Lecture 3: Compressive Classification

Size: px
Start display at page:

Download "Lecture 3: Compressive Classification"

Transcription

1 Lecture 3: Compressive Classification Richard Baraniuk Rice University dsp.rice.edu/cs

2 Compressive Sampling

3 Signal Sparsity wideband signal samples large Gabor (TF) coefficients Fourier matrix

4 Compressive Sampling Random measurements measurements signal sparse in basis

5 Universality Compressive Sampling

6 Why Does It Work? (1) Random projection not full rank, but stably embeds sparse/compressible signal models (CS) point clouds (JL) into lower dimensional space with high probability Stable embedding: preserves structure distances between points, angles between vectors, provided M is large enough: Compressive Sampling K-sparse model K-dim planes

7 Why Does It Work? (2) Random projection not full rank, but stably embeds sparse/compressible signal models (CS) point clouds (JL) into lower dimensional space with high probability Stable embedding: preserves structure distances between points, angles between vectors, provided M is large enough: Johnson-Lindenstrauss Q points

8 Information Scalability In many CS applications, full signal recovery may not be required If we can reconstruct a signal from compressive measurements, then we should be able to perform other kinds of statistical signal processing: detection classification estimation

9 Compressive Detection/Classification

10 Classification of Signals in Noise Observe one of P known signals in noise Probability density function of the noise ex: zero mean, white Gaussian noise (AWGN) Probability density function of signal >>> mean shifted to

11 Multiclass Likelihood Ratio Test (LRT) Observe one of P known signals in noise Classify according to: AWGN: nearest-neighbor classification Sufficient statistic:

12 Compressive LRT Compressive observations: by the JL Lemma these distances are preserved [Waagen et al 05, Davenport et al 06, Haupt et al 06]

13 Compressive LRT Compressive observations: If are normalized, these angles are preserved

14 Performance of Compressive LRT ROC curve for Neyman-Pearson detector (2 classes): false alarm probability From JL lemma, for random orthoprojector Thus Penalty for compressive measurements:

15 Performance of Compressive LRT better SNR fewer measurements

16 Summary If CS system is a random orthoprojector, then detection/classification problems in the signal space map into analogous problems in the measurement space SNR penalty for compressive measurements Note: Signal sparsity unexploited!

17 Matched Filtering

18 Matched Filter In many applications, signals are transformed with an unknown parameter; ex: translation Elegant solution: matched filter Compute for all convolution of measurement with template reversed in time Simultaneously: estimates parameter classifies signal

19 Compressive Matched Filter Challenge: Extend matched filter concept to compressive measurements GLRT: GLRT approach extends to any case where each class can be parameterized with K parameters If mapping from parameters to signal is well-behaved, then each class forms a manifold in

20 Signal Manifolds

21 What is a Manifold? Manifolds are a bit like pornography: hard to define, but you know one when you see one. S. Weinberger [Lee] Locally Euclidean topological space Roughly speaking: a collection of mappings of open sets of R K glued together ( coordinate charts ) can be an abstract space, not a subset of Euclidean space e.g., SO3, Grassmannian Typically for signal processing: nonlinear K-dimensional surface in signal space R N

22 Examples Circle in R N parameter: angle Chirp in R N parameters: start frequency end frequency Image appearance manifold parameters: position of object, camera, lighting, etc.

23 Object Rotation Manifold each image is a point in R N K=1

24 Up/Down Left/Right Manifold K=2 [Tenenbaum, de Silva, Langford]

25 Manifold Learning from Training Data Translating disk parameters: left/right, up/down shift (K=2) Generate training data by sampling from the manifold Learn the structure of the manifold ISOMAP HLLE Laplacian Eigenmaps R 4096

26 Manifold Classification

27 Manifold Classification Now suppose data is drawn from one of P possible manifolds: AWGN: nearest manifold classification M 1 M 3 M 2

28 Compressive Manifold Classification Compressive observations: Good news: structure of smooth manifolds is preserved by random projection provided distances, geodesic distances, angles, [Wakin et al, 06, Haupt et al 07]

29 Aside: Random Projections of Smooth Manifolds

30 Theorem: Stable Manifold Embedding Let F R N be a compact K-dimensional manifold with condition number 1/τ (curvature, self-avoiding) volume V Let Φ be a random MxN orthoprojector with Then with probability at least 1-ρ, the following statement holds: For every pair x,y F [Wakin et al 06, Haupt et al 07]

31 Stable Manifold Embedding Theorem tells us that random projections preserve smooth manifold dimensionality ambient distances geodesic distances local angles topology local neighborhoods Volume Also there exists extension to some kinds of non-smooth manifolds

32 Manifold Learning from Compressive Measurements ISOMAP HLLE Laplacian Eigenmaps R 4096 R M M=15 M=20 M=15

33 Multiple Manifold Embedding Corollary: Let M 1,,M P R N be compact K-dimensional manifolds with condition number 1/τ (curvature, self-avoiding) volume V min dist(m j,m k ) > τ (can be relaxed) Let Φ be a random MxN orthoprojector with Then with probability at least 1-ρ, the following statement holds: For every pair x,y U M j

34 Compressive Manifold Classification

35 Compressive Manifold Classification Compressive observations: Good news: structure of smooth manifolds is preserved by random projection provided distances, geodesic distances, angles, [Wakin et al, 06, Haupt et al 07]

36 Smashed Filter Compressive manifold classification with GLRT nearest-manifold classifier based on manifolds M 1 M 3 M 2 Φ M 1 Φ M 2 Φ M 3 [Davenport et al 06, Healy and Rohode 07]

37 Smashed Filter Experiments 3 image classes: tank, school bus, SUV N = 65,536 pixels Imaged using single-pixel CS camera with unknown shift unknown rotation

38 Smashed Filter Unknown Position Object shifted at random (K=2 manifold) Noise added to measurements Goal: identify most likely position for each image class identify most likely class using nearest-neighbor test avg. shift estimate error more noise classification rate (%) more noise number of measurements M number of measurements M

39 Smashed Filter Unknown Rotation Object rotated each 10 o Goals: identify most likely rotation for each image class identify most likely class using nearest-neighbor test Perfect classification with as few as 6 measurements Good estimates of rotation with under 10 measurements avg. rot. est. error number of measurements M

40 Summary Compressive measurements are information scalable reconstruction > estimation > classification > detection Random projections preserve structure of smooth manifolds (analogous to sparse signals) Smashed filter: dimension-reduced GLRT for parametrically transformed signals exploits compressive measurements and manifold structure broadly applicable: targets do not have to have sparse representation in any basis effective for detection/classification

41 Open Issues Compressive classification does not exploit sparse signal structure to improve performance Non-smooth manifolds and local minima in GLRT one approach: multiscale random projections Experiments with real data

42 Some References R. G. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted isometry property for random matrices, to appear in Constructive Approximation, R. G. Baraniuk and M. Wakin, Random projections of smooth manifolds, 2006; see also ICASSP M. Davenport, M. Duarte, M. Wakin, J. Laska, D. Takhar, K. Kelly, R. G. Baraniuk, The smashed filter for compressive classification and target recognition, Proc. of Computational Imaging V at SPIE Electronic Imaging, San Jose, California, January M. Wakin, D. Donoho, H. Choi, R. G. Baraniuk. The multiscale structure of non-differentiable image manifolds, Proc. Wavelets XI at SPIE Optics and Photonics, J. Haupt, R. Castro, R. Nowak, G. Fudge, A. Yeh, Compressive sampling for signal classification, Proc. Asilomar Conference on Signals, Systems, and Computers, D. Healy, G. Rohode, Fast global image registration using random projections, for more, see dsp.rice.edu/cs

The Smashed Filter for Compressive Classification and Target Recognition

The Smashed Filter for Compressive Classification and Target Recognition Proc. SPIE Computational Imaging V, San Jose, California, January 2007 The Smashed Filter for Compressive Classification and Target Recognition Mark A. Davenport, r Marco F. Duarte, r Michael B. Wakin,

More information

Random Projections of Smooth Manifolds

Random Projections of Smooth Manifolds Random Projections of Smooth Manifolds Richard G. Baraniuk and Michael B. Wakin October 2006; Revised September 2007 Abstract We propose a new approach for nonadaptive dimensionality reduction of manifold-modeled

More information

Random Projections of Smooth Manifolds

Random Projections of Smooth Manifolds Random Projections of Smooth Manifolds Richard G. Baraniuk and Michael B. Wakin October 2006; Revised June 2007 Abstract We propose a new approach for nonadaptive dimensionality reduction of manifold-modeled

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor Explosion Data Deluge Digital Revolution If we sample a signal

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

A Generalized Restricted Isometry Property

A Generalized Restricted Isometry Property 1 A Generalized Restricted Isometry Property Jarvis Haupt and Robert Nowak Department of Electrical and Computer Engineering, University of Wisconsin Madison University of Wisconsin Technical Report ECE-07-1

More information

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Jason N. Laska, Mark A. Davenport, Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University

More information

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming)

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Justin Romberg Georgia Tech, ECE Caltech ROM-GR Workshop June 7, 2013 Pasadena, California Linear

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University New Applications of Sparse Methods in Physics Ra Inta, Centre for Gravitational Physics, The Australian National University 2 Sparse methods A vector is S-sparse if it has at most S non-zero coefficients.

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Intrinsic Structure Study on Whale Vocalizations

Intrinsic Structure Study on Whale Vocalizations 1 2015 DCLDE Conference Intrinsic Structure Study on Whale Vocalizations Yin Xian 1, Xiaobai Sun 2, Yuan Zhang 3, Wenjing Liao 3 Doug Nowacek 1,4, Loren Nolte 1, Robert Calderbank 1,2,3 1 Department of

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

On the Observability of Linear Systems from Random, Compressive Measurements

On the Observability of Linear Systems from Random, Compressive Measurements On the Observability of Linear Systems from Random, Compressive Measurements Michael B Wakin, Borhan M Sanandaji, and Tyrone L Vincent Abstract Recovering or estimating the initial state of a highdimensional

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction A presentation by Evan Ettinger on a Paper by Vin de Silva and Joshua B. Tenenbaum May 12, 2005 Outline Introduction The

More information

Manifold Learning and it s application

Manifold Learning and it s application Manifold Learning and it s application Nandan Dubey SE367 Outline 1 Introduction Manifold Examples image as vector Importance Dimension Reduction Techniques 2 Linear Methods PCA Example MDS Perception

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Concentration of Measure Inequalities for. Toeplitz Matrices with Applications

Concentration of Measure Inequalities for. Toeplitz Matrices with Applications Concentration of Measure Inequalities for 1 Toeplitz Matrices with Applications Borhan M. Sanandaji, Tyrone L. Vincent, and Michael B. Wakin Abstract We derive Concentration of Measure (CoM) inequalities

More information

Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective

Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective 1 Richard G. Baraniuk, Volkan Cevher, Michael B. Wakin Abstract We compare and contrast from a geometric

More information

2 Regularized Image Reconstruction for Compressive Imaging and Beyond

2 Regularized Image Reconstruction for Compressive Imaging and Beyond EE 367 / CS 448I Computational Imaging and Display Notes: Compressive Imaging and Regularized Image Reconstruction (lecture ) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement

More information

New ways of dimension reduction? Cutting data sets into small pieces

New ways of dimension reduction? Cutting data sets into small pieces New ways of dimension reduction? Cutting data sets into small pieces Roman Vershynin University of Michigan, Department of Mathematics Statistical Machine Learning Ann Arbor, June 5, 2012 Joint work with

More information

DIMENSIONALITY REDUCTION METHODS IN INDEPENDENT SUBSPACE ANALYSIS FOR SIGNAL DETECTION. Mijail Guillemard, Armin Iske, Sara Krause-Solberg

DIMENSIONALITY REDUCTION METHODS IN INDEPENDENT SUBSPACE ANALYSIS FOR SIGNAL DETECTION. Mijail Guillemard, Armin Iske, Sara Krause-Solberg DIMENSIONALIY EDUCION MEHODS IN INDEPENDEN SUBSPACE ANALYSIS FO SIGNAL DEECION Mijail Guillemard, Armin Iske, Sara Krause-Solberg Department of Mathematics, University of Hamburg, {guillemard, iske, krause-solberg}@math.uni-hamburg.de

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Dimensionality Reduction:

Dimensionality Reduction: Dimensionality Reduction: From Data Representation to General Framework Dong XU School of Computer Engineering Nanyang Technological University, Singapore What is Dimensionality Reduction? PCA LDA Examples:

More information

Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning

Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning Xian Wei, Martin Kleinsteuber, and Hao Shen Department of Electrical and Computer Engineering Technische Universität München,

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain

Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the easurement Domain Robert Calderbank Electrical Engineering and athematics Princeton University calderbk@princeton.edu

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-30, 20 A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Is margin preserved after random projection?

Is margin preserved after random projection? Qinfeng Shi javen.shi@adelaide.edu.au Chunhua Shen chunhua.shen@adelaide.edu.au Rhys Hill rhys.hill@adelaide.edu.au Anton van den Hengel anton.vandenhengel@adelaide.edu.au Australian Centre for Visual

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Lecture 16: Compressed Sensing

Lecture 16: Compressed Sensing Lecture 16: Compressed Sensing Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 16 1 / 12 Review of Johnson-Lindenstrauss Unsupervised learning technique key insight:

More information

Random hyperplane tessellations and dimension reduction

Random hyperplane tessellations and dimension reduction Random hyperplane tessellations and dimension reduction Roman Vershynin University of Michigan, Department of Mathematics Phenomena in high dimensions in geometric analysis, random matrices and computational

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

arxiv: v1 [math.na] 26 Nov 2009

arxiv: v1 [math.na] 26 Nov 2009 Non-convexly constrained linear inverse problems arxiv:0911.5098v1 [math.na] 26 Nov 2009 Thomas Blumensath Applied Mathematics, School of Mathematics, University of Southampton, University Road, Southampton,

More information

Compressive sensing of low-complexity signals: theory, algorithms and extensions

Compressive sensing of low-complexity signals: theory, algorithms and extensions Compressive sensing of low-complexity signals: theory, algorithms and extensions Laurent Jacques March 7, 9, 1, 14, 16 and 18, 216 9h3-12h3 (incl. 3 ) Graduate School in Systems, Optimization, Control

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Inverse problems, Dictionary based Signal Models and Compressed Sensing

Inverse problems, Dictionary based Signal Models and Compressed Sensing Inverse problems, Dictionary based Signal Models and Compressed Sensing Rémi Gribonval METISS project-team (audio signal processing, speech recognition, source separation) INRIA, Rennes, France Ecole d

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 13, JULY 1, 2013 3279 Compressed Sensing Affine Rank Minimization Under Restricted Isometry T. Tony Cai Anru Zhang Abstract This paper establishes new

More information

An Overview of Compressed Sensing

An Overview of Compressed Sensing An Overview of Compressed Sensing Nathan Schneider November 18, 2009 Abstract In a large number of applications, the system will be designed to sample at a rate equal to at least the frequency bandwidth

More information

Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis

Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis Ahmed M Elzanati, Mohamed F Abdelkader, Karim G Seddik and Atef M Ghuniem Department of Communication and Electronics, Sinai

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Random projection trees and low dimensional manifolds. Sanjoy Dasgupta and Yoav Freund University of California, San Diego

Random projection trees and low dimensional manifolds. Sanjoy Dasgupta and Yoav Freund University of California, San Diego Random projection trees and low dimensional manifolds Sanjoy Dasgupta and Yoav Freund University of California, San Diego I. The new nonparametrics The new nonparametrics The traditional bane of nonparametric

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN Contribution from: Mathematical Physics Studies Vol. 7 Perspectives in Analysis Essays in Honor of Lennart Carleson s 75th Birthday Michael Benedicks, Peter W. Jones, Stanislav Smirnov (Eds.) Springer

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Observability with Random Observations

Observability with Random Observations Observability with Random Observations 1 Borhan M. Sanandaji, Michael B. Wakin, and Tyrone L. Vincent Abstract Recovery of the initial state of a high-dimensional system can require a large number of measurements.

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

Nonlinear Manifold Learning Summary

Nonlinear Manifold Learning Summary Nonlinear Manifold Learning 6.454 Summary Alexander Ihler ihler@mit.edu October 6, 2003 Abstract Manifold learning is the process of estimating a low-dimensional structure which underlies a collection

More information

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Kilian Q. Weinberger kilianw@cis.upenn.edu Fei Sha feisha@cis.upenn.edu Lawrence K. Saul lsaul@cis.upenn.edu Department of Computer and Information

More information

Unsupervised dimensionality reduction

Unsupervised dimensionality reduction Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30 Outline 1 PCA 2 Kernel PCA 3 Multidimensional

More information

Recovery of Compressible Signals in Unions of Subspaces

Recovery of Compressible Signals in Unions of Subspaces 1 Recovery of Compressible Signals in Unions of Subspaces Marco F. Duarte, Chinmay Hegde, Volkan Cevher, and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Compressive estimation in AWGN: general observations and a case study

Compressive estimation in AWGN: general observations and a case study Compressive estimation in AWGN: general observations and a case study Dinesh Ramasamy, Sriram Venkateswaran, Upamanyu Madhow Department of ECE, University of California Santa Barbara, CA 9306, USA Email:

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

The Curse of Dimensionality for Local Kernel Machines

The Curse of Dimensionality for Local Kernel Machines The Curse of Dimensionality for Local Kernel Machines Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux April 7th 2005 Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux Snowbird Learning Workshop Perspective

More information

Least squares regularized or constrained by L0: relationship between their global minimizers. Mila Nikolova

Least squares regularized or constrained by L0: relationship between their global minimizers. Mila Nikolova Least squares regularized or constrained by L0: relationship between their global minimizers Mila Nikolova CMLA, CNRS, ENS Cachan, Université Paris-Saclay, France nikolova@cmla.ens-cachan.fr SIAM Minisymposium

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Enhanced Compressive Sensing and More

Enhanced Compressive Sensing and More Enhanced Compressive Sensing and More Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Nonlinear Approximation Techniques Using L1 Texas A & M University

More information

Graph Metrics and Dimension Reduction

Graph Metrics and Dimension Reduction Graph Metrics and Dimension Reduction Minh Tang 1 Michael Trosset 2 1 Applied Mathematics and Statistics The Johns Hopkins University 2 Department of Statistics Indiana University, Bloomington November

More information

Signal Processing with Compressive Measurements

Signal Processing with Compressive Measurements MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Signal Processing with Compressive Measurements Mark Davenport, Petros Boufounos, Michael Wakin, Richard Baraniuk TR010-00 February 010 Abstract

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Diffusion Wavelets and Applications

Diffusion Wavelets and Applications Diffusion Wavelets and Applications J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon, M. Mohlenkamp, MM, R. Schul, A.D. Szlam Demos, web pages and preprints available at: S.Lafon: www.math.yale.edu/~sl349

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices Compressed Sensing Yonina C. Eldar Electrical Engineering Department, Technion-Israel Institute of Technology, Haifa, Israel, 32000 1 Introduction Compressed sensing (CS) is an exciting, rapidly growing

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Optical Flow-Based Transport on Image Manifolds

Optical Flow-Based Transport on Image Manifolds Optical Flow-Based Transport on Image Manifolds S. Nagaraj, C. Hegde, A. C. Sankaranarayanan, R. G. Baraniuk ECE Dept., Rice University CSAIL, Massachusetts Inst. Technology ECE Dept., Carnegie Mellon

More information

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets.

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. R.R. Coifman, S. Lafon, MM Mathematics Department Program of Applied Mathematics. Yale University Motivations The main

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

Fast Hard Thresholding with Nesterov s Gradient Method

Fast Hard Thresholding with Nesterov s Gradient Method Fast Hard Thresholding with Nesterov s Gradient Method Volkan Cevher Idiap Research Institute Ecole Polytechnique Federale de ausanne volkan.cevher@epfl.ch Sina Jafarpour Department of Computer Science

More information