Convex polytopes, interacting particles, spin glasses, and finance

Size: px
Start display at page:

Download "Convex polytopes, interacting particles, spin glasses, and finance"

Transcription

1 Convex polytopes, interacting particles, spin glasses, and finance Sourav Chatterjee (UCB) joint work with Soumik Pal (Cornell)

2 Interacting particles Systems of particles governed by joint stochastic differential equations. Drift of each particle depends on its relative position with respect to other particles. Continuous drifts: classical case (McKean-Vlasov). Completely different problem if drifts are prone to abrupt changes.

3 Example: The Atlas model X 1,..., X n are n diffusive particles, starting from zero. At each point of time, the lowest one gets a fixed upward drift. Formally, where δ i (t) = dx i (t) = δ i (t)dt + db i (t), { 1 if X i (t) = min j X j (t), 0 otherwise, and B 1,..., B n are independent Brownian motions. Occurs in finance (Banner, Fernholz & Karatzas 05). Uses reflecting Brownian motions and the Harrison-Williams machinery. More later.

4 Another example Again, X 1,..., X n are n Brownian particles starting from zero. At any point of time, the particle that is farthest from zero has a unit drift towards zero. Same definition in R d. Question: What is the stationary distribution of this system? Cannot use RBM tools in d 2.

5 A snapshot from the stationary law (n = 10, 000)

6 Explicit description for finite n Generate U 1,..., U n i.i.d. uniformly from unit ball in R d. Let V i = U i / max j U j, i = 1,..., n. Generate Γ Gamma(nd, 1) independently. Let Y i = 1 2 ΓV i, i = 1,..., n. Then (Y 1,..., Y n ) follows the stationary distribution of our system.

7 Solution in d = 1 We have dx i (t) = δ i (t)dt + db i (t), where 1 if X i (t) = max j X j (t), X i (t) < 0, δ i (t) = 1 if X i (t) = max j X j (t), X i (t) > 0, 0 otherwise. Alternatively, where k(x) = max i x i. dx(t) = k(x(t))dt + db(t),

8 Contd... Proposition Consider the s.d.e. dx(t) = k(x(t))dt + db(t), where k is any absolutely continuous function. Assume that exp( 2k(x)) is integrable and R n k(x) 2 e 2k(x) dx <. Then the probability distribution given by the un-normalized density exp( 2k(x)) provides a reversible, invariant probability distribution µ for the process X(t). Under some further conditions (...), the law of X(t) converges to µ in TV.

9 Contd... So in our problem, k is the Minkowski norm of the unit cube, and the stationary density is e 2 max i x i. Lemma If k is the Minkowski norm of a convex set C R n, then picking from exp( 2k(x)) is the same as: Picking U Unif (C) dividing by 2k(U) multiplying by independent Gamma(n, 1). Proof is simple, using polar coordinates induced by C. Picking from Unif (C) is can be handled theoretically if C can be easily triangulated, e.g. if C is a simplicial polytope.

10 Simplicial polytopes Each (n 1)-dimensional face is a simplex. 0 X = d j=1 X j I(Π = j) Unif (C). C = d j=1 C j ; simplices C j. Let X j Unif (C j ). P(Π = j) = Vol(C j )/Vol(C). Γ 2k(X) X = Γ 2k(X j ) X j, if Π = j. Γ 2k(X j ) X j - affine transformation of IID Exponentials.

11 Solving the Atlas model Recall: where δ i (t) = dx i (t) = δ i (t)dt + db i (t), { 1 if X i (t) = min j X j (t), 0 otherwise. Here k(x) = min i x i. This k is not the Minkowski norm of any convex set. Nor is exp( 2k(x)) integrable. The process does not converge to a stationary law.

12 Atlas model contd... Although k(x) = min i x i is not a Minkowski norm, it is so when restricted to i x i = 0. On this hyperplane, it is the norm induced by a regular simplex Figure: Level sets of k(x) and their intersection with {x : P x i = 0}

13 Atlas model contd... So, we project the process on to {x : x i = 0} and apply previous result. This gives the stationary law of (X 1 (t) X (t),..., X n (t) X (t)). Explicit description: Generate i.i.d. exponential r.v. s with mean n/2 and subtract off the mean. Obtained by Banner-Fernholz-Karatzas 05, and Pitman (tech. report). Both use Harrison-Williams RBM tools. General rank-dependent drifts: Stated as a major open problem in BFK 05. Solved by Pitman (tech. report). Easy solution by the following general result...

14 A general theorem Theorem (C. & Pal 06) Start with k : R n R. dx(t) = k(x(t))dt + db(t). Suppose there exists a subspace H such that k(x) = k 1 (y) + k 2 (z), y = P H (x), z = x y. k 1 0, cont., positively homogenous. {x H : k 1 (x) = 0} = {0}. Then Y (t) = P H X (t) = unique stationary distribution. Density exp( 2k 1 (y)). Can be generated using earlier trick. Exponentially fast. Reversible when stationary. Example: min x i = min(x i x) x, H = {x : x = 0}.

15 Some finance Equity market with n stocks. For the ith stock (company), define capital, Si = number of outstanding shares share price market weight, µ i = capital of ith stock total capital = S i P j S. j Capital distribution curve = log-log plot of µ versus rank. Ordered market wts: µ(1) µ (2)... µ (n). Plot log k versus log µ(n k+1). Economic theory (e.g. Simon 55) predicts that capital distribution curve should be a straight line. In reality, the curve is concave and remarkably stable in time.

16 Real data 1e!08 1e!06 1e!04 1e!02 log k versus log µ (n k+1). Dec 31, Includes all NYSE, AMEX, and NASDAQ Figure 1: Capital distribution curves: cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve (1998)). The representation of market weights in terms of continuous semimartingales is straightforward, but in order to represent the ranked market weights, it is necessary to use semimartingale local times to capture the behavior when ranks change. The methodology for this analysis was developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior provides insight into the steady-state structure Sourav Chatterjee of the market. & Soumik Pal

17 Attempted explanations Jovanovic ( 82), Hopenhayn ( 92), Axtell ( 99), Hashemi ( 00), Kou & Kou ( 01). However, they all assume that the market converges rapidly to equilibrium, which is never true in reality! BFK s Atlas model tries to correct that, but recovers classical curve (straight line).

18 Stochastic modeling Log-capital: X i = log S i. Black-Scholes: Log-capital of a single company is modeled as a Brownian motion with drift. Natural extension for whole market: Log-capitals of all companies modeled as interacting particles on R. Empirical observation: Larger stocks have slower upward mobility than smaller stocks. One way to model this: The interacting particles (log-capitals) pull each other by a gravitational force.

19 We propose: The Gravity Model Let X i (t), i = 1,..., n be the log-capitals at time t. Gravitational force between i and j is proportional to sign(x i X j ). Resulting model: dx i (t) = α n n sign(x i (t) X j (t))dt + db i (t), i = 1,..., n. j=1 Represents a toy model of flow of capital from larger to smaller stocks. The parameter α determines the strength of the flow.

20 Capital distribution: Reality vs. Gravity model Real data (left) vs. simulations from gravity model with α = 1/2 (right). Simulations from Gravity model 1e!08 1e!06 1e!04 1e!02 log capital log rank Figure 1: Capital distribution curves: cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve (1998)). The representation of market weights in terms of continuous semimartingales is straightforward, but in order to represent the ranked market weights, it is necessary to use semimartingale local times to capture the behavior when ranks change. The methodology for this analysis was developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior provides insight into the steady-state structure of the market. We shall assume that we operate in a continuously-traded, frictionless market in which the stock

21 Analysis Here k(x) = α n n x i x j. i,j=1 k(x) is not the Minkowski norm of any convex set in R n. Also, exp( 2k(x)) is not integrable. However, k(x) is the Minkowski norm of a polytope when restricted to H = {x : x i = 0}. The polytope is regular and simplicial. Uniform generation is easy to describe.

22 Stationary distribution X(t) does not converge in law. However, (X 1 (t) X (t),..., X n (t) X (t)) does converge to an equilibrium measure. Suppose (Y 1,..., Y n ) is drawn from this limiting distribution. Let Y (1) Y (n) denote the Y i s arranged in increasing order. Let i = Y (i+1) Y (i). Then 1,..., n 1 are independent, and ( ) 2αi(n i) i Exp. n Each possible ordering corresponds to one face of the polytope. Simplicial polytope exponentials.

23 Phase transition in the gravity model Recall: Market weight of ith company is µ i (t) = capital of ith stock total capital = ex i (t) j ex j (t). Market diversity, as defined by Fernholz ( 99): µ (n) (t) := max µ i (t) [0, 1]. i Under the gravity model, this has a limiting distribution as t.

24 Phase transition contd... Theorem Consider the gravity model with strength parameter α: dx i (t) = α n n sign(x i (t) X j (t))dt + db i (t), i = 1,..., n. j=1 Let µ (n) denote the diversity in equilibrium. Then as n, If α > 1/2, then µ (n) n (2α 1)/2α. Diversity exists. If α = 1/2 then µ (n) (log n) 1. Diversity exists to a lesser extent. If α < 1/2, then µ (n) 0. No diversity.

25 Sketch of proof µ (n) can be written as e ξ1 + e (ξ1+ξ2) + + e (ξ1+ +ξn 1), where ξ i Exp(2αi(n i)/n). When i n, Vague intuition: µ (n) E(ξ ξ i ) log i 2α /2α + 3 1/2α + n 1/2α n (2α 1)/2α if α > 1/2, (log n) 1 if α = 1/2, const. if α < 1/2. Rigorous proof via martingales and Poincaré inequalities.

26 Connection with spin glasses Let Σ be the set of possible configurations of a physical system. Let {Z σ, σ Σ} be a fixed collection of i.i.d. gaussian random variables. Derrida s Random Energy Model (REM) assigns a probability measure on Σ by putting mass exp(βz σ ) at each σ Σ. Exhibits phase transition as β varies. Mathematical reason is the same as for the gravity model phase transition. More complex models of spin glasses assume that the Z σ s have some correlation structure. Similar to more complex versions of the gravity model.

27 A generalized gravity model Gravity model on a graph G = (V, E): dx i (t) = α sign(x i (t) X j (t))dt + db i (t). j:(i,j) E As before, (X 1 (t) X (t),..., X n (t) X (t)) converges to a stationary law. Polytope is simplicial but not regular. Let (Y 1,..., Y n ) be a draw from the stationary distribution. Let Y (1) Y (n) be the ordered sample. Let Π i = the index j such that Y (i) = Y j. For each π S n and 1 i n 1, let f i (π) = #{(j, k) : j i < k, (π j, π k ) E}. Then P(Π = π) ( n 1 i=1 f i(π)) 1. Given Π = π, the increments Y (i+1) Y (i) are independent and Y (i+1) Y (i) Exp(2αf i (π)).

TRANSPORT INEQUALITIES FOR STOCHASTIC

TRANSPORT INEQUALITIES FOR STOCHASTIC TRANSPORT INEQUALITIES FOR STOCHASTIC PROCESSES Soumik Pal University of Washington, Seattle Jun 6, 2012 INTRODUCTION Three problems about rank-based processes THE ATLAS MODEL Define ranks: x (1) x (2)...

More information

Some Aspects of Universal Portfolio

Some Aspects of Universal Portfolio 1 Some Aspects of Universal Portfolio Tomoyuki Ichiba (UC Santa Barbara) joint work with Marcel Brod (ETH Zurich) Conference on Stochastic Asymptotics & Applications Sixth Western Conference on Mathematical

More information

Hybrid Atlas Model. of financial equity market. Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3

Hybrid Atlas Model. of financial equity market. Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3 Hybrid Atlas Model of financial equity market Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3 1 University of California, Santa Barbara 2 Columbia University,

More information

Competing Brownian Particles

Competing Brownian Particles Competing Brownian Particles Andrey Sarantsev University of California, Santa Barbara February 9, 2018 Andrey Sarantsev California State University, Los Angeles 1 / 16 Brownian Motion A Brownian motion

More information

EQUITY MARKET STABILITY

EQUITY MARKET STABILITY EQUITY MARKET STABILITY Adrian Banner INTECH Investment Technologies LLC, Princeton (Joint work with E. Robert Fernholz, Ioannis Karatzas, Vassilios Papathanakos and Phillip Whitman.) Talk at WCMF6 conference,

More information

Stable Diffusions Interacting through Their Ranks, as Models of Large Equity Markets

Stable Diffusions Interacting through Their Ranks, as Models of Large Equity Markets 1 Stable Diffusions Interacting through Their Ranks, as Models of Large Equity Markets IOANNIS KARATZAS INTECH Investment Management, Princeton Department of Mathematics, Columbia University Joint work

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Geometry of functionally generated portfolios

Geometry of functionally generated portfolios Geometry of functionally generated portfolios Soumik Pal University of Washington Rutgers MF-PDE May 18, 2017 Multiplicative Cyclical Monotonicity Portfolio as a function on the unit simplex -unitsimplexindimensionn

More information

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES ADRIAN D. BANNER INTECH One Palmer Square Princeton, NJ 8542, USA adrian@enhanced.com RAOUF GHOMRASNI Fakultät II, Institut für Mathematik Sekr. MA 7-5,

More information

Market environments, stability and equlibria

Market environments, stability and equlibria Market environments, stability and equlibria Gordan Žitković Department of Mathematics University of exas at Austin Austin, Aug 03, 2009 - Summer School in Mathematical Finance he Information Flow two

More information

Geometry and Optimization of Relative Arbitrage

Geometry and Optimization of Relative Arbitrage Geometry and Optimization of Relative Arbitrage Ting-Kam Leonard Wong joint work with Soumik Pal Department of Mathematics, University of Washington Financial/Actuarial Mathematic Seminar, University of

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint" that the

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint that the ON PORTFOLIO OPTIMIZATION UNDER \DRAWDOWN" CONSTRAINTS JAKSA CVITANIC IOANNIS KARATZAS y March 6, 994 Abstract We study the problem of portfolio optimization under the \drawdown constraint" that the wealth

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

A Few Games and Geometric Insights

A Few Games and Geometric Insights A Few Games and Geometric Insights Brian Powers Arizona State University brpowers@asu.edu January 20, 2017 1 / 56 Outline 1 Nash/Correlated Equilibria A Motivating Example The Nash Equilibrium Correlated

More information

Portfolio optimisation with small transaction costs

Portfolio optimisation with small transaction costs 1 / 26 Portfolio optimisation with small transaction costs an engineer s approach Jan Kallsen based on joint work with Johannes Muhle-Karbe and Paul Krühner New York, June 5, 2012 dedicated to Ioannis

More information

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER GERARDO HERNANDEZ-DEL-VALLE arxiv:1209.2411v1 [math.pr] 10 Sep 2012 Abstract. This work deals with first hitting time densities of Ito processes whose

More information

A Second-Order Model of the Stock Market

A Second-Order Model of the Stock Market A Second-Order Model of the Stock Market Robert Fernholz INTECH Conference in honor of Ioannis Karatzas Columbia University, New York June 4 8, 2012 This is joint research with T. Ichiba, I. Karatzas.

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

EXPLOSIONS AND ARBITRAGE IOANNIS KARATZAS. Joint work with Daniel FERNHOLZ and Johannes RUF. Talk at the University of Michigan

EXPLOSIONS AND ARBITRAGE IOANNIS KARATZAS. Joint work with Daniel FERNHOLZ and Johannes RUF. Talk at the University of Michigan EXPLOSIONS AND ARBITRAGE IOANNIS KARATZAS Department of Mathematics, Columbia University, New York INTECH Investment Management LLC, Princeton Joint work with Daniel FERNHOLZ and Johannes RUF Talk at the

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

Contagious default: application of methods of Statistical Mechanics in Finance

Contagious default: application of methods of Statistical Mechanics in Finance Contagious default: application of methods of Statistical Mechanics in Finance Wolfgang J. Runggaldier University of Padova, Italy www.math.unipd.it/runggaldier based on joint work with : Paolo Dai Pra,

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

A class of globally solvable systems of BSDE and applications

A class of globally solvable systems of BSDE and applications A class of globally solvable systems of BSDE and applications Gordan Žitković Department of Mathematics The University of Texas at Austin Thera Stochastics - Wednesday, May 31st, 2017 joint work with Hao

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Polynomial Preserving Jump-Diffusions on the Unit Interval

Polynomial Preserving Jump-Diffusions on the Unit Interval Polynomial Preserving Jump-Diffusions on the Unit Interval Martin Larsson Department of Mathematics, ETH Zürich joint work with Christa Cuchiero and Sara Svaluto-Ferro 7th General AMaMeF and Swissquote

More information

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN Partial Differential Equations Content 1. Part II: Derivation of PDE in Brownian Motion PART II DERIVATION OF PDE

More information

Economics 2010c: Lectures 9-10 Bellman Equation in Continuous Time

Economics 2010c: Lectures 9-10 Bellman Equation in Continuous Time Economics 2010c: Lectures 9-10 Bellman Equation in Continuous Time David Laibson 9/30/2014 Outline Lectures 9-10: 9.1 Continuous-time Bellman Equation 9.2 Application: Merton s Problem 9.3 Application:

More information

The Asymptotic Theory of Transaction Costs

The Asymptotic Theory of Transaction Costs The Asymptotic Theory of Transaction Costs Lecture Notes by Walter Schachermayer Nachdiplom-Vorlesung, ETH Zürich, WS 15/16 1 Models on Finite Probability Spaces In this section we consider a stock price

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009 Affine Processes Econometric specifications Eduardo Rossi University of Pavia March 17, 2009 Eduardo Rossi (University of Pavia) Affine Processes March 17, 2009 1 / 40 Outline 1 Affine Processes 2 Affine

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

Optimal portfolio strategies under partial information with expert opinions

Optimal portfolio strategies under partial information with expert opinions 1 / 35 Optimal portfolio strategies under partial information with expert opinions Ralf Wunderlich Brandenburg University of Technology Cottbus, Germany Joint work with Rüdiger Frey Research Seminar WU

More information

IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University

IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University STOCHASTIC PORTFOLIO THEORY IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University ik@math.columbia.edu Joint work with Dr. E. Robert FERNHOLZ, C.I.O. of INTECH Enhanced Investment

More information

Lecture 8: Basic convex analysis

Lecture 8: Basic convex analysis Lecture 8: Basic convex analysis 1 Convex sets Both convex sets and functions have general importance in economic theory, not only in optimization. Given two points x; y 2 R n and 2 [0; 1]; the weighted

More information

Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007

Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

Gravitational allocation to Poisson points

Gravitational allocation to Poisson points Gravitational allocation to Poisson points Sourav Chatterjee joint work with Ron Peled Yuval Peres Dan Romik Allocation rules Let Ξ be a discrete subset of R d. An allocation (of Lebesgue measure to Ξ)

More information

Backward martingale representation and endogenous completeness in finance

Backward martingale representation and endogenous completeness in finance Backward martingale representation and endogenous completeness in finance Dmitry Kramkov (with Silviu Predoiu) Carnegie Mellon University 1 / 19 Bibliography Robert M. Anderson and Roberto C. Raimondo.

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Approximating the gains from trade in large markets

Approximating the gains from trade in large markets Approximating the gains from trade in large markets Ellen Muir Supervisors: Peter Taylor & Simon Loertscher Joint work with Kostya Borovkov The University of Melbourne 7th April 2015 Outline Setup market

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Convergence to equilibrium for rough differential equations

Convergence to equilibrium for rough differential equations Convergence to equilibrium for rough differential equations Samy Tindel Purdue University Barcelona GSE Summer Forum 2017 Joint work with Aurélien Deya (Nancy) and Fabien Panloup (Angers) Samy T. (Purdue)

More information

VOLATILITY AND ARBITRAGE

VOLATILITY AND ARBITRAGE The Annals of Applied Probability 218, Vol. 28, No. 1, 378 417 https://doi.org/1.1214/17-aap138 Institute of Mathematical Statistics, 218 VOLATILITY AND ARBITRAGE BY E. ROBERT FERNHOLZ,IOANNIS KARATZAS,,1

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Multivariate Generalized Ornstein-Uhlenbeck Processes

Multivariate Generalized Ornstein-Uhlenbeck Processes Multivariate Generalized Ornstein-Uhlenbeck Processes Anita Behme TU München Alexander Lindner TU Braunschweig 7th International Conference on Lévy Processes: Theory and Applications Wroclaw, July 15 19,

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Mean field equilibria of multiarmed bandit games

Mean field equilibria of multiarmed bandit games Mean field equilibria of multiarmed bandit games Ramesh Johari Stanford University Joint work with Ramki Gummadi (Stanford University) and Jia Yuan Yu (IBM Research) A look back: SN 2000 2 Overview What

More information

A nonparametric method of multi-step ahead forecasting in diffusion processes

A nonparametric method of multi-step ahead forecasting in diffusion processes A nonparametric method of multi-step ahead forecasting in diffusion processes Mariko Yamamura a, Isao Shoji b a School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan. b Graduate School

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Economics 620, Lecture 19: Introduction to Nonparametric and Semiparametric Estimation

Economics 620, Lecture 19: Introduction to Nonparametric and Semiparametric Estimation Economics 620, Lecture 19: Introduction to Nonparametric and Semiparametric Estimation Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 19: Nonparametric Analysis

More information

Exercises: Brunn, Minkowski and convex pie

Exercises: Brunn, Minkowski and convex pie Lecture 1 Exercises: Brunn, Minkowski and convex pie Consider the following problem: 1.1 Playing a convex pie Consider the following game with two players - you and me. I am cooking a pie, which should

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Geometry of log-concave Ensembles of random matrices

Geometry of log-concave Ensembles of random matrices Geometry of log-concave Ensembles of random matrices Nicole Tomczak-Jaegermann Joint work with Radosław Adamczak, Rafał Latała, Alexander Litvak, Alain Pajor Cortona, June 2011 Nicole Tomczak-Jaegermann

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

An Algorithmist s Toolkit Nov. 10, Lecture 17

An Algorithmist s Toolkit Nov. 10, Lecture 17 8.409 An Algorithmist s Toolkit Nov. 0, 009 Lecturer: Jonathan Kelner Lecture 7 Johnson-Lindenstrauss Theorem. Recap We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from

More information

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017 Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION By Degui Li, Peter C. B. Phillips, and Jiti Gao September 017 COWLES FOUNDATION DISCUSSION PAPER NO.

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

Approximately Gaussian marginals and the hyperplane conjecture

Approximately Gaussian marginals and the hyperplane conjecture Approximately Gaussian marginals and the hyperplane conjecture Tel-Aviv University Conference on Asymptotic Geometric Analysis, Euler Institute, St. Petersburg, July 2010 Lecture based on a joint work

More information

Mathematics for Economics and Finance

Mathematics for Economics and Finance MATHEMATICS FOR ECONOMICS AND FINANCE 1 Mathematics for Economics and Finance Lecturer: M. Levin, K. Bukin, B. Demeshev, A. Zasorin Class teacher: K. Bukin, B. Demeshev, A. Zasorin Course description The

More information

Sensitivity analysis of the expected utility maximization problem with respect to model perturbations

Sensitivity analysis of the expected utility maximization problem with respect to model perturbations Sensitivity analysis of the expected utility maximization problem with respect to model perturbations Mihai Sîrbu, The University of Texas at Austin based on joint work with Oleksii Mostovyi University

More information

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES STEFAN TAPPE Abstract. In a work of van Gaans (25a) stochastic integrals are regarded as L 2 -curves. In Filipović and Tappe (28) we have shown the connection

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Gravitational allocation to Poisson points

Gravitational allocation to Poisson points Gravitational allocation to Poisson points Ron Peled joint work with Sourav Chatterjee Yuval Peres Dan Romik Allocation rules Let Ξ be a discrete subset of R d. Allocation rules Let Ξ be a discrete subset

More information

Time Series 4. Robert Almgren. Oct. 5, 2009

Time Series 4. Robert Almgren. Oct. 5, 2009 Time Series 4 Robert Almgren Oct. 5, 2009 1 Nonstationarity How should you model a process that has drift? ARMA models are intrinsically stationary, that is, they are mean-reverting: when the value of

More information

A glimpse into convex geometry. A glimpse into convex geometry

A glimpse into convex geometry. A glimpse into convex geometry A glimpse into convex geometry 5 \ þ ÏŒÆ Two basis reference: 1. Keith Ball, An elementary introduction to modern convex geometry 2. Chuanming Zong, What is known about unit cubes Convex geometry lies

More information

Supermodular ordering of Poisson arrays

Supermodular ordering of Poisson arrays Supermodular ordering of Poisson arrays Bünyamin Kızıldemir Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

More information

Polynomial Expressions and Functions

Polynomial Expressions and Functions Hartfield College Algebra (Version 2017a - Thomas Hartfield) Unit FOUR Page - 1 - of 36 Topic 32: Polynomial Expressions and Functions Recall the definitions of polynomials and terms. Definition: A polynomial

More information

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM DAMIR FILIPOVIĆ Abstract. This paper discusses separable term structure diffusion models in an arbitrage-free environment. Using general consistency

More information

Viscosity Solutions for Dummies (including Economists)

Viscosity Solutions for Dummies (including Economists) Viscosity Solutions for Dummies (including Economists) Online Appendix to Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach written by Benjamin Moll August 13, 2017 1 Viscosity

More information

Estimating the Loss of Efficiency due to Competition in Mobility on Demand Markets

Estimating the Loss of Efficiency due to Competition in Mobility on Demand Markets Estimating the Loss of Efficiency due to Competition in Mobility on Demand Markets Thibault Séjourné 1 Samitha Samaranayake 2 Siddhartha Banerjee 2 1 Ecole Polytechnique 2 Cornell University November 14,

More information

RESEARCH STATEMENT ANDREY SARANTSEV

RESEARCH STATEMENT ANDREY SARANTSEV RESEARCH STATEMENT ANDREY SARANTSEV My research in Stochastic Finance and Stochastic Analysis is focused on the following topics: 1. Interacting Brownian particles with rank-dependent dynamics. This model

More information

The Azéma-Yor Embedding in Non-Singular Diffusions

The Azéma-Yor Embedding in Non-Singular Diffusions Stochastic Process. Appl. Vol. 96, No. 2, 2001, 305-312 Research Report No. 406, 1999, Dept. Theoret. Statist. Aarhus The Azéma-Yor Embedding in Non-Singular Diffusions J. L. Pedersen and G. Peskir Let

More information

Rademacher Bounds for Non-i.i.d. Processes

Rademacher Bounds for Non-i.i.d. Processes Rademacher Bounds for Non-i.i.d. Processes Afshin Rostamizadeh Joint work with: Mehryar Mohri Background Background Generalization Bounds - How well can we estimate an algorithm s true performance based

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 )

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 ) 1 Introduction These problems are meant to be practice problems for you to see if you have understood the material reasonably well. They are neither exhaustive (e.g. Diffusions, continuous time branching

More information

arxiv: v2 [math.pr] 22 Jan 2008

arxiv: v2 [math.pr] 22 Jan 2008 OE-DIMESIOAL BROWIA PARTICLE SYSTEMS WITH RAK DEPEDET DRIFTS arxiv:0704.0957v2 [math.pr] 22 an 2008 SOUMIK PAL AD IM PITMA Abstract. We study interacting systems of linear Brownian motions whose drift

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

Basic Probability space, sample space concepts and order of a Stochastic Process

Basic Probability space, sample space concepts and order of a Stochastic Process The Lecture Contains: Basic Introduction Basic Probability space, sample space concepts and order of a Stochastic Process Examples Definition of Stochastic Process Marginal Distributions Moments Gaussian

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Mathematics for Economics and Finance. 2018, fall semester

Mathematics for Economics and Finance. 2018, fall semester MATHEMATICS FOR ECONOMICS AND FINANCE 1 Mathematics for Economics and Finance 2018, fall semester Lecturer: M. Levin, K. Bukin, B. Demeshev, A.Zasorin Class teachers: K. Bukin, B. Demeshev, A.Zasorin Course

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Today. Calculus. Linear Regression. Lagrange Multipliers

Today. Calculus. Linear Regression. Lagrange Multipliers Today Calculus Lagrange Multipliers Linear Regression 1 Optimization with constraints What if I want to constrain the parameters of the model. The mean is less than 10 Find the best likelihood, subject

More information

Pattern size in Gaussian fields from spinodal decomposition

Pattern size in Gaussian fields from spinodal decomposition Pattern size in Gaussian fields from spinodal decomposition Luigi Amedeo Bianchi (joint work with D. Blömker and P. Düren) 8th Random Dynamical Systems Workshop Bielefeld, 6th November 2015 Research partially

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

Optimal Stopping Problems and American Options

Optimal Stopping Problems and American Options Optimal Stopping Problems and American Options Nadia Uys A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

On the dual problem of utility maximization

On the dual problem of utility maximization On the dual problem of utility maximization Yiqing LIN Joint work with L. GU and J. YANG University of Vienna Sept. 2nd 2015 Workshop Advanced methods in financial mathematics Angers 1 Introduction Basic

More information