Keeping medium-voltage grid operation within secure limits

Size: px
Start display at page:

Download "Keeping medium-voltage grid operation within secure limits"

Transcription

1 Chaire académique ORES «Smart Grids Smart Metering» Journée d études, Fac. Polytech. UMons, 20 nov Keeping medium-voltage grid operation within secure limits Thierry Van Cutsem Hamid Soleimani Bidgoli

2 Context Distribution networks are expected to host larger amounts of dispersed renewable generation voltage and congestion (thermal overload) problems are expected to occur more often but, hopefully, over limited periods of time Test system with: 75 MV buses 22 DG units (doubly fed induction & small synchronous generators) 2

3 Context Reinforcing the network ( fit-and -forget ) to deal with such temporary problems would be too expensive there is a good opportunity to use Distributed Generation (DG) units as control means to remove the security limit violations this is a service for which DG unit operators/owners can be financially compensated market and interactions between actors under discussion Loads with new profiles e.g. electric vehicles, heat pumps, etc. flexible loads are expected to also provide control means through remote control complementing smart meters this presentation, however, focuses on DG units only. 3

4 Context Active distribution networks will be called to assist transmission system in normal, and even more in stressed, operating conditions e.g. power factor improvement at the point of connection Automatic control schemes are needed to assist the Distribution System Operator in correcting voltage or congestion emergencies keeping the MV grids within desired operating limits coordinating their actions with transmission system operator 4

5 Task 1. Interaction models Task 2. Long-term planning Task 6. Validation & generalisation GREDOR Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables Task 3. Operational planning Task 5. Data collection Task 4. Real-time control 5

6 Desired features ( Centralized + system-wide model ) or ( Distributed + simple logic )? offers more advanced control capabilities requires a communication infrastructure but cost expected to be much lower than cost of reinforcing the network exploit less expensive controls first e.g. reactive power modulation preferred to active power curtailment act in a non discriminatory and transparent manner optimize a system-wide objective with efforts shared by all relevant DG units drive the system from the current (unacceptable) to the desired (secure) operating point should not rely on models which may not be available / accurate especially for loads (sensitivity to voltage not well known!) rely on a simplified model (e.g. infrequently updated) be robust with respect to inaccuracies of this simplified model 6

7 Centralized controller : inputs and outputs (voltage setpoint of LTC) controller V P, Q, V measurements set-points (refreshed (updated every ~ 10 s) s) P, Q, V u = P g Q g V tap active powers generated by DG units reactive powers generated by DG units P, Q, V voltage set-point of transformer Load Tap Changer (LTC) (optional) 7

8 At time k, the controller : Principle of Model Predictive Control uses the last measurements and a model to predict the system response at N p future times computes an optimal sequence of N c future controls (N c N p ) applies the first component only. At time k + 1, the whole procedure is repeated. predicted output measurement k k + 1 k + N p discrete time control u k k + 1 k + N c discrete time 8

9 Predicted system evolution At time k : voltages : V k + 1 = V k + S V u k u k 1 for i = 1,, N p measurements just received V k + 2 = V k S V u k + 1 u k V k + i = V k + i 1 + S V u k + i 1 u k + i 2 currents : I k + 1 = I k + S I u k u k 1 for i = 1,, N p measurements just received I k + i = I k + i 1 + S I u k + i 1 u k + i 2 9

10 Constraints on controls : for i = 1,, N c : u min u k + i u max on rate of change of controls : for i = 1,, N c : u min u k + i u k + i 1 u max on voltages : for i = 1,, N p : on currents : for i = 1,, N p : V min k + i V k + i V max k + i I k + i I max k + i progressive tightening of bounds 10

11 Multistep optimization problem (solved at time k) min u N c 1 P g k + i P ref (k + i) WP 2 + N c 1 Q g k + i Q ref (k + i) WQ 2 i=0 i=0 subject to : for i = 1,, N p V k + i = V k + i 1 + S V u k + i 1 u k + i 2 I k + i = I k + i 1 + S I u k + i 1 u k + i 2 V min k + i V k + i V max k + i I k + i I max k + i for i = 1,, N c u min u k + i u max u = P g Q g V tap u min u k + i u k + i 1 u max 11

12 Mode 1 Network data static data measurements set points State estimation DSO Controller DSO : Distribution System Operator Real-time measurements P Q Local controller P meas Q meas V meas Non Dispatchable DG units P, Q MPPT MPPT : Maximum Power Point Tracking 12

13 Test system 22 DG units controlled controls adjusted every 10 s N c = 3 N p = 3 (larger if LTC actions anticipated) 13

14 Case 1 Mode 1. Wind increase (t = s, all 22 wind generators). Congestion corrected by controller. 14

15 Corrective reports Mode 2 Decision by non-dso actor static data measurements set points Network data State estimation DSO Controller DSO : Distribution System Operator Real-time measurements P Q P meas Q meas V meas Dispatchable DG units P, Q 15

16 Case 2 Mode 2. Active power increased (t= s) on 13 dispatchable generators. Overvoltage corrected by controller. 16

17 Reference evolution in Modes 1 and 2 min N c 1 P g k + i P ref (k + i) WP 2 + N c 1 Q g k + i Q ref (k + i) WQ 2 i=0 i=0 Power changes of the DG units are not known by the controller by default, the last measured powers are used as reference Limit violation : entering corrective mode P ref (k) P ref (k + 1) P ref (k + N c ) P ref (k) P ref (k + 1) P ref (k + N c ) P ref (k) P ref (k + 1) P ref (k + N c ) (similarly for reactive power) discrete time possible improvement : use a short-term prediction of power evolution 17

18 Corrective reports Mode 3.a Network data Decision by non-dso actor P, Q static data measurements set points information State estimation Real-time measurements DSO Controller P Q 0 near-future schedule P meas Q meas V meas DG units P, Q 18

19 Corrective reports Mode 3.b DSO Operational planning static data measurements set points information Network data P, Q State estimation Controller 0 near-future schedule Real-time measurements P Q P, Q P meas Q meas V meas DG units 19

20 Reference evolution in Mode 3 min N c 1 P g k + i P ref (k + i) WP 2 + N c 1 Q g k + i Q ref (k + i) WQ 2 i=0 i=0 The power schedules of the DG units are known by the controller and are used as reference P ref (k + N c ) P ref (k + N c ) P ref (k + 1) P ref (k) P ref (k + 1) P ref (k) P ref (k) P ref (k + 1) P ref (k + N c ) (similarly for reactive power) discrete time the controller has better anticipation capability 20

21 Case 3 Mode 1 : 9 generators - wind increase (t= s) Mode 3 : 12 other generators - power changed (t= s) overvoltages corrected by controller generation schedule 21

22 Case 4 Improvement of power factor at transformer level Initial situation : 13 MW Q tfo = 5 Mvar unity power factor (Q g =0) Additional constraint in optimization : Q tfo 2 Mvar 22

23 Case 4 Improvement of power factor at transformer level. Load tap changer response anticipated, allowing temporary overvoltage 23

24 Handling of transformer Load Tap Changer (LTC) Separate operation of LTC the LTC maintains its distribution voltage within a dead-band it is an external control device, not adjusted by the controller but its actions are anticipated and taken into account by the controller V k + i = V k + i 1 + S V u k + i 1 u k + i 2 prediction horizon extended accordingly + V V tap V d γ k + i Integrated operation of LTC (k) = 1 if tap change predicted at time k = 0 otherwise the LTC voltage set-point V tap is used as control variable the controller handles V tap as a continuous variable, ignoring dead-band this approximation is corrected by the MPC scheme LTC actions triggered by the set-point change are also anticipated 24

25 Centralized controller collecting measurements and adjusting set-points of DG units to satisfy operating constraints: currents below limits voltages inside bounds power factor at connection point with transmission system relies on concept of Model Predictive Control moving the operating point progressively from current to desired state compensating for modelling inaccuracies (as a closed-loop control) anticipating the effect of known changes (Mode 3) uses a simple, infrequently updated sensitivity model takes into account the load tap changer operation as a separate controller Summary or by controlling its voltage set-point constrained optimization problem compatible with real-time operation 25

26 Perspectives Approach improved and extended in the context of GREDOR project Extensions of formulation : treat discrete controls as such in optimization reset DG units at maximum / scheduled power after emergency situation has been corrected and operating conditions improve treat flexible loads and storage devices as additional control variables mitigate high voltage problems in LV grid due to photo-voltaic installations etc. Implementation aspects : practical telecommunication needs tests on models of GREDOR DSO systems coordination with operational planning (Task 3 of GREDOR) etc. 26

27 References G. Valverde and T. Van Cutsem, Model predictive control of voltages in active distribution networks, IEEE Transactions on Smart Grids, T. Van Cutsem and G. Valverde, Coordinated voltage control of distribution networks hosting dispersed generation, 22 nd International Conference on Electricity Distribution (CIRED), Stockholm (Sweden), June 2013 G. Valverde and T. Van Cutsem, Control of Dispersed Generation to Regulate Distribution and Support Transmission Voltages, Proc IEEE PowerTech conference, Grenoble (France), June 2013 H. Soleimani Bidgoli, Model predictive control of congestion and voltage problems in active distribution networks, submitted for presentation at the 23 rd International Conference on Electricity Distribution (CIRED), Rome (Italy), June Thank you for your attention! 27

28 En fait il n a pas répondu à la question «will we be smart by twenty-twenty?» De la tarte aux myrtilles!!?? Non merci! Il paraît que cet hiver il vont couper le courant C est ça le «smart»? 28

Long-term voltage stability : load aspects

Long-term voltage stability : load aspects ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct December 2018 1 / 15 Table of contents Voltage instability results from the

More information

PowerApps Optimal Power Flow Formulation

PowerApps Optimal Power Flow Formulation PowerApps Optimal Power Flow Formulation Page1 Table of Contents 1 OPF Problem Statement... 3 1.1 Vector u... 3 1.1.1 Costs Associated with Vector [u] for Economic Dispatch... 4 1.1.2 Costs Associated

More information

Networked Feedback Control for a Smart Power Distribution Grid

Networked Feedback Control for a Smart Power Distribution Grid Networked Feedback Control for a Smart Power Distribution Grid Saverio Bolognani 6 March 2017 - Workshop 1 Future power distribution grids Traditional Power Generation transmission grid It delivers power

More information

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives Module 6 : Preventive, Emergency and Restorative Control Lecture 27 : Normal and Alert State in a Power System Objectives In this lecture you will learn the following Different states in a power system

More information

Integration of renewable energy sources and demand-side management into distribution networks

Integration of renewable energy sources and demand-side management into distribution networks Integration of renewable energy sources and demand-side management into distribution networks by Damien Ernst University of Liège dernst@ulg.ac.be EES-UETP Porto, Portugal June 15-17, 2016 D. Ernst 2/81

More information

Power System Security. S. Chakrabarti

Power System Security. S. Chakrabarti Power System Security S. Chakrabarti Outline Introduction Major components of security assessment On-line security assessment Tools for contingency analysis DC power flow Linear sensitivity factors Line

More information

Dynamic simulation of a five-bus system

Dynamic simulation of a five-bus system ELEC0047 - Power system dynamics, control and stability Dynamic simulation of a five-bus system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 16 System modelling

More information

VOLTAGE control plays a significant role in system

VOLTAGE control plays a significant role in system 2013 46th Hawaii International Conference on System Sciences Linearized Power Flow Equations Based Predictive Control of Transmission Voltages Mahdi Hajian, Student Member, IEEE, William Rosehart, Senior

More information

Wind power and management of the electric system. EWEA Wind Power Forecasting 2015 Leuven, BELGIUM - 02/10/2015

Wind power and management of the electric system. EWEA Wind Power Forecasting 2015 Leuven, BELGIUM - 02/10/2015 Wind power and management of the electric system EWEA Wind Power Forecasting 2015 Leuven, BELGIUM - 02/10/2015 HOW WIND ENERGY IS TAKEN INTO ACCOUNT WHEN MANAGING ELECTRICITY TRANSMISSION SYSTEM IN FRANCE?

More information

Deregulated Electricity Market for Smart Grid: A Network Economic Approach

Deregulated Electricity Market for Smart Grid: A Network Economic Approach Deregulated Electricity Market for Smart Grid: A Network Economic Approach Chenye Wu Institute for Interdisciplinary Information Sciences (IIIS) Tsinghua University Chenye Wu (IIIS) Network Economic Approach

More information

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem ELEC0014 - Introduction to power and energy systems The per unit system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 12 Principle The per unit system Principle

More information

Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution Networks

Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution Networks Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution Networks by Hany Essa Zidan Farag A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Reactive power control strategies for UNIFLEX-PM Converter

Reactive power control strategies for UNIFLEX-PM Converter Reactive power control strategies for UNIFLEX-PM Converter S. Pipolo, S. Bifaretti, V. Bonaiuto Dept. of Industrial Engineering University of Rome Tor Vergata Rome, Italy Abstract- The paper presents various

More information

Role of Synchronized Measurements In Operation of Smart Grids

Role of Synchronized Measurements In Operation of Smart Grids Role of Synchronized Measurements In Operation of Smart Grids Ali Abur Electrical and Computer Engineering Department Northeastern University Boston, Massachusetts Boston University CISE Seminar November

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

Control Strategies for Microgrids

Control Strategies for Microgrids Control Strategies for Microgrids Ali Mehrizi-Sani Assistant Professor School of Electrical Engineering and Computer Science Washington State University Graz University of Technology Thursday, November

More information

Optimal PMU Placement

Optimal PMU Placement Optimal PMU Placement S. A. Soman Department of Electrical Engineering Indian Institute of Technology Bombay Dec 2, 2011 PMU Numerical relays as PMU System Observability Control Center Architecture WAMS

More information

Real Time Voltage Control using Genetic Algorithm

Real Time Voltage Control using Genetic Algorithm Real Time Voltage Control using Genetic Algorithm P. Thirusenthil kumaran, C. Kamalakannan Department of EEE, Rajalakshmi Engineering College, Chennai, India Abstract An algorithm for control action selection

More information

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Engineering Review Vol. 36 Issue 2 8-86 206. 8 DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Samir Avdaković * Alija Jusić 2 BiH Electrical Utility Company

More information

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration 1 Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration Jiaying Shi and Shmuel Oren University of California, Berkeley IPAM, January 2016 33% RPS - Cumulative expected VERs

More information

Voltage Stability of Multiple Distributed Generators in Distribution Networks

Voltage Stability of Multiple Distributed Generators in Distribution Networks oltage Stability of Multiple Distributed Generators in Distribution Networks Andi Wang, Chongxin Liu, Hervé Guéguen, Zhenquan Sun To cite this version: Andi Wang, Chongxin Liu, Hervé Guéguen, Zhenquan

More information

Dynamic Behavior of a 2 Variable Speed Pump- Turbine Power Plant

Dynamic Behavior of a 2 Variable Speed Pump- Turbine Power Plant Paper ID 754 Dynamic Behavior of a Variable Speed Pump- Turbine Power Plant (1) Y. Pannatier, () C. Nicolet, (1) B. Kawkabani (*), (1) J.-J. Simond (*), (1) Ph. Allenbach (*) Member IEEE (1) Ecole Polytechnique

More information

CAISO Participating Intermittent Resource Program for Wind Generation

CAISO Participating Intermittent Resource Program for Wind Generation CAISO Participating Intermittent Resource Program for Wind Generation Jim Blatchford CAISO Account Manager Agenda CAISO Market Concepts Wind Availability in California How State Supports Intermittent Resources

More information

Université de Liège Faculté des Sciences Appliquées. Integration of Photovoltaic Panels Into Low-voltage Distribution Networks

Université de Liège Faculté des Sciences Appliquées. Integration of Photovoltaic Panels Into Low-voltage Distribution Networks Université de Liège Faculté des Sciences Appliquées Integration of Photovoltaic Panels Into Low-voltage Distribution Networks Travail de fin d études réalisé en vue de l obtention du grade de master Ingénieur

More information

Real power-system economic dispatch using a variable weights linear programming method

Real power-system economic dispatch using a variable weights linear programming method Open Access Journal Journal of Power Technologies 95 (1) (2015) 34 39 journal homepage:papers.itc.pw.edu.pl Real power-system economic dispatch using a variable weights linear programming method M. Rahli,

More information

Basic Distribution Software Tasks

Basic Distribution Software Tasks The Wind Interconnection Workshop Golden, CO May 22, 2013 Tom McDermott, tom@meltran.com MelTran, Inc. Basic Distribution Software Tasks Current Flow and Voltage Drop Conductor Overload? Voltage Range?

More information

International Workshop on Wind Energy Development Cairo, Egypt. ERCOT Wind Experience

International Workshop on Wind Energy Development Cairo, Egypt. ERCOT Wind Experience International Workshop on Wind Energy Development Cairo, Egypt ERCOT Wind Experience March 22, 21 Joel Mickey Direcr of Grid Operations Electric Reliability Council of Texas jmickey@ercot.com ERCOT 2 2

More information

Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability

Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations June 2017 Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation James Ranjith Kumar. R, Member, IEEE, Amit Jain, Member, IEEE, Power Systems Division,

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Automatic Generation Control. Meth Bandara and Hassan Oukacha

Automatic Generation Control. Meth Bandara and Hassan Oukacha Automatic Generation Control Meth Bandara and Hassan Oukacha EE194 Advanced Controls Theory February 25, 2013 Outline Introduction System Modeling Single Generator AGC Going Forward Conclusion Introduction

More information

Balanced three-phase systems and operation

Balanced three-phase systems and operation ELEC0014 - Introduction to power and energy systems Balanced three-phase systems and operation Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2017 1 / 17 system used for

More information

Derogation Criteria for the Requirements for Generators Network Code

Derogation Criteria for the Requirements for Generators Network Code Derogation Criteria for the Requirements for Generators Network Code Decision Paper Reference: CER/17/084 Date Published: 13/04/2017 Closing Date: 0 Executive Summary Commission Regulation (EU) 2016/631

More information

Tutorial 2: Modelling Transmission

Tutorial 2: Modelling Transmission Tutorial 2: Modelling Transmission In our previous example the load and generation were at the same bus. In this tutorial we will see how to model the transmission of power from one bus to another. The

More information

Preventive vs. Emergency Control of Power Systems

Preventive vs. Emergency Control of Power Systems 1 Preventive vs. Emergency Control of Power Systems Louis Wehenkel and Mania Pavella Abstract A general approach to real-time transient stability control is described, yielding various complementary techniques:

More information

Performance Improvement of Hydro-Thermal System with Superconducting Magnetic Energy Storage

Performance Improvement of Hydro-Thermal System with Superconducting Magnetic Energy Storage Volume 114 No. 10 2017, 397-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Improvement of Hydro-Thermal System with Superconducting

More information

California Independent System Operator (CAISO) Challenges and Solutions

California Independent System Operator (CAISO) Challenges and Solutions California Independent System Operator (CAISO) Challenges and Solutions Presented by Brian Cummins Manager, Energy Management Systems - CAISO California ISO by the numbers 65,225 MW of power plant capacity

More information

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT Bringing Renewables to the Grid John Dumas Director Wholesale Market Operations ERCOT 2011 Summer Seminar August 2, 2011 Quick Overview of ERCOT The ERCOT Market covers ~85% of Texas overall power usage

More information

Weekly Operational Constraints Update

Weekly Operational Constraints Update Weekly Operational Constraints Update Applicable from 19 November 2018 to 25 November 2018 (Week 47) 16 November 2018 Disclaimer EirGrid plc, the Transmission System Operator (TSO) for Ireland, and SONI

More information

Renewables and the Smart Grid. Trip Doggett President & CEO Electric Reliability Council of Texas

Renewables and the Smart Grid. Trip Doggett President & CEO Electric Reliability Council of Texas Renewables and the Smart Grid Trip Doggett President & CEO Electric Reliability Council of Texas North American Interconnected Grids The ERCOT Region is one of 3 North American grid interconnections. The

More information

Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, Wind Power Forecasting tools and methodologies

Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, Wind Power Forecasting tools and methodologies Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, 2011 Wind Power Forecasting tools and methodologies Amanda Kelly Principal Engineer Power System Operational Planning Operations

More information

Optimal Power Flow Formulations in Modern Distribution Grids

Optimal Power Flow Formulations in Modern Distribution Grids P L Power Systems Laboratory Optimal Power Flow Formulations in Modern Distribution Grids Student Etta Shyti Supervisors Stavros Karagiannopoulos Dmitry Shchetinin Examiner Prof. Dr. Gabriela Hug Project

More information

Managing Uncertainty and Security in Power System Operations: Chance-Constrained Optimal Power Flow

Managing Uncertainty and Security in Power System Operations: Chance-Constrained Optimal Power Flow Managing Uncertainty and Security in Power System Operations: Chance-Constrained Optimal Power Flow Line Roald, November 4 th 2016 Line Roald 09.11.2016 1 Outline Introduction Chance-Constrained Optimal

More information

Model-Predictive Control for Alleviating Transmission Overloads and Voltage Collapse in Large-Scale Electric Power Systems. Jonathon A.

Model-Predictive Control for Alleviating Transmission Overloads and Voltage Collapse in Large-Scale Electric Power Systems. Jonathon A. Model-Predictive Control for Alleviating Transmission Overloads and Voltage Collapse in Large-Scale Electric Power Systems by Jonathon A. Martin A dissertation submitted in partial fulfillment of the requirements

More information

Cooperative & Distributed Control of High-Density PVs in Power Grid

Cooperative & Distributed Control of High-Density PVs in Power Grid Cooperative & Distributed Control of High-Density PVs in Power Grid Huanhai Xin Associate Professor College of Electrical Engineering Zhejiang University Email: xinhh@zju.edu.cn Http://mypage.zju.edu.cn/eexinhh

More information

Identifying Plausible Harmful N-k Contingencies: A Practical Approach based on Dynamic Simulations

Identifying Plausible Harmful N-k Contingencies: A Practical Approach based on Dynamic Simulations Identifying Plausible Harmful N-k Contingencies: A Practical Approach based on Dynamic Simulations Tilman Weckesser Center for Electric Power and Energy (CEE) Technical University of Denmark (DTU) Lyngby,

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 8 - Voltage Stability Spring 2014 Instructor: Kai Sun 1 Voltage Stability Voltage stability is concerned with the ability of a

More information

Wind Generation Curtailment Reduction based on Uncertain Forecasts

Wind Generation Curtailment Reduction based on Uncertain Forecasts Wind Generation Curtailment Reduction based on Uncertain Forecasts A. Alanazi & A. Khodaei University of Denver USA Authors M. Chamana & D. Kushner ComEd USA Presenter Manohar Chamana Introduction Wind

More information

Cascading Outages in Power Systems. Rui Yao

Cascading Outages in Power Systems. Rui Yao Cascading Outages in Power Systems Rui Yao yaorui.thu@gmail.com Outline Understanding cascading outages Characteristics of cascading outages Mitigation of cascading outages Understanding cascading outages

More information

DIMACS, Rutgers U January 21, 2013 Michael Caramanis

DIMACS, Rutgers U January 21, 2013 Michael Caramanis Power Market Participation of Flexible Loads and Reactive Power Providers: Real Power, Reactive Power, and Regulation Reserve Capacity Pricing at T&D Networks DIMACS, Rutgers U January 21, 2013 Michael

More information

A Stable Finite Horizon Model Predictive Control for Power System Voltage Collapse Prevention

A Stable Finite Horizon Model Predictive Control for Power System Voltage Collapse Prevention 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 2011 A Stable Finite Horizon Model Predictive Control for Power System Voltage

More information

A Data-driven Voltage Control Framework for Power Distribution Systems

A Data-driven Voltage Control Framework for Power Distribution Systems A Data-driven Voltage Control Framework for Power Distribution Systems Hanchen Xu, Alejandro D. Domínguez-García, and Peter W. Sauer arxiv:1711.04159v1 [math.oc] 11 Nov 2017 Abstract In this paper, we

More information

11.1 Power System Stability Overview

11.1 Power System Stability Overview 11.1 Power System Stability Overview This introductory section provides a general description of the power system stability phenomena including fundamental concepts, classification, and definition of associated

More information

CECOER. Renewable Energy Control Center. How technologies have boosted remote operations. Agder Energi-konferansen

CECOER. Renewable Energy Control Center. How technologies have boosted remote operations. Agder Energi-konferansen CECOER Renewable Energy Control Center How technologies have boosted remote operations Agder Energi-konferansen 2018 30.-31. mai, Kristiansand GLOBAL LEADER IN INFRASTRUCTURE, WATER, SERVICES AND RENEWABLE

More information

A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices

A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices Javad Mohammadi, Gabriela Hug, Soummya Kar Department of Electrical and Computer Engineering Carnegie

More information

Automatic Slow Voltage Controller for Large Power Systems

Automatic Slow Voltage Controller for Large Power Systems Automatic Slow Voltage Controller for Large Power Systems Mani V. Venkatasubramanian Washington State University Pullman WA 2003 Washington State University, Pullman, WA 1 Objectives Automatic switching

More information

Analyzing the Effect of Loadability in the

Analyzing the Effect of Loadability in the Analyzing the Effect of Loadability in the Presence of TCSC &SVC M. Lakshmikantha Reddy 1, V. C. Veera Reddy 2, Research Scholar, Department of Electrical Engineering, SV University, Tirupathi, India 1

More information

Chapter 21. Harmonic Analysis

Chapter 21. Harmonic Analysis Chapter 21 Harmonic Analysis Because of the wide and ever increasing applications of power electronic devices, such as variable speed drives, uninterruptible power supplies (UPS), static power converters,

More information

IEC Work on modelling Generic Model development IEC expected outcome & timeline

IEC Work on modelling Generic Model development IEC expected outcome & timeline IEC Work on modelling Generic Model development IEC 64-7 expected outcome & timeline Jens Fortmann, REpower Systems, Germany Poul Sørensen, DTU, Denmark IEC 64-7 Generic Model development Overview Overview

More information

APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAMPING OF POWER SWINGS *

APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAMPING OF POWER SWINGS * APPLICATIONS OF CONTROLLABLE SERIES CAPACITORS FOR DAPING OF POWER SWINGS *. Noroozian P. Halvarsson Reactive Power Compensation Division ABB Power Systems S-7 64 Västerås, Sweden Abstract This paper examines

More information

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012 Multi-objective Based Optimization Using Tap Setting Transformer, DG and Capacitor Placement in Distribution Networks Abdolreza Sadighmanesh 1, Mehran Sabahi 2, Kazem Zare 2, and Babak Taghavi 3 1 Department

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Decentralized Multi-Period Economic Dispatch for Real-Time Flexible Demand Management Citation for published version: Loukarakis, E, Dent, C & Bialek, J 216, 'Decentralized

More information

Turbines and speed governors

Turbines and speed governors ELEC0047 - Power system dynamics, control and stability Turbines and speed governors Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 31 2 / 31 Steam turbines Turbines

More information

World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:7, No:12, 2013

World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:7, No:12, 2013 Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications James Dunia, Bakari M. M. Mwinyiwiwa 1 Abstract

More information

Modelling and Simulation of TCPAR for Power System Flow Studies

Modelling and Simulation of TCPAR for Power System Flow Studies ISSN 1583-033 Issue 1, July-December 01 p. 13-137 Modelling and Simulation of TCPAR for Power System Flow Studies Narimen Lahaçani AOUZELLAG *, Lyes BENKHELLAT, Samir MAHLOUL Department of Electrical Engineering,

More information

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow 1 Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow Line Roald, Sidhant Misra, Thilo Krause, and Göran Andersson arxiv:169.2194v1 [math.oc] 7 Sep 216 Abstract Higher

More information

Variable speed turbine based wind farm including storage system connected to a power grid or islanded

Variable speed turbine based wind farm including storage system connected to a power grid or islanded Variable speed turbine based wind farm including storage system connected to a power grid or islanded A. Davigny and B. Robyns Laboratoire d Electrotechnique et d Electronique de Puissance de Lille (L2EP)

More information

Reducing Contingency-based Windfarm Curtailments through use of Transmission Capacity Forecasting

Reducing Contingency-based Windfarm Curtailments through use of Transmission Capacity Forecasting Reducing Contingency-based Windfarm Curtailments through use of Transmission Capacity Forecasting Doug Bowman Southwest Power Pool Jack McCall Lindsey Manufacturing Co. CIGRE US National Committee 2017

More information

Software Tools: Congestion Management

Software Tools: Congestion Management Software Tools: Congestion Management Tom Qi Zhang, PhD CompuSharp Inc. (408) 910-3698 Email: zhangqi@ieee.org October 16, 2004 IEEE PES-SF Workshop on Congestion Management Contents Congestion Management

More information

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 159-169. ISSN 2454-3896 International Academic Journal of

More information

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Contributed Talk at NetSci 2007 May 20, 2007 Le Xie (lx@ece.cmu.edu) Advisor: Marija Ilic Outline Motivation Problem Statement

More information

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G.

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G. Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 25 (pp59-514) SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID

More information

GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS

GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS Paolo MATTAVELLI, Riccardo SGARBOSSA Roberto TURRI University of Padova Italy paolo.mattavelli@unipd.it

More information

Information Document Calculation of Pool Price and Transmission Constraint Rebalancing Costs During a Constraint Event ID # R

Information Document Calculation of Pool Price and Transmission Constraint Rebalancing Costs During a Constraint Event ID # R Information Documents are not authoritative. Information Documents are for information purposes only and are intended to provide guidance. In the event of any discrepancy between an Information Document

More information

Modelling wind power in unit commitment models

Modelling wind power in unit commitment models Modelling wind power in unit commitment models Grid integration session IEA Wind Task 25 Methodologies to estimate wind power impacts to power systems Juha Kiviluoma, Hannele Holttinen, VTT Technical Research

More information

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 6 Ver. III (Nov. Dec. 2016), PP 39-45 www.iosrjournals.org Congestion Alleviation

More information

Modeling and Stability Analysis of a DC Microgrid Employing Distributed Control Algorithm

Modeling and Stability Analysis of a DC Microgrid Employing Distributed Control Algorithm Modeling and Stability Analysis of a DC Microgrid Employing Distributed Control Algorithm Niloofar Ghanbari, M. Mobarrez 2, and S. Bhattacharya Department of Electrical and Computer Engineering North Carolina

More information

Brief Steady of Power Factor Improvement

Brief Steady of Power Factor Improvement International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 5 (2013), pp. 531-539 International Research PublicationHouse http://www.irphouse.com Brief Steady of Power Factor Improvement

More information

Risk-based Security Constrained Unit Commitment

Risk-based Security Constrained Unit Commitment A decision support system for electric operators 04 December 2015 Eng. chiara.foglietta@uniroma3.it Models for Critical Infrastructure Protection Laboratory (MCIP lab) Engineering Department Università

More information

STATE ESTIMATION IN DISTRIBUTION SYSTEMS

STATE ESTIMATION IN DISTRIBUTION SYSTEMS SAE ESIMAION IN DISRIBUION SYSEMS 2015 CIGRE Grid of the Future Symposium Chicago (IL), October 13, 2015 L. Garcia-Garcia, D. Apostolopoulou Laura.GarciaGarcia@ComEd.com Dimitra.Apostolopoulou@ComEd.com

More information

A Comparison of Local vs. Sensory, Input- Driven, Wide Area Reactive Power Control

A Comparison of Local vs. Sensory, Input- Driven, Wide Area Reactive Power Control 1 A Comparison of Local vs. Sensory, Input- Driven, Wide Area Reactive Power Control Jonathan W. Stahlhut, Member IEEE, Gerald. T. Heydt, Fellow IEEE, and Elias Kyriakides, Member IEEE Abstract In the

More information

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation

Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation 32 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.11, NO.1 February 2013 Doubly-Fed Induction Generator Wind Turbine Model for Fault Ride-Through Investigation Yutana Chongjarearn

More information

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S ROBUST ENERGY MANAGEMENT SYSTEM FOR ISOLATED MICROGRIDS Jose Daniel La r a Claudio Cañizares Ka nka r Bhattacharya D e p a r t m e n t o f E l e c t r i c a l a n d C o m p u t e r E n g i n e e r i n

More information

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization S. Uma Mageswaran 1, Dr.N.O.Guna Sehar 2 1 Assistant Professor, Velammal Institute of Technology, Anna University, Chennai,

More information

Research Article Finite Element Analysis of Flat Spiral Spring on Mechanical Elastic Energy Storage Technology

Research Article Finite Element Analysis of Flat Spiral Spring on Mechanical Elastic Energy Storage Technology Research Journal of Applied Sciences, Engineering and Technology 7(5): 993-1000, 2014 DOI:10.19026/rjaset.7.348 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted: January

More information

PROOF-OF-CONCEPT FOR MARKET BASED GRID QUALITY ASSURANCE

PROOF-OF-CONCEPT FOR MARKET BASED GRID QUALITY ASSURANCE PROOF-OF-CONCEPT FOR MARKET BASED GRID QUALITY ASSURANCE Tobias Gawron-Deutsch Stephan Cejka Alfred Einfalt Daniel Lechner Siemens AG Austria Siemens AG Austria Siemens AG Austria Siemens AG Austria tobias.gawron-deutsch

More information

Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables

Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables Downloaded from orbit.dtu.dk on: Oct 15, 2018 Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran;

More information

Mathcad-Based Education on Modern Transmission Systems

Mathcad-Based Education on Modern Transmission Systems Mathcad-Based Education on Modern Transmission ystems 3rd and 4th International MAINELIE Workshops on Prime Movers and hip Automation and Control Pavlos Georgilakis, George Korres chool of Electrical and

More information

CHAPTER 2 MODELING OF POWER SYSTEM

CHAPTER 2 MODELING OF POWER SYSTEM 38 CHAPTER 2 MODELING OF POWER SYSTEM 2.1 INTRODUCTION In the day to day scenario, power is an essential commodity to the human beings. The demand is more in developed countries and there is increase in

More information

POWER system operations increasingly rely on the AC

POWER system operations increasingly rely on the AC i Convex Relaxations and Approximations of Chance-Constrained AC-OF roblems Lejla Halilbašić, Student Member, IEEE, ierre inson, Senior Member, IEEE, and Spyros Chatzivasileiadis, Senior Member, IEEE arxiv:1804.05754v3

More information

WIND and solar power account for almost half of newly

WIND and solar power account for almost half of newly Computing Saddle-Node and Limit-Induced Bifurcation Manifolds for Subtransmission and Transmission Wind Generation Sina S. Baghsorkhi, Student Member, IEEE Department of Electrical Engineering and Computer

More information

Optimal Demand Response

Optimal Demand Response Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 Outline Caltech smart grid research Optimal demand response Global trends 1 Exploding renewables

More information

Belgian Wind Forecasting Phase 1

Belgian Wind Forecasting Phase 1 Phase 1 Users Group 09/02/2012 Pieter-Jan Marsboom v12.02.09 1 Overview 1. Context & Drivers 2. Forecast & Upscaling Model 3. Forecast Service 4. Wind Forecast Tool 5. Wind Forecast Quality 6. Challenges

More information

A stochastic integer programming approach to the optimal thermal and wind generator scheduling problem

A stochastic integer programming approach to the optimal thermal and wind generator scheduling problem A stochastic integer programming approach to the optimal thermal and wind generator scheduling problem Presented by Michael Chen York University Industrial Optimization Seminar Fields Institute for Research

More information

Reactive Power Compensation for Reliability Improvement of Power Systems

Reactive Power Compensation for Reliability Improvement of Power Systems for Reliability Improvement of Power Systems Mohammed Benidris, Member, IEEE, Samer Sulaeman, Student Member, IEEE, Yuting Tian, Student Member, IEEE and Joydeep Mitra, Senior Member, IEEE Department of

More information

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh 849 Power System Security Analysis B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh Abstract: In this paper real time security analysis is carried out. First contingency

More information

Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation

Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation Indubhushan Kumar Mewar University Department of Electrical Engineering Chittorgarh, Rajasthan-312902 Abstract:

More information

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT)

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 1 ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 2 Unit Commitment Given a load profile, e.g., values of the load for each hour of a day. Given set of units available, When should each unit be started,

More information

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com

More information