MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

Size: px
Start display at page:

Download "MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6"

Transcription

1 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS PETE L. CLARK Contents 1. Polynomial Functions 1 2. Rational Functions 6 1. Polynomial Functions Using the basic operations of addition, subtraction, multiplication, division and composition of functions, we can combine very simple functions to build large and interesting (and useful!) classes of functions. For us, the two simplest kinds of functions are the following: Constant functions: for each a R there is a function C a : R R such that for all x R, C a (x) = a. In other words, the output of the function does not depend on the input: whatever we put in, the same value a will come out. The graph of such a function is the horizontal line y = a. Such functions are called constant. The identity function I : R R by I(x) = x. function is the straight line y = x. The graph of the identity Recall that the identity function is so-called because it is an identity element for the operation of function composition: that is, for any function f : R R we have I f = f I = f. Example: Let m, b R, and consider the function L : R R by x mx + b. Then L is built up out of constant functions and the identity function by addition and multiplication: L = C m I + C b. Example: Let n Z +. The function m n : x x n is built up out of the identity function by repreated multiplication: m n = I I I (n I s altogether). The general name for a function f : R R which is built up out of the identity function and the constant functions by finitely many additions and multiplications is a polynomial. In other words, every polynomial function is of the form (1) f : x a n x n a 1 x + a 0 for some constants a 0,..., a n R. 1

2 2 PETE L. CLARK However, we also want to take at least until we prove it doesn t make a difference a more algebraic approach to polynomials. Let us define a polynomial expression as an expression of the form n i=0 a ix i. Thus, to give a polynomial expression we need to give for each natural number i a constant a i, while requiring that all but finitely many of these constants are equal to zero: i.e., there exists some n N such that a i = 0 for all i > n. Then every polynomial expression f = n i=0 a ix i determines a polynomial function x f(x). But it is at least conceivable that two different-looking polynomial expressions give rise to the same function. To give some rough idea of what I mean here, consider the two expressions f = 2 arcsin x + 2 arccos x and g = π. Now it turns out for all x [ 1, 1] (the common domain of the arcsin and arccos functions) we have f(x) = π. (The angle θ whose sine is x is complementary to the angle φ whose cosine is x, so arcsin x + arccos x = θ + φ = π 2.) But still f and g are given by different expressions : if I ask you what the coefficient of arcsin x is in the expression f, you will immediately tell me it is 2. If I ask you what the coefficient of arcsin x is in the expression π, you will have no idea what I m talking about. This is the poly- One special polynomial expression is the zero polynomial. nomial whose ith coefficient a i is equal to zero for all i 0. Every nonzero polynomial expression has a degree, which is a natural number, the largest natural number i such that the coefficient a i of x i is nonzero. Thus in (1) the degree of f is n if and only if a n 0: otherwise the degree is smaller than n. Although the zero polynomial expression does not have any natural number as a degree, it is extremely convenient to regard deg 0 as negative, i.e., such that deg 0 is smaller than the degree of any nonzero polynomial. This means that for any d N the set of polynomials of degree at most d includes the zero polynomial. We will follow this convention here but try not to make too big a deal of it. Let us give some examples to solidify this important concept: The polynomials of degree at most 0 are the expressions f = a 0. The corresponding functions are all constant functions: their graphs are horizontal lines. (The graph of the zero polynomial is still a horizontal line, y = 0, so it is useful to include the zero polynomial as having degree at most zero.) The polynomials of degree at most one are the linear expressions L = mx + b. The corresponding functions are linear functions: their graphs are straight lines. The degree of L(x) is one if m 0 i.e., if the line is not horizontal and 0 if m = 0 and b 0. Similarly the polynomials of degree at most two are the quadratic expressions q(x) = ax 2 + bc + c. The degree of q is 2 unless a = 0. We often denote the degree of the polynomial expression f by deg f.

3 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS 3 Theorem 1. Let f, g be nonzero polynomial expressions. a) If f + g 0, then deg(f + g) max(deg f, deg g). b) We have deg(fg) = deg f + deg g. c) We have deg(f g) = deg f deg g. Proof. a) Suppose that and f(x) = a m x m a 1 x + a 0, a m 0 g(x) = b n x n b 1 x + b 0, b n 0 so that deg g = m, deg g = n. Case 1: m > n. Then when we add f and g, the highest order term will be a m x m, since the polynomial g only smaller powers of x. In particular the degree of f + g is m = max(m, n). Case 2: m < n. Similarly, when we add f and g, the highest order term will be a n x n, so the degree of f + g is n = max(m, n). Case 3: Suppose m = n. Then (f + g)(x) = (a m + b m )x m (a 1 + b 1 )x + (a 0 + b 0 ). Thus the degree of f + g is at most m. It will be exactly m unless a m + b m = 0, i.e., unless b m = a m ; in this case it will be strictly smaller than m. b) If f and g are as above, then the leading term of f g will be a m b n x m+n, and since a m, b n 0, a m b n 0. Thus deg fg = m + n. c) Unlike the first two parts, this result is not actually very useful, so we leave the proof as an exercise for the interested reader. (To get the flavor of it, note that if f = x m, g = x n then f g = f(x n ) = (x n ) m = x mn. The general case is no harder than this but involves more notation.) From an algebraic perspective, the following result is the most important and fundamental property of polynomials. Theorem 2. (Polynomial Division With Remainder) Let a(x) be a polynomial expression and b(x) be a nonzero polynomial expression. There are unique polynomial expressions q(x) and r(x) such that (i) a(x) = q(x)b(x) + r(x) and (ii) deg r(x) < deg b(x). Note that Theorem 2 is directly analogous to Integer Division with Remainder. In fact the only difference in the statement comes when we want to express the fact that the remainder polynomial r(x) is smaller than the divisor polynomial b(x). The set of polynomial expressions doesn t come with a natural less than relation, so we interpret smaller in terms of the degree. Moreover the proof of Theorem 2 is analogous to that of Integer Division with Remainder: namely in junior / high school algebra we learned an explicit algorithm, the usual long division of polynomials, which when followed yields the quotient q(x) and the remainder r(x). What we probably didn t see in junior / high school is a proof that this algorithm always works and that the quotient and remainder polynomials are unique. We leave the writeup of this as an extra credit exercise. This has many important and useful consequences; here are some of them.

4 4 PETE L. CLARK Theorem 3. (Root-Factor Theorem) Let f(x) be a polynomial expression and c a real number. The following are equivalent: (i) f(c) = 0. ( c is a root of f. ) (ii) There is some polynomial expression q such that as polynomial expressions, f(x) = (x c)q(x). ( x c is a factor of f. ) Proof. We apply the Division Theorem with a(x) = f(x) and b(x) = x c, getting polynomials q(x) and r(x) such that f(x) = (x c)q(x) + r(x) and r(x) is either the zero polynomial or has deg r < deg x c = 1. In other words, r(x) is in all cases a constant polynomial (perhaps constantly zero), and its constant value can be determined by plugging in x = c: f(c) = (c c)q(c) + r(c) = r(c). The converse is easier: if f(x) = (x c)q(x), then f(c) = (c c)q(c) = 0. Corollary 4. Let f be a nonzero polynomial of degree n. Then the corresponding polynomial function f has at most n real roots: i.e., there are at most n real numbers a such that f(a) = 0. Proof. By induction on n (why not?). Base case (n = 0): If f has degree 0 then it is a nonzero constant function, so it has no roots at all. Induction Step: Let n N, suppose that every polynomial of degree n has at most n real roots, and let f(x) be a polynomial of degree n + 1. If f(x) has no real root, great. Otherwise, there exists a R such that f(a) = 0, and by the Root-Factor Theorem we may write f(x) = (x a)g(x). Moreover by Theorem 1, we have n + 1 = deg f = deg(x a)g(x) = deg(x a) + deg g = 1 + deg g, so deg g = n. Therefore our induction hypothesis applies and g(x) has m distinct real roots a 1,..., a m for some 0 m n. Then f has either m + 1 real roots if a is distinct from all the roots a i of g or m real roots if a = a i for some i, so it has at most m + 1 n + 1 real roots. Lemma 5. Let f = n i=0 a ix i be a polynomial expression. Suppose that the function f(x) = n i=0 a ix i is the zero function: f(x) = 0 for all x R. Then a i = 0 for all i, i.e., f is the zero polynomial expression. Proof. Suppose that f is not the zero polynomial, i.e., a i 0 for some i. Then it has a degree n N, so by Corollary 4 there are at most n real numbers c such that f(c) = 0. But this is absurd: f(x) is the zero function, so for all (infinitely many!) real numbers c we have f(c) = 0. Theorem 6. (Uniqueness Theorem For Polynomials) Let f = a n x n a 1 x + a 0, g = b n x n b 1 x + b 0 be two polynomial expressions. The following are equivalent: (i) f and g are equal as polynomial expressions: for all 0 i n, a i = b i. (ii) f and g are equal as polynomial functions: for all c R, f(c) = g(c). (iii) There are c 1 < c 2 <... < c n+1 such that f(c i ) = g(c i ) for 1 i n + 1.

5 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS 5 Proof. (i) = (ii): This is clear, since if a i = b i for all i then f and g are being given by the same expression, so they must give the same function. (ii) = (iii): This is also immediate: since f(c) = g(c) for all real numbers c, we may take for instance c 1 = 1, c 2 = 2,..., c n+1 = n + 1. (iii) = (i): Consider the polynomial expression h = f g = (a n b n )x n (a 1 b 1 )x + (a 0 b 0 ). Then h(c 1 ) = f(c 1 ) g(c 1 ) = 0,..., h(c n+1 ) = f(c n+1 ) g(c n+1 ) = 0. So h is a polynomial of degree at most n which has (at least) n + 1 distinct real roots. By Corollary 4, h must be the zero polynomial expression: that is, for all 0 i n, a i b i = 0. Equivalently, a i = b i for all 0 i n, so f and g are equal as polynomial expressions. In particular, Theorem 6 says that if two polynomials f(x) and g(x) look different i.e., they are not coefficient-by-coefficient the same expression then they are actually different functions, i.e., there is some c R such that f(c) g(c). Finally, we want to prove an arithmetic result about polynomials, the Rational Roots Theorem. For this we need another number-theoretic preliminary. Recall that we say positive integers a and b are coprime (or relatively prime) if they are not both divisible by any integer d > 1 (equivalently, they have no common prime factor). Theorem 7. (Generalized Euclid s Lemma) Let x, y, z Z +. Suppose that x, y are coprime and that yz is divisible by x. Then z is divisible by x. Extra Credit Exercise: a) Prove Theorem 7 using the Fundamental Theorem of Arithmetic (uniqueness of prime factorizations). b) Explain why Theorem 7 is indeed a generalization of Euclid s Lemma. (Hint: let x = p be prime. What does it mean that p, y are coprime?) Theorem 8. (Rational Roots Theorem) Let a 0,..., a n be integers, with a 0, a n 0. Consider the polynomial P (x) = a n x n a 1 x + a 0. Suppose that b c is a rational number, written in lowest terms, which is a root of P : P ( b c ) = 0. Then a 0 is divisible by b and a n is divisible by c. Proof. Well, we know 0 = P ( b c ) = a b n n c n a b 1 c + a 0. Multiplying through by c n clears denominators, giving Rewriting this equation as a n b n + a n 1 b n 1 c a 1 bc n 1 + a 0 c n = 0. a n b n = c( a n 1 b n 1... a 0 c n 1 ) shows that a n b n is divisible by c. But since b and c have no prime factors in common and b n has the same distinct prime factors as does b, b n and c have no prime factors

6 6 PETE L. CLARK in common and are thus coprime. So Theorem 7 applies to show that a n is divisible by c. Similarly, rewriting the equation as a 0 c n = b( a n b n 1 a n 1 b n 2 c... a 1 c n 1 ) shows that a 0 c n is divisible by b. As above, since b and c are coprime, so are b and c n, so by Theorem 7 a 0 is divisible by b. In high school algebra the Rational Roots Theorem is often employed to generate a finite list of possible rational roots of a polynomial with integer coefficients. This is nice, but the same result can be put to much more impressive use. For instance, taking a n = 1 and noting that 1 is divisible by c iff c = ±1 we get the following result. Corollary 9. Let a 0,..., a n 1 Z, and consider the polynomial P (x) = x n + a n 1 x n a 1 x + a 0. Suppose c is a rational number such that P (c) = 0. Then c is an integer. So what? Well, here s what. Let p be any prime number, n 2 any integer, and consider the polynomial P (x) = x n p. By Corollary 9, if c Q is such that P (c) = 0, then c Z. But if c Z is such that P (c) = 0, then c n = p. But this means that the prime number p is divisible by the integer c, so c = ±1 or c = ±p. But (±1) n = ±1 and (±p) n = ±p n, so c n = p is impossible. So there is no rational number c such that c n = p: that is, n p is irrational. This is a doubly infinite generalization of our first irrationality proof, that 2 is irrational, but the argument is, if anything, shorter and easier to understand. (However, we did use and prove, by induction the Fundamental Theorem of Arithmetic, a tool which was not available to us at the very beginning of the course.) Moral: polynomials can be useful in surprising ways! 2. Rational Functions A rational function is a functtion which is a quotient of two polynomial functions: f(x) = P (x) Q(x), with Q(x) not the zero function. Other than this definition and the remark that a natural domain of a rational function is the set of all real numbers except the finitely many roots of Q(x), I do not believe that I said anything about rational functions at this point in the course. This is a happy coincidence, since I have nothing in this section of my notes!

CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polynomial and Rational Functions 3.1 Polynomial Functions and their Graphs So far, we have learned how to graph polynomials of degree 0, 1, and. Degree 0 polynomial functions are things like f(x) =,

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

More information

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions MATH 103 Pre-Calculus Mathematics Test #3 Fall 008 Dr. McCloskey Sample Solutions 1. Let P (x) = 3x 4 + x 3 x + and D(x) = x + x 1. Find polynomials Q(x) and R(x) such that P (x) = Q(x) D(x) + R(x). (That

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x) 8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

Polynomial Rings. i=0

Polynomial Rings. i=0 Polynomial Rings 4-15-2018 If R is a ring, the ring of polynomials in x with coefficients in R is denoted R[x]. It consists of all formal sums a i x i. Here a i = 0 for all but finitely many values of

More information

Polynomial and Rational Functions. Chapter 3

Polynomial and Rational Functions. Chapter 3 Polynomial and Rational Functions Chapter 3 Quadratic Functions and Models Section 3.1 Quadratic Functions Quadratic function: Function of the form f(x) = ax 2 + bx + c (a, b and c real numbers, a 0) -30

More information

8 Appendix: Polynomial Rings

8 Appendix: Polynomial Rings 8 Appendix: Polynomial Rings Throughout we suppose, unless otherwise specified, that R is a commutative ring. 8.1 (Largely) a reminder about polynomials A polynomial in the indeterminate X with coefficients

More information

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4 2.3 Real Zeros of Polynomial Functions Name: Pre-calculus. Date: Block: 1. Long Division of Polynomials. We have factored polynomials of degree 2 and some specific types of polynomials of degree 3 using

More information

Cool Results on Primes

Cool Results on Primes Cool Results on Primes LA Math Circle (Advanced) January 24, 2016 Recall that last week we learned an algorithm that seemed to magically spit out greatest common divisors, but we weren t quite sure why

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Polynomials. Henry Liu, 25 November 2004

Polynomials. Henry Liu, 25 November 2004 Introduction Polynomials Henry Liu, 25 November 2004 henryliu@memphis.edu This brief set of notes contains some basic ideas and the most well-known theorems about polynomials. I have not gone into deep

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}.

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. 2 Arithmetic This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. (See [Houston, Chapters 27 & 28]) 2.1 Greatest common divisors Definition 2.16. If a, b are integers, we say

More information

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Adding and Subtracting Rational Expressions Recall that we can use multiplication and common denominators to write a sum or difference

More information

Lecture 7: Polynomial rings

Lecture 7: Polynomial rings Lecture 7: Polynomial rings Rajat Mittal IIT Kanpur You have seen polynomials many a times till now. The purpose of this lecture is to give a formal treatment to constructing polynomials and the rules

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group.

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group. Algebra Review 2 1 Fields A field is an extension of the concept of a group. Definition 1. A field (F, +,, 0 F, 1 F ) is a set F together with two binary operations (+, ) on F such that the following conditions

More information

Polynomial Review Problems

Polynomial Review Problems Polynomial Review Problems 1. Find polynomial function formulas that could fit each of these graphs. Remember that you will need to determine the value of the leading coefficient. The point (0,-3) is on

More information

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4 Math 4030-001/Foundations of Algebra/Fall 2017 Polynomials at the Foundations: Rational Coefficients The rational numbers are our first field, meaning that all the laws of arithmetic hold, every number

More information

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series. 6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

More information

Section III.6. Factorization in Polynomial Rings

Section III.6. Factorization in Polynomial Rings III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

THE DIVISION THEOREM IN Z AND R[T ]

THE DIVISION THEOREM IN Z AND R[T ] THE DIVISION THEOREM IN Z AND R[T ] KEITH CONRAD 1. Introduction In both Z and R[T ], we can carry out a process of division with remainder. Theorem 1.1. For any integers a and b, with b nonzero, there

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 30, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed shifting, stretching, and

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 31, 2017 Hello and welcome to class! Last time We discussed shifting, stretching, and composition. Today We finish discussing composition, then discuss

More information

Pre-Algebra 2. Unit 9. Polynomials Name Period

Pre-Algebra 2. Unit 9. Polynomials Name Period Pre-Algebra Unit 9 Polynomials Name Period 9.1A Add, Subtract, and Multiplying Polynomials (non-complex) Explain Add the following polynomials: 1) ( ) ( ) ) ( ) ( ) Subtract the following polynomials:

More information

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

( 3) ( ) ( ) ( ) ( ) ( )

( 3) ( ) ( ) ( ) ( ) ( ) 81 Instruction: Determining the Possible Rational Roots using the Rational Root Theorem Consider the theorem stated below. Rational Root Theorem: If the rational number b / c, in lowest terms, is a root

More information

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 31, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Symbolic Adjunction of Roots When dealing with subfields of C it is easy to

More information

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra 0.) Real Numbers: Order and Absolute Value Definitions: Set: is a collection of objections in mathematics Real Numbers: set of numbers used in arithmetic MA 80 Lecture Chapter 0 College Algebra and Calculus

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Downloaded from

Downloaded from Question 1: Exercise 2.1 The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) Page 1 of 24 (iv) (v) (v) Page

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5 Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x - 15 2. x 2-9x + 14 3. x 2 + 6x + 5 Solving Equations by Factoring Recall the factoring pattern: Difference of Squares:...... Note: There

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Table of contents. Polynomials Quadratic Functions Polynomials Graphs of Polynomials Polynomial Division Finding Roots of Polynomials

Table of contents. Polynomials Quadratic Functions Polynomials Graphs of Polynomials Polynomial Division Finding Roots of Polynomials Table of contents Quadratic Functions Graphs of Polynomial Division Finding Roots of Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall 2010 1 / 65 Concepts Quadratic Functions The Definition of

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

1/30: Polynomials over Z/n.

1/30: Polynomials over Z/n. 1/30: Polynomials over Z/n. Last time to establish the existence of primitive roots we rely on the following key lemma: Lemma 6.1. Let s > 0 be an integer with s p 1, then we have #{α Z/pZ α s = 1} = s.

More information

2a 2 4ac), provided there is an element r in our

2a 2 4ac), provided there is an element r in our MTH 310002 Test II Review Spring 2012 Absractions versus examples The purpose of abstraction is to reduce ideas to their essentials, uncluttered by the details of a specific situation Our lectures built

More information

D-MATH Algebra I HS 2013 Prof. Brent Doran. Exercise 11. Rings: definitions, units, zero divisors, polynomial rings

D-MATH Algebra I HS 2013 Prof. Brent Doran. Exercise 11. Rings: definitions, units, zero divisors, polynomial rings D-MATH Algebra I HS 2013 Prof. Brent Doran Exercise 11 Rings: definitions, units, zero divisors, polynomial rings 1. Show that the matrices M(n n, C) form a noncommutative ring. What are the units of M(n

More information

1. Algebra 1.5. Polynomial Rings

1. Algebra 1.5. Polynomial Rings 1. ALGEBRA 19 1. Algebra 1.5. Polynomial Rings Lemma 1.5.1 Let R and S be rings with identity element. If R > 1 and S > 1, then R S contains zero divisors. Proof. The two elements (1, 0) and (0, 1) are

More information

PRIME NUMBERS YANKI LEKILI

PRIME NUMBERS YANKI LEKILI PRIME NUMBERS YANKI LEKILI We denote by N the set of natural numbers: 1,2,..., These are constructed using Peano axioms. We will not get into the philosophical questions related to this and simply assume

More information

Honors Advanced Mathematics November 4, /2.6 summary and extra problems page 1 Recap: complex numbers

Honors Advanced Mathematics November 4, /2.6 summary and extra problems page 1 Recap: complex numbers November 4, 013.5/.6 summary and extra problems page 1 Recap: complex numbers Number system The complex number system consists of a + bi where a and b are real numbers, with various arithmetic operations.

More information

Today. Polynomials. Secret Sharing.

Today. Polynomials. Secret Sharing. Today. Polynomials. Secret Sharing. A secret! I have a secret! A number from 0 to 10. What is it? Any one of you knows nothing! Any two of you can figure it out! Example Applications: Nuclear launch: need

More information

Further linear algebra. Chapter II. Polynomials.

Further linear algebra. Chapter II. Polynomials. Further linear algebra. Chapter II. Polynomials. Andrei Yafaev 1 Definitions. In this chapter we consider a field k. Recall that examples of felds include Q, R, C, F p where p is prime. A polynomial is

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings. i=0. i=0. n+m. i=0. k=0 Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

THE DIVISION THEOREM IN Z AND F [T ]

THE DIVISION THEOREM IN Z AND F [T ] THE DIVISION THEOREM IN Z AND F [T ] KEITH CONRAD 1. Introduction In the integers we can carry out a process of division with remainder, as follows. Theorem 1.1. For any integers a and b, with b 0 there

More information

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 008 Final Exam Sample Solutions In these solutions, FD refers to the course textbook (PreCalculus (4th edition), by Faires and DeFranza, published by

More information

A Few Elementary Properties of Polynomials. Adeel Khan June 21, 2006

A Few Elementary Properties of Polynomials. Adeel Khan June 21, 2006 A Few Elementary Properties of Polynomials Adeel Khan June 21, 2006 Page i CONTENTS Contents 1 Introduction 1 2 Vieta s Formulas 2 3 Tools for Finding the Roots of a Polynomial 4 4 Transforming Polynomials

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 6 Unique Factorization Domains 1. Let R be a UFD. Let that a, b R be coprime elements (that is, gcd(a, b) R ) and c R. Suppose that a c and b c.

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Math 504, Fall 2013 HW 2

Math 504, Fall 2013 HW 2 Math 504, Fall 203 HW 2. Show that the fields Q( 5) and Q( 7) are not isomorphic. Suppose ϕ : Q( 5) Q( 7) is a field isomorphism. Then it s easy to see that ϕ fixes Q pointwise, so 5 = ϕ(5) = ϕ( 5 5) =

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Beginning Algebra. 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions

Beginning Algebra. 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions Beginning Algebra 1.3 Review of Decimal Numbers and Square Roots 1.4 Review of Percents 1.5 Real Number System 1.6 Translations:

More information

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai Unit - I Polynomials Lecture 1B Long Division (Refer Slide Time: 00:19) We have looked at three things

More information

3.3 Real Zeros of Polynomial Functions

3.3 Real Zeros of Polynomial Functions 71_00.qxp 12/27/06 1:25 PM Page 276 276 Chapter Polynomial and Rational Functions. Real Zeros of Polynomial Functions Long Division of Polynomials Consider the graph of f x 6x 19x 2 16x 4. Notice in Figure.2

More information

Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings. (Last Updated: December 8, 2017) Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. Class X - NCERT Maths EXERCISE NO:.1 Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) (iv) (v)

More information

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS 3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

More Polynomial Equations Section 6.4

More Polynomial Equations Section 6.4 MATH 11009: More Polynomial Equations Section 6.4 Dividend: The number or expression you are dividing into. Divisor: The number or expression you are dividing by. Synthetic division: Synthetic division

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

(2) Dividing both sides of the equation in (1) by the divisor, 3, gives: =

(2) Dividing both sides of the equation in (1) by the divisor, 3, gives: = Dividing Polynomials Prepared by: Sa diyya Hendrickson Name: Date: Let s begin by recalling the process of long division for numbers. Consider the following fraction: Recall that fractions are just division

More information

Commutative Rings and Fields

Commutative Rings and Fields Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

More information

Semester Review Packet

Semester Review Packet MATH 110: College Algebra Instructor: Reyes Semester Review Packet Remarks: This semester we have made a very detailed study of four classes of functions: Polynomial functions Linear Quadratic Higher degree

More information

Lines, parabolas, distances and inequalities an enrichment class

Lines, parabolas, distances and inequalities an enrichment class Lines, parabolas, distances and inequalities an enrichment class Finbarr Holland 1. Lines in the plane A line is a particular kind of subset of the plane R 2 = R R, and can be described as the set of ordered

More information

MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

More information

Constructions with ruler and compass.

Constructions with ruler and compass. Constructions with ruler and compass. Semyon Alesker. 1 Introduction. Let us assume that we have a ruler and a compass. Let us also assume that we have a segment of length one. Using these tools we can

More information

Chapter 7 Rational Expressions, Equations, and Functions

Chapter 7 Rational Expressions, Equations, and Functions Chapter 7 Rational Expressions, Equations, and Functions Section 7.1: Simplifying, Multiplying, and Dividing Rational Expressions and Functions Section 7.2: Adding and Subtracting Rational Expressions

More information

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS TOOLS IN FINDING ZEROS OF POLYNOMIAL FUNCTIONS Synthetic Division and Remainder Theorem (Compressed Synthetic Division) Fundamental

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

Math 120 HW 9 Solutions

Math 120 HW 9 Solutions Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations 1. Algebra 1.1 Basic Algebra 1.2 Equations and Inequalities 1.3 Systems of Equations 1.1 Basic Algebra 1.1.1 Algebraic Operations 1.1.2 Factoring and Expanding Polynomials 1.1.3 Introduction to Exponentials

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Factorise each polynomial: a) x 2 6x + 5 b) x 2 16 c) 9x 2 25 2) Simplify the following algebraic fractions fully: a) x 2

More information

Section Properties of Rational Expressions

Section Properties of Rational Expressions 88 Section. - Properties of Rational Expressions Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator cannot be. Rational Numbers:

More information

50 Algebraic Extensions

50 Algebraic Extensions 50 Algebraic Extensions Let E/K be a field extension and let a E be algebraic over K. Then there is a nonzero polynomial f in K[x] such that f(a) = 0. Hence the subset A = {f K[x]: f(a) = 0} of K[x] does

More information

Abstract Algebra: Chapters 16 and 17

Abstract Algebra: Chapters 16 and 17 Study polynomials, their factorization, and the construction of fields. Chapter 16 Polynomial Rings Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

Lagrange s polynomial

Lagrange s polynomial Lagrange s polynomial Nguyen Trung Tuan November 16, 2016 Abstract In this article, I will use Lagrange polynomial to solve some problems from Mathematical Olympiads. Contents 1 Lagrange s interpolation

More information

Analysis of California Mathematics standards to Common Core standards Algebra I

Analysis of California Mathematics standards to Common Core standards Algebra I Analysis of California Mathematics standards to Common Core standards Algebra I CA Math Standard Domain Common Core Standard () Alignment Comments in 1.0 Students identify and use the arithmetic properties

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. (a) Circle the prime

More information