aaronson Lecture 22/23 Scribe: Chris Granade 1 Quantum Mechanics 1.1 Quantum states of n qubits If you have an object that can be in two perfectly distinguishable

More information

arxiv: v1 [quant-ph] 6 Feb 2013

arxiv: v1 [quant-ph] 6 Feb 2013 Exact quantum query complexity of EXACT and THRESHOLD arxiv:302.235v [quant-ph] 6 Feb 203 Andris Ambainis Jānis Iraids Juris Smotrovs University of Latvia, Raiņa bulvāris 9, Riga, LV-586, Latvia February

More information

Quantum parity algorithms as oracle calls, and application in Grover Database search

Quantum parity algorithms as oracle calls, and application in Grover Database search Abstract Quantum parity algorithms as oracle calls, and application in Grover Database search M. Z. Rashad Faculty of Computers and Information sciences, Mansoura University, Egypt Magdi_z2011@yahoo.com

More information

Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts

Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts Gorjan Alagic 1 and Alexander Russell 2 1 Department of Computer Science and Engineering University of Connecticut acr@cse.uconn.edu 2 QMATH,

More information

Page Points Possible Points. Total 200

Page Points Possible Points. Total 200 Instructions: 1. The point value of each exercise occurs adjacent to the problem. 2. No books or notes or calculators are allowed. Page Points Possible Points 2 20 3 20 4 18 5 18 6 24 7 18 8 24 9 20 10

More information

arxiv: v3 [quant-ph] 3 Jul 2012

arxiv: v3 [quant-ph] 3 Jul 2012 MIT-CTP 4242 Super-Polynomial Quantum Speed-ups for Boolean Evaluation Trees with Hidden Structure Bohua Zhan Shelby Kimmel Avinatan Hassidim November 2, 2018 arxiv:1101.0796v3 [quant-ph] 3 Jul 2012 Abstract

More information

Lecture 8: Finite fields

Lecture 8: Finite fields Lecture 8: Finite fields Rajat Mittal IIT Kanpur We have learnt about groups, rings, integral domains and fields till now. Fields have the maximum required properties and hence many nice theorems can be

More information

Figure 1: Circuit for Simon s Algorithm. The above circuit corresponds to the following sequence of transformations.

Figure 1: Circuit for Simon s Algorithm. The above circuit corresponds to the following sequence of transformations. CS 94 //09 Fourier Transform, Period Finding and Factoring in BQP Spring 009 Lecture 4 Recap: Simon s Algorithm Recall that in the Simon s problem, we are given a function f : Z n Zn (i.e. from n-bit strings

More information

Advanced Cryptography Quantum Algorithms Christophe Petit

Advanced Cryptography Quantum Algorithms Christophe Petit The threat of quantum computers Advanced Cryptography Quantum Algorithms Christophe Petit University of Oxford Christophe Petit -Advanced Cryptography 1 Christophe Petit -Advanced Cryptography 2 The threat

More information

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo CS 497 Frontiers of Computer Science Introduction to Quantum Computing Lecture of http://www.cs.uwaterloo.ca/~cleve/cs497-f7 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

arxiv:quant-ph/ v1 17 Jul 1997

arxiv:quant-ph/ v1 17 Jul 1997 Submitted to Proc. Roy. Soc. Lond. A for the Proceedings of the Santa Barbara Conference on Quantum Coherence and Decoherence held in December 1996, edited by E. Knill, R. LaFlamme and W. Zurek. Quantum

More information

arxiv: v1 [quant-ph] 11 Jul 2011

arxiv: v1 [quant-ph] 11 Jul 2011 Multi-query quantum sums David A. Meyer and James Pommersheim, arxiv:07.940v [quant-ph] Jul 0 Department of Mathematics University of California/San Diego, La Jolla, CA 909-0 Department of Mathematics

More information

Quantum Algorithms for Element Distinctness

Quantum Algorithms for Element Distinctness Quantum Algorithms for Element Distinctness Harry Buhrman Christoph Dürr Mark Heiligman Peter Høyer Frédéric Magniez Miklos Santha Ronald de Wolf Abstract We present several applications of quantum amplitude

More information

An Improved Quantum Fourier Transform Algorithm and Applications

An Improved Quantum Fourier Transform Algorithm and Applications An Improved Quantum Fourier Transform Algorithm and Applications Lisa Hales Group in Logic and the Methodology of Science University of California at Berkeley hales@cs.berkeley.edu Sean Hallgren Ý Computer

More information

The quantum query complexity of read-many formulas

The quantum query complexity of read-many formulas The quantum query complexity of read-many formulas Andrew Childs Waterloo Shelby Kimmel MIT Robin Kothari Waterloo Boolean formulas ^ x 1 x 2 _ x 3 ^ x 1 x 3 A formula is read-once if every input appears

More information

OPTIMAL MEASUREMENTS FOR THE DIHEDRAL HIDDEN SUBGROUP PROBLEM

OPTIMAL MEASUREMENTS FOR THE DIHEDRAL HIDDEN SUBGROUP PROBLEM OPTIMAL MEASUREMETS FOR THE DIHEDRAL HIDDE SUBGROUP PROBLEM DAVE BACO, ADREW M. CHILDS, AD WIM VA DAM Abstract. We consider the dihedral hidden subgroup problem as the problem of distinguishing hidden

More information

How Powerful is Adiabatic Quantum Computation?

How Powerful is Adiabatic Quantum Computation? How Powerful is Adiabatic Quantum Computation? Wim van Dam Michele Mosca Umesh Vazirani Abstract We analyze the computational power limitations of the recently proposed quantum adiabatic evolution algorithm

More information

Moore s Law Source: Intel

Moore s Law Source: Intel Moore s Law The first solid-state transistor (Bardeen, Brattain & Shockley, 1947) 20th century quantum technology uses extensively the wave nature of particles, but does not make much use of quantum weirdness,

More information

A Gentle Introduction to Quantum Computing

A Gentle Introduction to Quantum Computing A Gentle Introduction to Quantum Computing Abdullah Khalid 01-10-0168 School of Science and Engineering Lahore University of Management Sciences Friday 3 rd June, 011 Contents 1 Introduction to Quantum

More information

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups.

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. Binary codes Let us assume that a message to be transmitted is in binary form. That is, it is a word in the alphabet

More information

Quantum Computers. Peter Shor MIT

Quantum Computers. Peter Shor MIT Quantum Computers Peter Shor MIT 1 What is the difference between a computer and a physics experiment? 2 One answer: A computer answers mathematical questions. A physics experiment answers physical questions.

More information

Quantum Computer Algorithms: basics

Quantum Computer Algorithms: basics Quantum Computer Algorithms: basics Michele Mosca Canada Research Chair in Quantum Computation SQUINT Summer School on Quantum Information Processing June 3 Overview A quantum computing model Basis changes

More information

Quantum Algorithms for Element Distinctness

Quantum Algorithms for Element Distinctness Quantum Algorithms for Element Distinctness Harry Buhrman Christoph Dürr Þ Mark Heiligman Ü Peter Høyer ß Frédéric Magniez Miklos Santha Ronald de Wolf ÝÝ Abstract We present several applications of quantum

More information

Lecture note 8: Quantum Algorithms

Lecture note 8: Quantum Algorithms Lecture note 8: Quantum Algorithms Jian-Wei Pan Physikalisches Institut der Universität Heidelberg Philosophenweg 12, 69120 Heidelberg, Germany Outline Quantum Parallelism Shor s quantum factoring algorithm

More information

What are we talking about when we talk about post-quantum cryptography?

What are we talking about when we talk about post-quantum cryptography? PQC Asia Forum Seoul, 2016 What are we talking about when we talk about post-quantum cryptography? Fang Song Portland State University PQC Asia Forum Seoul, 2016 A personal view on postquantum cryptography

More information

Quantum Computing: Foundations to Frontier Fall Lecture 3

Quantum Computing: Foundations to Frontier Fall Lecture 3 Quantum Computing: Foundations to Frontier Fall 018 Lecturer: Henry Yuen Lecture 3 Scribes: Seyed Sajjad Nezhadi, Angad Kalra Nora Hahn, David Wandler 1 Overview In Lecture 3, we started off talking about

More information

From the shortest vector problem to the dihedral hidden subgroup problem

From the shortest vector problem to the dihedral hidden subgroup problem From the shortest vector problem to the dihedral hidden subgroup problem Curtis Bright University of Waterloo December 8, 2011 1 / 19 Reduction Roughly, problem A reduces to problem B means there is a

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

6.080/6.089 GITCS May 13, Lecture 24

6.080/6.089 GITCS May 13, Lecture 24 6.080/6.089 GITCS May 13, 2008 Lecturer: Scott Aaronson Lecture 24 Scribe: Chris Granade 1 Quantum Algorithms Of course the real question is: can quantum computers actually do something more efficiently

More information

C/CS/Phys 191 Shor s order (period) finding algorithm and factoring 11/01/05 Fall 2005 Lecture 19

C/CS/Phys 191 Shor s order (period) finding algorithm and factoring 11/01/05 Fall 2005 Lecture 19 C/CS/Phys 9 Shor s order (period) finding algorithm and factoring /0/05 Fall 2005 Lecture 9 Readings Benenti et al., Ch. 3.2-3.4 Stolze and Suter, uantum Computing, Ch. 8.3 Nielsen and Chuang, uantum Computation

More information

Quantum Algorithm for Identifying Hidden Polynomial Function Graphs

Quantum Algorithm for Identifying Hidden Polynomial Function Graphs Quantum Algorithm for Identifying Hidden Polynomial Function Graphs Thomas Decker Jan Draisma Pawel Wocjan Abstract We introduce the Hidden Polynomial Function Graph Problem as a natural generalization

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013 1 h 219b/CS 219b Exercises Due: Wednesday 20 November 2013 3.1 Universal quantum gates I In this exercise and the two that follow, we will establish that several simple sets of gates are universal for

More information

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography D. J. Guan Abstract The development of quantum algorithms and quantum information theory, as well as the design

More information

Discrete Quantum Theories

Discrete Quantum Theories Discrete Quantum Theories Andrew J. Hanson 1 Gerardo Ortiz 2 Amr Sabry 1 Yu-Tsung Tai 3 (1) School of Informatics and Computing (2) Department of Physics (3) Mathematics Department Indiana University July

More information

Quantum Computing Lecture 6. Quantum Search

Quantum Computing Lecture 6. Quantum Search Quantum Computing Lecture 6 Quantum Search Maris Ozols Grover s search problem One of the two most important algorithms in quantum computing is Grover s search algorithm (invented by Lov Grover in 1996)

More information

Quantum Phase Estimation using Multivalued Logic

Quantum Phase Estimation using Multivalued Logic Quantum Phase Estimation using Multivalued Logic Agenda Importance of Quantum Phase Estimation (QPE) QPE using binary logic QPE using MVL Performance Requirements Salient features Conclusion Introduction

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

arxiv:quant-ph/ v1 31 Mar 2004

arxiv:quant-ph/ v1 31 Mar 2004 Quantum Hidden Subgroup Algorithms: The Devil Is in the Details Samuel J. Lomonaco, Jr. a and Louis H. Kauffman b a Department of Computer Science and Electrical Engineering, University of Maryland arxiv:quant-ph/0403229v1

More information

arxiv: v2 [quant-ph] 7 Jan 2010

arxiv: v2 [quant-ph] 7 Jan 2010 Algorithms for Quantum Computers Jamie Smith and Michele Mosca arxiv:1001.0767v2 [quant-ph] 7 Jan 2010 1 Introduction Quantum computing is a new computational paradigm created by reformulating information

More information

THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS

THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS THE HIDDEN SUBGROUP PROBLE - REVIEW AND OPEN PROBLES CHRIS LOONT, CYBERNET Abstract. An overview of quantum computing and in particular the Hidden Subgroup Problem are presented from a mathematical viewpoint.

More information

Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models. CS448J, Autumn 2015, Stanford University Dominik L.

Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models. CS448J, Autumn 2015, Stanford University Dominik L. Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models CS448J, Autumn 2015, Stanford University Dominik L. Michels Advanced Computation Models There is a variety of advanced

More information

Discrete quantum random walks

Discrete quantum random walks Quantum Information and Computation: Report Edin Husić edin.husic@ens-lyon.fr Discrete quantum random walks Abstract In this report, we present the ideas behind the notion of quantum random walks. We further

More information

On the solution of trivalent decision problems by quantum state identification

On the solution of trivalent decision problems by quantum state identification On the solution of trivalent decision problems by quantum state identification Karl Svozil Institut für Theoretische Physik, University of Technology Vienna, Wiedner Hauptstraße 8-10/136, A-1040 Vienna,

More information

Quantum pattern matching fast on average

Quantum pattern matching fast on average Quantum pattern matching fast on average Ashley Montanaro Department of Computer Science, University of Bristol, UK 12 January 2015 Pattern matching In the traditional pattern matching problem, we seek

More information

Quantum algorithms for algebraic problems

Quantum algorithms for algebraic problems Quantum algorithms for algebraic problems Andrew M. Childs* Department of Combinatorics and Optimization and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G Wim

More information

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P

Simulating classical circuits with quantum circuits. The complexity class Reversible-P. Universal gate set for reversible circuits P = Reversible-P Quantum Circuits Based on notes by John Watrous and also Sco8 Aaronson: www.sco8aaronson.com/democritus/ John Preskill: www.theory.caltech.edu/people/preskill/ph229 Outline Simulating classical circuits

More information