Mathematical Issues. Written by Okito Yamashita, Last revised 2009/07/27

Size: px
Start display at page:

Download "Mathematical Issues. Written by Okito Yamashita, Last revised 2009/07/27"

Transcription

1 Mahemaical Issues Wrie by Okio Yamashia, Las revise 009/07/7 I SLR oolbox, here are seve biary classificaio algorihms implemee. I his ocume, he probabilisic moels of he implemee classifiers are escribe a he he erivaio of algorihms will be briefly summarize. 0. oaios - aa {( x, y ),,( x, y )} x R, y {0,} i i X = [ x,, x ], y = [ y,, y ] - Liear iscrimia fucio = f( xw ; ) = w x + w = wx where w = [ w0, w,, w ], x [, x,, x] - Sigmoi fucio (Logisic fucio) 0 ( x ) σ ( x) = / + exp( ) - Liear logisic regressio moel P( X, ) P( y, ) ( ) y w y y = x w = σ σ () where σ = σ ( wx ). - ormal isribuio ( ;, ) exp ( ) ( ) x µ S = π S S x µ x µ E( x) = µ, V( x) = S - Gamma isribuio 0 0 γ 0 γ 0 γ 0 γ 0 α α Γ( γ0) α0 α0 Γ ( αα ;, γ) = exp 0 E( α) = α0, V( α) = α γ 0

2 . Probabilisic Moel All he probabilisic moels irouce here ca be escribe i he Bayesia moel, which has he likelihoo fucio a a prior isribuio for weigh (or bouary) parameers. The likelihoo fucios of all he moels are he ieical fucio kow as he logisic regressio moel (Eq.()) while he prior isribuios are iffere forms.. Sparse Logisic Regressio (SLR) The likelihoo fucio is give by Eq.(). The prior isribuio of SLR has he followig hierarchical form; For =,, P0 ( w α) = (0, α ) P0 ( α) = α () This hierarchical isribuios are kow as he auomaic relevace eermiaio (AR) priors i he sparse Bayesia learig lieraure. The parameer α is calle he relevace parameer ha represes relevace of he correspoig weigh parameer. The larger his value is, less releva he correspoig weigh parameer is. If he relevace parameer is margialize beforeha, we kow ha he hierarchical prior isribuios are equivale o he followig prior isribuio of weigh parameers, P( w ) = / w =,,. 0 The hierarchical form makes i easier o calculae he poserior isribuio i aalyical way. Thus he equaio () is use for represeig he AR prior.. Regularize Logisic Regressio (RLR) The likelihoo fucio is give by Eq.(). The prior isribuio of RLR is he followig mulivariae Gaussia isribuio; P w α I. (3) ( ) (0, ) 0 = I is he ieiy marix of size..3 Liear Relevace Vecor Machie (RVM)

3 The likelihoo fucio is give by Eq.() excep he liear iscrimia fucio beig represee by he liear kerel as follows, = g( xw ; ) = w xx+ w = k ( x) w 0 where ( ) = (,,,) kx xx xx a w = ( w,, w, w0). Thus he likelihoo for each sigle aa is represee by σ = σ ( kx ( ) w). The prior isribuio of RVM is he AR prior (Eq()). I shoul be oe ha he sparseess of SLR a RVM resuls i he iffere ierpreaio. The parameers i SLR are associae wih feaures, while he parameers i SVM are associae wih samples (oe ha he umber of weigh parameers i RVM is o ). If he parameers i SLR are esimae i a sparse way, i ca be ierpree as feaure selecio process bu ha of RVM ca be ierpree as sample selecio process (similar o suppor vecors i SVM). Aoher hig o be oice is ha he exesio o he oliear iscrimia fucio is easily realize i RVM because RVM uses he kerel represeaio. Chagig he liear kerel o ay oher oliear kerel such as Gaussia kerel, polyomial kerel ca moel a o-liear bouary..4 L-Sparse Logisic Regressio (L-SLR) The likelihoo fucio is give by Eq.(). The prior isribuio of L-SLR is he followig Laplace isribuio; P0 ( w) = λ exp( λ w ) =,,. (4) This Laplace prior ca be expresse i he hierarchical form as follows; P0 ( w α) = (0, α) λ λ P0 ( α) = exp α =,, (5) oe ha α is variace of Gaussia isribuio i Eq.(5) whereas i is precisio (iverse variace) of Gaussia isribuio i Eq.().

4 . erivaio of Algorihms Sice all he probabilisic moels escribe above are Bayesia moels, he ask o esimae weigh parameers is o calculae he poserior probabiliy isribuio of weigh parameers give by P( y w) P0( w α) P0( α) α P( w y) = P( y w) P( w α) P( α) αw. 0 0 Here a hereafer he epeecy for X is igore for oaioal simpliciy. Uforuaely he iegrals of umeraor a eomiaor are o aalyically racable. Therefore some approximaio meho shoul be applie. I he algorihm erivaio, we apply he variaioal Bayesia meho (VB) ha assumes he coiioal iepeece coiio o poserior isribuios a he solve he poserior calculaio by maximizig a specific crieria (calle free eergy). A firs VB efies he free eergy usig he es fucio Q(); P( ywα,, ) FE( Q( w, α)) = Q( w, α)log αw. (6) Q( w, α) The oable issue i his equaio is ha FE is maximize whe a oly whe he es fucio Q is equal o he joi poserior isribuio P( w, α y ). I aiio he maximize value is equivale o he eviece P( y ). Therefore maximizig FE wih respec o es fucio correspos o fiig he joi poserior isribuio a compuig he eviece. However his fucioal maximizaio is as ifficul as he origial problem, hus i ca o be solve irecly. VB solves his problem by resricig he es fucio o havig some fucioal form. I our applicaio, he es fucio assumes o saisfy he coiioal iepeece coiio as Q( w, α) = Q( w) Q( α ). (7) Uer his coiio, FE is maximize by aleraely maximizig FE wih respec o Q( w ) a Q( α ). These seps are equivale o compuig he followig W-sep a A-sep (for more mahemaical eails, see Bishop 006). W-sep : log Q( w) =< log P( y, w, α ) > Q ( α) A-sep : log Q( α) =< log P( ywα,, ) > Q ( w) where < f ( x ) > Q ( x) eoes he expecaio of f ( x ) wih respec o a probabilisic

5 measure Q( x ). Cocree algorihms o compue he poserior isribuios as well as he poserior mea (he esimae of he weighs) ca be erive by subsiuig he probabilisic moels escribe i secio. Bu uforuaely eve wih his approximaio, W-sep is he aalyically iracable for he logisic regressio moel sice he prior isribuio a he likelihoo fucio are o cojugae. A furher approximaio o Q( w ) is require. There are wo approximaio mehos for his purpose; Laplace approximaio a variaioal approximaio. Boh of he mehos use he Gaussia isribuio as he approximae isribuio. This is why here are wo algorihms i he oolbox eve for oe probabilisic moel SLR (also RLR)... SLR... SLR wih Laplace approximaio (SLR-LAP) This algorihm uses he Laplace approximaio ha approximaes he poserior isribuio wih Gaussia isribuio arou he MAP esimae. W-sep: log Q( w) = { y log σ + ( y) log( σ) } w Aw + cos (8) = where A= iag( α,, α ). Le s eoe he righ-ha sie of Eq (8) by E( w ). E( w ) is o he quaraic form of w, hus Q( w ) is o he Gaussia isribuio a aalyically iracable. Bu if we oice ha E( w ) is he exacly same form as he log-likelihoo fucio of logisic regressio wih he regularizaio erm, his fucio is well approximae by he quaraic fucio a he maximizer w (Laplace approximaio). This maximizaio is oe by he ewo-rapso meho usig he followig graie a Hessia E = Xδ Aw, w E = XBX ' A H( w) ww where δ, X, B are give by δ = [ y σ,, y σ] : X = [ x,, x ] :. B = iag( σ ( σ ),, σ ( σ )) : The we obai he quaraic approximaio of log Q( w ) (or equivalely E( w ))

6 arou he maximizer w, log Q( w) E( w) ( w w) H( w)( w w ). (9) Thus Q( w) ( w, S) where S H( w ). A-sep: log Q( α ) = ( α ( w + s ) + logα ) + cos Thus = Q( α ) = Q( α ) = Γ( α ; α, γ ) where α =, = w + s γ (0) = = w, s are he h eleme a he h iagoal eleme of w a S, respecively. This upaig rule is very slow o coverge. Isea we use he followig fas upaig rule moivae by Mackay s effecive egree of freeom. Fas upaig rule: Q( α) = Γ( α ; α, γ ) where α = γ =. () = αs, w... SLR wih variaioal approximaio (SLR-VAR) This algorihm firs approximae he logisic fucio wih a Gaussia isribuio wih oe auxiliary variable (variaioal approximaio). Accorig o Jaakkola a Jora 000, he logisic fucio ca be lower-boue by x ξ σ( x) σ( ξ)exp λ( ξ)( x ξ ) where λξ ( ) = σξ ( ) > 0 ( ξ> 0). ξ Thus he likelihoo fucio is boue by z ξ P( y w) σξ ( )exp { λξ ( )( z ξ ) z( y) } h( y, w, ξ) wih z = xw. Usig his formula, FE is lower-boue as follows, h( ywξ,, ) P0( w α) P0( α) FE( Q( w, α)) (, )log Q w α αw FE( Q( w, α), ξ). Q( w, α) Thus maximizig FE ( Q( w, α), ξ ) wih respec o Q( w), Q( α), ξ aleraely gives us he poserior isribuios a opimal variaioal parameers ξ. Sice he fucio h( ywξ,, ) is he quaraic fucio of w for fixe ξ, Q( w ) becomes he Gaussia isribuio, which is easy o calculae aalyically. See Bishop a Tippig 000 for more eails

7 W-sep: log Q( w) = w A + ( ) x x w+ ( y 0.5) x w+ cos λξ = = ( ) ( ) = w w S w w + cos Thus Q( w) ( w, S) where w = S( y 0.5) x : = X = [ x,, x ] : S = A+ λξ ( ) xx = A+ XΛ X : = Λ= iag( λξ ( ),, λξ ( )) : () A-sep: A-sep is ieical o ha of SLR-LAP (see Eq.()). Fas upaig rule : Q( α ) = Q( α ) = Γ( α ; α, γ ) where α = γ = (3) = = αs, w -sep: Takig parial erivaive of FE ( Q( w, α), ξ ) a seig i o zero, we have ξ = x ( ww + S) x =,, (4).. RLR... RLR wih Laplace approximaio (RLR-LAP) W-sep: If = (,, ) A iag α α i SLR-LAP algorihm is replace wih A = α I is ieical o SLR-LAP algorihm., his sep A-sep: log Q( α) = < ww > α + logα + cos

8 Thus Q( α) =Γ( α ; α, γ ) where α =, γ = (5) w + s ( ) = α s = Fas upaig rule : Q( α) =Γ( α ; α, γ ) where α =, γ =.(6) w... RLR wih variaioal approximaio (RLR-VAR) W-sep: If = (,, ) A iag α α i SLR-VAR algorihm is replace wih A = α I is ieical o SLR-VAR algorihm. =, his sep A-sep: A-sep is equivale o ha of RLR-LAP. α s = Fas upaig rule : Q( α) =Γ( α ; α, γ ) where α =, γ =. w -sep: This sep is ieical o ha of SLR-VAR sice his sep oes o epe o he prior isribuio. ξ = x ( ww + S) x =,, =.3 RVM The algorihm implemee for RVM is ieical o SLR-VAR excep he bouary beig moele by he liear kerels. Thus if z = xw i SLR-VAR algorihm is replace wih z = k ( x ) w, he erivaio is ieical. See Tippig 00 for he origial RVM algorihm. W-sep:

9 log Q( w) = w A + ( ) k( x ) k ( x ) w+ ( y 0.5) k ( x ) w+ cos λξ = = ( ) ( ) = w w S w w + cos Thus Q( w) ( w, S) where S = A+ λξ ( ) kx ( ) k( x) = A+ XΛ X : ( + ) ( + ) = w = S( y 0.5) k( x) : ( + ) = (7) X = [ kx ( ),, kx ( )] : ( + ) Λ= iag( λξ ( ),, λξ ( )) : A-sep: A-sep is ieical o ha of SLR-LAP (see Eq.()). Fas upaig rule: = = αs, w Q( α ) = Q( α ) = Γ( α ; α, γ ) where α = γ = (8) -sep: Takig parial erivaive of FE ( Q( w, α), ξ ) a seig i equal o zero, we have ξ = k ( x )( ww + S) k( x ) =,,. (9).4 L-SLR The algorihm of L-SLR-LAP is obaie by moifyig he erivaio i Krishapuram e.al 004. The algorihm of L-SLR-c is base o compoe-wise upae proceure wih he surrogae fucio i Krishapuram e.al L-SLR wih Laplace approximaio (L-SLR-LAP) We use he hierarchical form of he Laplace prior (Eq.5). The erivaio is very similar o ha of SLR-LAP. W-sep:

10 log Q( w) = { y log σ + ( y) log( σ) } wvw + cos (0) = where V = iag ( < α >,, < α > ). Q( w ) is obaie i he same way (ewo-rapso meho) as W-sep of SLR-LAP wih A replace wih V. A-sep: + log ( ) = w s Q α λα logα + cos = α Here w, s eoe he h eleme a he h iagoal eleme of he weigh poserior isribuio. = Q( α) = Q( α ). () w λ + s Q( α) = Cα exp α α Uforuaely his isribuio is o he Gamma isribuio ulike SLR moel. Bu oly ecessary quaiy i W-sep is he expecaio of α a his value ca be aalyically compue as follows, < >= α α Q( α) α = = = α α α 3 w + s λ exp α w + λ s exp α α α α π λ w + s exp w + s π λ w + exp s λ λ w + s () The formula erive from EM algorihm is very similar (see Krishapuram e.al

11 004), < α >= λ w. (3) Oly he ifferece is wheher he poserior variace of weighs is iclue i he eomiaor. My lile experiece showe ha Eq.(3) oes work well bu Eq.3 oes o. Thus Eq.(3) is applie i he curre implemeaio. Reasos for his issue have o bee mae clear ye..4.. L-SLR wih compoe-wise upaes (L-SLR-c) This algorihm uses he prior isribuio Eq.(4) raher ha he hierarchical prior isribuios Eq.(5). Thus he relevace parameers o o appear i he algorihm erivaio. The weigh upaig rule is obaie by irecly iffereiaig he surrogae fucio. The MAP esimae of weigh parameers are obaie by { P } w = arg max log ( y w) λ w. l Takig he lower bou of he log P( y w ), we have he followig surrogae fucio, Q( w wˆ ) = w ( g( wˆ ) Bwˆ ) + w Bw λ w () () () The fucio g () is he graie of log P( y w ). The marix B ca be ay posiive-efiie marix ha bous Hessia of log P( y w) everywhere. Here we chose 0.5 B = X ' X 0.5 where X = [ x,, x ] :. l The by irecly iffereiaig ˆ () Q( w w ) wih respec o w we have he followig upaig rule,

12 () ( ) ( ) ( ˆ ) λ + + gk w w = sof w ; Bkk Bkk where sof( a; δ ) = sig( a)max{0, a δ } (4) For more mahemaical eails, please rea he origial paper.

13 3. Algorihm Summary The algorihms of SLR-LAP a SLR-VAR are escribe here. The oher algorihms (RLR-LAP, RLR-VAR, RVM, L-SLR-LAP) are similar herefore omie. - SLR-LAP. Iiializaio Se α = =,,. W-sep Q( w) ( w, S) where S H( w ) w is he maximizer of E( w ) ha ca be obaie by he ewo-rapso meho. ( ) = E w { ylog σ + ( y)log( σ) } w Aw + cos = where E = Xδ Aw w, E = XBX ' A H( w) w w A= iag( α,, α) : δ = [ y σ,, y σ] :. X = [ x,, x ] : B = iag( σ ( σ ),, σ ( σ )) : 3. A-sep: Q( α ) = Q( α ) = Γ( α ; α, γ ) = = αs, w α = γ = ( see origial rule : α =, = w + s γ ) w, s are he h eleme a he h iagoal eleme of w a S, respecively. 4. Covergece: Coiue W-sep a A-sep aleraely uil he amou of weigh parameers is very small or he umber of ieraios excees he preefie value.

14 - SLR-VAR. Iiializaio Se α = =,, a ξ = =,,. W-sep Q( w) ( w, S) w = S( y 0.5) x : S = A+ λξ ( ) xx = A+ XΛ X : = = ( + Λ ) y < = A X X X A X( Λ + X A X) Λ y > y = [ y 0.5,, y 0.5] : X = [ x,, x ] : Λ= iag( λξ ( ),, λξ ( )) : λξ ( ) = σξ ( ) > 0 ( ξ> 0) ξ 3. A-sep: Q( α ) = Q( α ) = Γ( α ; α, γ ) = = αs, w α = γ = ( see origial rule : α =, = w + s γ ) w, s are he h eleme a he h iagoal eleme of w a S, respecively. 4. -sep: ξ = x ( ww + S) x =,, 5. Covergece: Coiue W-sep, A-sep a -Sep aleraely uil he amou of weigh parameers is very small or he umber of ieraios excees he preefie value.

15 Refereces Jaakkola TS, Jora MI (000), Bayesia parameer esimaio via variaioal mehos, Saisics a Compuig, 0, pp.5 37 Bishop C, Tippig ME (000),Variaioal relevace vecor machies, Proceeigs of he 6h Coferece i Uceraiy i Arificial Ielligece, pp Bishop C (006), Paer recogiio a machie learig, Spriger, ew York Tippig ME(00), Sparse Bayesia Learig a he Relevace Vecor Machie, J Machie Learig Research,, pp.-44 Krishapuram B, Haremik AJ, Cari L a Figueireo MAT (004), A Bayesia Approach o Joi Feaure Selecio a Classifier esig, IEEE Tras. Paer Aalysis a Machie Ielligece, 6, pp.05- Krishapuram B, Cari L, Figueireo MAT, a Haremik AJ (005), Sparse Muliomial Logisic Regressio Fas Algorihms a Geeralizaio Bous, IEEE Tras. Paer Aalysis a Machie Ielligece, 7, pp MacKay (99), Bayesia ierpolaio, eural Compuaio, 4, pp Appeix : Trasformaio of equaios : eails This appeix preses eails of rasformaio of equaios. This may be useful o wrie your ow coes. I. Sparse Logisic Regressio (SLR) P( w) = P( w α) P( α) α α = ( ) exp π α w α α α = ( ) exp π α w α w w α π α α = ( ) Γ(/) exp w Γ(/) w = ( π) π = w

16 I.4 L-Sparse Logisic Regressio (L-SLR) P( w) = P( w α) P( α) α w λ λ = ( πα) exp exp α α α λ w = ( π ) α exp λα α + α = λ exp( λ w ) Here we use he followig formula, b π x exp + ax x = exp( b a ). x a I... SLR-LAP W-sep: log Q( w) =< log P( y, w, α) > = Q( α) = log P( y w) +< log P ( w α) > + cos 0 Q( α) = { ylog σ + ( y) log( σ) } w Aw+ cos = E( w) ( w w) H ( w)( w w) + cos Q( w) ( w, S) where S H( w) a w is maximizer of E( w ). Usig he followig oaios: A = iag( α,, α ) : = E( w) = { ylog σ + ( y)log( σ) } w Aw. E y σ y σ = Aw w = σ w σ w = = { ( σ ) ( ) σ } = y y x Aw, = ( y σ ) x Aw = Xδ Aw

17 E w w σ = x A w = = ( σ ) σ xx A = = XBX ' A H( w) δ = [ y σ,, y σ ] : X = [ x,, x ] :. B = iag( σ ( σ ),, σ ( σ )) : A-sep: log Q( α) =< log P( ywα,, ) > = Q( w) =< log P ( w α) > + log P ( α) + cos 0 Q( w) 0 = ( α < w > logα ) logα + cos = = = ( α < w >+ logα) + cos = log Q( α ) Q( α ) = Q( α ) = Γ( α ; α, γ ) where = = γ w + s =, γ = α α = = w + s γ w, s are he h eleme a he h iagoal eleme of w a S, respecively. Fas covergece rule : α = w α w + s + α s = α w = α s α = γ =. αs w I... SLR wih variaioal approximaio (SLR-VAR)

18 From he variaioal approximaio o he logisic fucio(jaakkola a Jora 000), we have x ξ σ x σ ξ λ ξ x ξ ( ) ( )exp ( )( ) where λξ ( ) = σξ ( ) > 0 ( ξ> 0). Sice he likelihoo fucio ca be ξ rewrie as y P( y w) = σ ( σ ) he y y = σ (exp( z ) σ ) y = σ exp( z ( y )) z ξ { } P( y w) σξ ( )exp λξ ( )( z ξ ) z( y) h( y, w, ξ) where z = xw. Usig his formula, FE is lower boue as follows h( ywξ,, ) P0( w α) P0( α) FE( Q( w, α)) (, )log Q w α αw FE( Q( w, α), ξ). Q( w, α) FE ( Q( w, α), ξ ) is maximize wih respec o Q( w), Q( α ), ξ aleraely. W-sep: log Q( w) =< log h( y, w, ξ) + log P( w α) + log P( α) > = 0 0 Q( α) = log h( ywξ,, ) +< log P ( w α) > + cos 0 Q( α) z ξ = log σξ ( ) + λξ ( )( z ξ) z( y) w Aw+ cos = = { (y ) z λξ ( ) z} w Aw+ cos = { (y ) xw λξ ( ) wxx w} waw+ cos = = w A + x x w+ y x w+ cos ( ) ( 0.5) λξ = = ( ) w w ( w w ) = S + cos Thus Q( w) ( w, S) where

19 w = S( y 0.5) x = = ( A+ XΛX ) Xy = A X( Λ + X A X) Λ y : S = A+ λξ ( ) xx = A+ XΛ X : = y = [ y 0.5,, y 0.5] : X = [ x,, x ] : Λ= iag( λξ ( ),, λξ ( )) : -Sep: FE ( Q( w, α), ξ) =< log h( ywξ,, ) + log P0( w α) + log P0 ( α) > Q( w) Q( α) =< log h( ywξ,, ) > Q( w) Q( α) + cos ξ =< log σξ ( ) λξ ( )( z ξ) > Q( w) + cos = Takig parial erivaive of FE ( Q( w, α), ξ ), we have FE ξ σ ( ξ) = λ ( ξ)( < z > ξ) + λ( ξ) ξ σ( ξ) = σξ ( ) λ( ξ)( < z > ξ) + σξ ( ) = λ ξ < > ξ ( )( z ) Sice λ ( ξ ) 0for ξ > 0, FE = 0 ξ leas o ξ =< z > = x < ww > x = x ( ww + S) x. I.. RLR wih Laplace approximaio (RLR-LAP) A-sep:

20 log Q( α) =< log P( yw,, α) > Q( w) =< log P0 ( w α) > Q( w) + log P0( α) + cos = < ww> α + logα logα + cos = < ww> α + logα + cos Thus Q( α) =Γ( α ; α, γ ) where α =, γ = (5) w + s ( ) = α s = Fas upaig rule : Q( α) =Γ( α ; α, γ ) where α =, γ =. w = I.4. L-SLR wih Laplace approximaio (L-SLR-LAP) W-sep log Q( w) =< log P( y, w, α) > = Q( α) = log P( y w) +< log P ( w α) > + cos 0 Q( α) = { ylog σ + ( y) log( σ) } wvw+ cos = E( w) ( w w) H ( w)( w w) + cos Q( w) ( w, S) where S H( w) a w is maximizer of E( w ). Usig he followig oaios: V = iag( < α >,, < α > ) : = E( w) = { ylog σ + ( y)log( σ) } wvw. E y σ σ y = Vw w = σ w σ w = = { ( σ ) ( ) σ } = y y x Vw, = ( y σ ) x Vw = Xδ Vw

21 E w w σ = x V w = = ( σ ) σ xx V = = XBX ' V H( w) δ = [ y σ,, y σ ] : X = [ x,, x ] :. B = iag( σ ( σ ),, σ ( σ )) :

Generalized Linear Models + Learning Fully Observed Bayes Nets

Generalized Linear Models + Learning Fully Observed Bayes Nets School of Compuer Sciece 0-708 Probabilisic Graphical Moels Geeralize Liear Moels + Learig Full Observe Baes Nes Reaigs: KF Chap. 7 Jora Chap. 8 Jora Chap. 9. 9. Ma Gormle Lecure 5 Jauar 7, 06 Machie Learig

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse SHOCK AND VIBRAION RESPONSE SPECRA COURSE Ui 1 Base Exciaio Shock: Classical Pulse By om Irvie Email: omirvie@aol.com Iroucio Cosier a srucure subjece o a base exciaio shock pulse. Base exciaio is also

More information

The Moment Approximation of the First Passage Time For The Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time For The Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier Rece Avaces i Auomaic Corol, oellig a Simulaio The ome Approximaio of he Firs Passage Time For The irh Deah Diffusio Process wih Immigrao o a ovig Liear arrier ASEL. AL-EIDEH Kuwai Uiversiy, College of

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION U.P.B. ci. Bull. eries A Vol. 69 No. 7 IN 3-77 DETERMINATION OF PARTIULAR OLUTION OF NONHOMOGENEOU LINEAR DIFFERENTIAL EQUATION BY DIRETE DEONVOLUTION M. I. ÎRNU e preziă o ouă meoă e eermiare a soluţiilor

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Research Design - - Topic 2 Inferential Statistics: The t-test 2010 R.C. Gardner, Ph.D. Independent t-test

Research Design - - Topic 2 Inferential Statistics: The t-test 2010 R.C. Gardner, Ph.D. Independent t-test Research Desig - - Topic Ifereial aisics: The -es 00 R.C. Garer, Ph.D. Geeral Raioale Uerlyig he -es (Garer & Tremblay, 007, Ch. ) The Iepee -es The Correlae (paire) -es Effec ize a Power (Kirk, 995, pp

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

A Multivariate CLT for Local Dependence with n &12 log n Rate and Applications to Multivariate Graph Related Statistics

A Multivariate CLT for Local Dependence with n &12 log n Rate and Applications to Multivariate Graph Related Statistics joural of mulivariae aalysis 56, 333350 (1996) aricle o. 0017 A Mulivariae CLT for Local Depeece wih &12 log Rae a Applicaios o Mulivariae Graph Relae Saisics Yosef Rio* Uiversiy of Califoria, Sa Diego

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

ME 3210 Mechatronics II Laboratory Lab 6: Second-Order Dynamic Response

ME 3210 Mechatronics II Laboratory Lab 6: Second-Order Dynamic Response Iroucio ME 30 Mecharoics II Laboraory Lab 6: Seco-Orer Dyamic Respose Seco orer iffereial equaios approimae he yamic respose of may sysems. I his lab you will moel a alumium bar as a seco orer Mass-Sprig-Damper

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Modified Ratio and Product Estimators for Estimating Population Mean in Two-Phase Sampling

Modified Ratio and Product Estimators for Estimating Population Mean in Two-Phase Sampling America Joural of Operaioal esearch 06, 6(3): 6-68 DOI: 0.593/j.ajor.060603.0 Moifie aio a Prouc Esimaors for Esimaig Populaio Mea i Two-Phase Samplig Subhash Kumar Yaav, Sa Gupa, S. S. Mishra 3,, Alok

More information

ECE 350 Matlab-Based Project #3

ECE 350 Matlab-Based Project #3 ECE 350 Malab-Based Projec #3 Due Dae: Nov. 26, 2008 Read he aached Malab uorial ad read he help files abou fucio i, subs, sem, bar, sum, aa2. he wrie a sigle Malab M file o complee he followig ask for

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

Institute of Actuaries of India

Institute of Actuaries of India Isiue of cuaries of Idia Subjec CT3-robabiliy ad Mahemaical Saisics May 008 Eamiaio INDICTIVE SOLUTION Iroducio The idicaive soluio has bee wrie by he Eamiers wih he aim of helig cadidaes. The soluios

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Guaranteed Cost Control for Uncertain Nonlinear time-delay Systems

Guaranteed Cost Control for Uncertain Nonlinear time-delay Systems Guaraee Cos Corol for Ucerai Noliear ime-elay Sysems Ji Feihu* Hog Bigrog * a Huiju Gao ** *Deparme of Compuer Sciece a echology Harbi Isiue of echology, Harbi, 5, PRChia ** Deparme of Corol Sciece a Egieerig

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

VARIATIONAL ITERATION METHOD: A COMPUTATIONAL TOOL FOR SOLVING COUPLED SYSTEM OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

VARIATIONAL ITERATION METHOD: A COMPUTATIONAL TOOL FOR SOLVING COUPLED SYSTEM OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS Joral of Sciece a Ars Year 6 No. 336 pp. 43-48 6 ORIGINAL PAPER ARIATIONAL ITERATION METHOD: A COMPTATIONAL TOOL FOR SOLING COPLED SYSTEM OF NONLINEAR PARTIAL DIFFERENTIAL EQATIONS MORF OYEDNSI OLAYIOLA

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

[Hussain* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Hussain* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 [Hussai* e al., 5(8): Augus, 6] ISSN: 77-9655 IC Value: 3. Impac Facor: 4.6 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL SOLUTIONS FOR STOCHASTIC PARTIAL DIFFERENTIAL

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Caper : Time-Domai Represeaios of Liear Time-Ivaria Sysems Ci-Wei Liu Oulie Iroucio Te Covoluio Sum Covoluio Sum Evaluaio Proceure Te Covoluio Iegral Covoluio Iegral Evaluaio Proceure Iercoecios of LTI

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

Affine term structure models

Affine term structure models /5/07 Affie erm srucure models A. Iro o Gaussia affie erm srucure models B. Esimaio by miimum chi square (Hamilo ad Wu) C. Esimaio by OLS (Adria, Moech, ad Crump) D. Dyamic Nelso-Siegel model (Chrisese,

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

φ ( t ) = φ ( t ). The notation denotes a norm that is usually

φ ( t ) = φ ( t ). The notation denotes a norm that is usually 7h Europea Sigal Processig Coferece (EUSIPCO 9) Glasgo, Scolad, Augus -8, 9 DESIG OF DIGITAL IIR ITEGRATOR USIG RADIAL BASIS FUCTIO ITERPOLATIO METOD Chie-Cheg Tseg ad Su-Lig Lee Depar of Compuer ad Commuicaio

More information

A Novel Approach for Solving Burger s Equation

A Novel Approach for Solving Burger s Equation Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 93-9466 Vol. 9, Issue (December 4), pp. 54-55 Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) A Novel Approach for Solvig Burger s Equaio

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

CS623: Introduction to Computing with Neural Nets (lecture-10) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

CS623: Introduction to Computing with Neural Nets (lecture-10) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay CS6: Iroducio o Compuig ih Neural Nes lecure- Pushpak Bhaacharyya Compuer Sciece ad Egieerig Deparme IIT Bombay Tilig Algorihm repea A kid of divide ad coquer sraegy Give he classes i he daa, ru he percepro

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

AdaBoost. AdaBoost: Introduction

AdaBoost. AdaBoost: Introduction Slides modified from: MLSS 03: Guar Räsch, Iroducio o Boosig hp://www.boosig.org : Iroducio 2 Classifiers Supervised Classifiers Liear Classifiers Percepro, Leas Squares Mehods Liear SVM Noliear Classifiers

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

An EOQ Model for Weibull Deteriorating Items with. Power Demand and Partial Backlogging

An EOQ Model for Weibull Deteriorating Items with. Power Demand and Partial Backlogging . J. oemp. Mah. Scieces, Vol. 5, 00, o. 38, 895-904 A EOQ Moel for Weibull Deerioraig ems wih Power Dema a Parial Backloggig. K. ripahy* a L. M. Praha ** *Deparme of Saisics, Sambalpur Uiversiy, Jyoi Vihar

More information

Expectation maximization

Expectation maximization Motivatio Expectatio maximizatio Subhrasu Maji CMSCI 689: Machie Learig 14 April 015 Suppose you are builig a aive Bayes spam classifier. After your are oe your boss tells you that there is o moey to label

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Delta Method on Bootstrapping of Autoregressive Process. Abstract

Delta Method on Bootstrapping of Autoregressive Process. Abstract Proceeigs 59h ISI Worl Saisics Cogress 5-30 Augus 03 Hog Kog (Sessio CPS04) p.3959 Dela Meho o Boosrappig of Auoregressive Process Bambag Suprihai Suryo Gurio 3 Sri Haryami 4 Uiversiy of Sriwijaya Palembag

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are:

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are: 3. Iiial value problems: umerical soluio Fiie differeces - Trucaio errors, cosisecy, sabiliy ad covergece Crieria for compuaioal sabiliy Explici ad implici ime schemes Table of ime schemes Hyperbolic ad

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations. Richard A. Hinrichsen. March 3, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations. Richard A. Hinrichsen. March 3, 2010 Page Before-Afer Corol-Impac BACI Power Aalysis For Several Relaed Populaios Richard A. Hirichse March 3, Cavea: This eperimeal desig ool is for a idealized power aalysis buil upo several simplifyig assumpios

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Research Article Fuzzy c-means and Cluster Ensemble with Random Projection for Big Data Clustering

Research Article Fuzzy c-means and Cluster Ensemble with Random Projection for Big Data Clustering Mahemaical Problems i Egieerig Volume 2016, Aricle ID 6529794, 13 pages hp://x.oi.org/10.1155/2016/6529794 Research Aricle Fuzzy c-meas a Cluser Esemble wih Raom Projecio for Big Daa Cluserig Mao Ye, 1,2

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

14.02 Principles of Macroeconomics Fall 2005

14.02 Principles of Macroeconomics Fall 2005 14.02 Priciples of Macroecoomics Fall 2005 Quiz 2 Tuesday, November 8, 2005 7:30 PM 9 PM Please, aswer he followig quesios. Wrie your aswers direcly o he quiz. You ca achieve a oal of 100 pois. There are

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Development of Kalman Filter and Analogs Schemes to Improve Numerical Weather Predictions

Development of Kalman Filter and Analogs Schemes to Improve Numerical Weather Predictions Developme of Kalma Filer ad Aalogs Schemes o Improve Numerical Weaher Predicios Luca Delle Moache *, Aimé Fourier, Yubao Liu, Gregory Roux, ad Thomas Warer (NCAR) Thomas Nipe, ad Rolad Sull (UBC) Wid Eergy

More information

A Bayesian Approach for Detecting Outliers in ARMA Time Series

A Bayesian Approach for Detecting Outliers in ARMA Time Series WSEAS RASACS o MAEMAICS Guochao Zhag Qigmig Gui A Bayesia Approach for Deecig Ouliers i ARMA ime Series GUOC ZAG Isiue of Sciece Iformaio Egieerig Uiversiy 45 Zhegzhou CIA 94587@qqcom QIGMIG GUI Isiue

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Problems and Solutions for Section 3.2 (3.15 through 3.25)

Problems and Solutions for Section 3.2 (3.15 through 3.25) 3-7 Problems ad Soluios for Secio 3 35 hrough 35 35 Calculae he respose of a overdamped sigle-degree-of-freedom sysem o a arbirary o-periodic exciaio Soluio: From Equaio 3: x = # F! h "! d! For a overdamped

More information

INVESTMENT PROJECT EFFICIENCY EVALUATION

INVESTMENT PROJECT EFFICIENCY EVALUATION 368 Miljeko Crjac Domiika Crjac INVESTMENT PROJECT EFFICIENCY EVALUATION Miljeko Crjac Professor Faculy of Ecoomics Drsc Domiika Crjac Faculy of Elecrical Egieerig Osijek Summary Fiacial efficiecy of ivesme

More information

Active Learning for Accurate Estimation of Linear Models

Active Learning for Accurate Estimation of Linear Models Acive Learig for Accurae Esimaio of Liear Moels Carlos Riquelme Mohamma Ghavamzaeh Alessaro Lazaric 3 This seig is clearly relae o he problem of pure exploraio a acive learig i muli-arme bais Aos e al.,

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

FORMALIZATION OF THE OBJECT CLASSIFICATION ALGORITHM

FORMALIZATION OF THE OBJECT CLASSIFICATION ALGORITHM DOI.7/s559-5-9767- Cybereics ad Sysems Aalysis, Vol. 5, No. 5, Sepember, 25 FORMALIZATION OF THE OBJECT CLASSIFICATION ALGORITHM T. B. Maryiuk, A. V. Kozhemiako, ad L. M. Kupershei 2 UDC 4.93' Absrac.

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

arxiv: v3 [math.pr] 10 Jan 2017

arxiv: v3 [math.pr] 10 Jan 2017 Local cluserig coefficie i geeralize prefereial aachme moels Alexaer Kro 1 a Liumila Osroumova Prokhorekova 1, 1 Moscow Isiue of Physics a Techology, Moscow, Russia Yaex, Moscow, Russia arxiv:1507.07771v3

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE ECE 570 Sessio 7 IC 75-E Compuer Aided Egieerig for Iegraed Circuis Trasie aalysis Discuss ime marcig meods used i SPICE. Time marcig meods. Explici ad implici iegraio meods 3. Implici meods used i circui

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

Modal Analysis of a Tight String

Modal Analysis of a Tight String Moal Aalysis of a Tigh Srig Daiel. S. Sus Associae Professor of Mechaical Egieerig a Egieerig Mechaics Presee o ME Moay, Ocober 30, 000 See: hp://web.ms.eu/~sus/me_classes.hml Basic Theory The srig uer

More information