Adaptive one-bit matrix completion

Size: px
Start display at page:

Download "Adaptive one-bit matrix completion"

Transcription

1 Adaptive one-bit matrix completion Joseph Salmon Télécom Paristech, Institut Mines-Télécom Joint work with Jean Lafond (Télécom Paristech) Olga Klopp (Crest / MODAL X, Université Paris Ouest) Éric Moulines (Télécom Paristech)

2 Motivation : recommender systems movies (Netflix, Itunes, Allociné)

3 Motivation : recommender systems songs (Pandora, Itunes)

4 Motivation : recommender systems restaurants (Yelp, la Fourchette)

5 Motivation : recommender systems trips, hotels (TripAdvisor, Voyages-SNCF)

6 Motivation : recommender systems...

7 Motivation : recommender systems In all those cases matrix completion is a crucial ingredient (not the only one) for improving recommender systems Koren et al. [2009]

8 Recommendation systems : movie example

9 Recommendation systems : movie example

10 Other aspect of matrix completion Quantum physics

11 Other aspect of matrix completion Quantum physics Image/signal processing with missing pixels

12 Other aspect of matrix completion Quantum physics Image/signal processing with missing pixels Communications

13 Other aspect of matrix completion Quantum physics Image/signal processing with missing pixels Communications Analysis of survey data

14 Other aspect of matrix completion Quantum physics Image/signal processing with missing pixels Communications Analysis of survey data...

15 Classical theoretical model : partial observation and Gaussian noise Observation model Matrix of true ratings : X R m 1 m 2 (to recover) Indexes observed : (ω i ) 1 i n i.i.d. Unif over [m 1 ] [m 2 ], Noisy observations : Y ωi = X ω i + σε ωi for 1 i n σ : noise level, ε : centered standard Gaussian random vector Rem: potentially n m 1 m 2 Rem: randomness sources : 1) index picking 2) degraded answer

16 Some dataset sizes Parameter Size m 1 m 2 n MovieLens NetFlix Yahoo

17 Low rank and matrix factorization Underlying simplifying assumption : r = rank(x ) is small Consequence : pass from m 1 m 2 to r (m 1 + m 2 ) degrees of freedom Interpretation : a combination of few items can represent all of them a combination of few users can represent all of them

18 Popular estimator Least square penalized by trace/nuclear norm ˆX = arg min X R m 1 m n i=1 (Y ωi X ωi ) 2 + λ X σ,1 X σ,1 : trace/nuclear norm (l 1 norm of the singular values) λ>0 : regularization parameter controlling data-fitting / low rank trade-off Rem: vector case : 1 regularization sparsity (LASSO) matrix case : σ,1 regularization low rank

19 Previous theoretical work on matrix completion with Rem: can be extended to non uniform sampling provided each coefficient is sampled sufficiently often noise-free scenario : Recht, Fazel and Parrilo [2010] Candès and Recht [2009] Candès and Tao [2010] additive noise scenario : Candès and Plan [2010] Koltchinskii, Tsybakov and Lounici [2011] Negahban and Wainwrigh [2012] Klopp [2014] Typical results : Klopp [2014] For λ = Cσ log(m 1 +m 2 ) min(m 1,m 2 )n, w.h.p. ˆX X 2 F c max(σ 2, X 2 m 1 m ) r max(m 1, m 2 ) log(m 1 + m 2 ) 2 n

20 Limits of the previous model Generally ratings are discrete (0-1, 1-5 stars, etc.) In surveys, answers are naturally discrete (yes/no, classes, etc.) Variance of the noise model (implicitly) assumed identical for all entries. Cases with picky distribution e.g., movies with agreement (only 5 s) / disagreement among the audience (lots of 1 s and lots of 5 s).

21 Binary model Observation model Davenport et al. [2012] Matrix of true ratings to recover : X R m 1 m 2 Indexes observed : (ω i ) 1 i n i.i.d. Unif over [m 1 ] [m 2 ], Indirect observations : P(Y ωi =1)=f (X ω i ) and P(Y ωi = 1) = 1 f (X ω i ), where f is a link function taking value in [0, 1]. Rem: Uniform sampling only for the sake of simplicity Rem: To obtain theoretical guarantees log(f ( )) and log(1 f ( )) need to be concave (e.g., logit, probit)

22 The estimator The log-likelihood of the observations X L(X) : L(X) = n i=1 [ ] 1 {Yωi =1} log(f (X ωi )) + 1 {Yωi = 1} log(1 f (X ωi )). Penalized log-likelihood estimator ˆX = arg min X R m 1 m 2 F(X), where F(X) = 1 n L(X)+λ X σ,1, with λ>0 a regularization parameter.

23 Results Proposed result For λ = C KL log(m 1 +m 2 ) min(m 1,m 2 )n w.h.p. ( f (X ), f ( ˆX) ) c r max(m 1, m 2 ) log(m 1 + m 2 ) n where we define the Kullback-Liebler divergence : KL (P, Q) := 1 m 1 m 2 1 i m 1 1 j m 2 [ P i,j log P i,j Q i,j +(1 P i,j ) log 1 P i,j 1 Q i,j ].

24 Multinomial Coordinate Lifted Gradient Desc. : Dudik et al. [2012] Data: Observations : Y ini. param. : θ 0 Θ + ; tolerance : ɛ ; maximum iterations : K Result: θ Θ + Initialization : θ θ 0, conv 0, k 0 while k K and conv = 0 do Compute top singular vectors pair of ( F(W θ )) : u, v Let g = λ + L, uv if g ɛ/2 then β = arg min b R F(θ +(bδ uv )) θ θ + βδ uv ; k k +1 end else if g ɛ then conv 1 end else θ arg min θ R +K,supp(θ ) supp(θ) F(θ ) ; k k +1 end end end

25 Main interests compared to other classical methods Does not require full SVD as proximal methods Convex formulation which offers strong theoretical guarantees Well adapted to sparse structure

26 Numerical experiments Simulate X for m 1 m 2 = , , and r =5

27 Numerical experiments Simulate X for m 1 m 2 = , , and r =5 For each X simulate with logit distribution n observations, from n = to

28 Numerical experiments Simulate X for m 1 m 2 = , , and r =5 For each X simulate with logit distribution n observations, from n = to For Gaussian and Binomial estimator, choose λ by cross validation

29 Numerical experiments Simulate X for m 1 m 2 = , , and r =5 For each X simulate with logit distribution n observations, from n = to For Gaussian and Binomial estimator, choose λ by cross validation For Gaussian and Binomial estimator, estimate X

30 Numerical experiments Simulate X for m 1 m 2 = , , and r =5 For each X simulate with logit distribution n observations, from n = to For Gaussian and Binomial estimator, choose λ by cross validation For Gaussian and Binomial estimator, estimate X For Gaussian and Binomial estimator, compute KL divergence

31 mean KL distance Illustration over simulation (with cross-validation choice for λ) 0.20 KL distance for logistic (plain), gaussian (dashed) size: 100x150 size: 300x450 size: 900x number of observations

32 Conclusion New results for binary / logit matrix completion No need to know a bound on the rank or to make a spikiness assumption Fast algorithm based on Lifted Coordinate Descent Dudik et al. [2012] Extension to multinomial under some separability

33 Références I E. J. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6) : , E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6) : , E. J. Candès and T. Tao. The power of convex relaxation : Near-optimal matrix completion. IEEE Trans. Inf. Theory, 56(5) : , M. Dudík, Z. Harchaoui, and J. Malick. Lifted coordinate descent for learning with trace-norm regularization. In AISTATS, M. A. Davenport, Y. Plan, E. van den Berg, and M. Wootters. 1-bit matrix completion. CoRR, abs/ , 2012.

34 Références II Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8) :30 37, O. Klopp. Noisy low-rank matrix completion with general sampling distribution. Bernoulli, 2(1) : , V. Koltchinskii, A. B. Tsybakov, and K. Lounici. Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Statist., 39(5) : , S. Negahban and M. J. Wainwright. Restricted strong convexity and weighted matrix completion : optimal bounds with noise. J. Mach. Learn. Res., 13 : , 2012.

35 Références III B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3) : , 2010.

Probabilistic low-rank matrix completion on finite alphabets

Probabilistic low-rank matrix completion on finite alphabets Probabilistic low-rank matrix completion on finite alphabets Jean Lafond Institut Mines-Télécom Télécom ParisTech CNRS LTCI jean.lafond@telecom-paristech.fr Olga Klopp CREST et MODAL X Université Paris

More information

Binary matrix completion

Binary matrix completion Binary matrix completion Yaniv Plan University of Michigan SAMSI, LDHD workshop, 2013 Joint work with (a) Mark Davenport (b) Ewout van den Berg (c) Mary Wootters Yaniv Plan (U. Mich.) Binary matrix completion

More information

1-Bit Matrix Completion

1-Bit Matrix Completion 1-Bit Matrix Completion Mark A. Davenport School of Electrical and Computer Engineering Georgia Institute of Technology Yaniv Plan Mary Wootters Ewout van den Berg Matrix Completion d When is it possible

More information

1-bit Matrix Completion. PAC-Bayes and Variational Approximation

1-bit Matrix Completion. PAC-Bayes and Variational Approximation : PAC-Bayes and Variational Approximation (with P. Alquier) PhD Supervisor: N. Chopin Bayes In Paris, 5 January 2017 (Happy New Year!) Various Topics covered Matrix Completion PAC-Bayesian Estimation Variational

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

1-Bit Matrix Completion

1-Bit Matrix Completion 1-Bit Matrix Completion Mark A. Davenport School of Electrical and Computer Engineering Georgia Institute of Technology Yaniv Plan Mary Wootters Ewout van den Berg Matrix Completion d When is it possible

More information

1-Bit Matrix Completion

1-Bit Matrix Completion 1-Bit Matrix Completion Mark A. Davenport School of Electrical and Computer Engineering Georgia Institute of Technology Yaniv Plan Mary Wootters Ewout van den Berg Matrix Completion d When is it possible

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

Probabilistic Low-Rank Matrix Completion from Quantized Measurements

Probabilistic Low-Rank Matrix Completion from Quantized Measurements Journal of Machine Learning Research 7 (206-34 Submitted 6/5; Revised 2/5; Published 4/6 Probabilistic Low-Rank Matrix Completion from Quantized Measurements Sonia A. Bhaskar Department of Electrical Engineering

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

1-bit Matrix Completion. PAC-Bayes and Variational Approximation

1-bit Matrix Completion. PAC-Bayes and Variational Approximation : PAC-Bayes and Variational Approximation (with P. Alquier) PhD Supervisor: N. Chopin Junior Conference on Data Science 2016 Université Paris Saclay, 15-16 September 2016 Introduction: Matrix Completion

More information

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS Andrew S. Lan 1, Christoph Studer 2, and Richard G. Baraniuk 1 1 Rice University; e-mail: {sl29, richb}@rice.edu 2 Cornell University; e-mail:

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Adrien Todeschini Inria Bordeaux JdS 2014, Rennes Aug. 2014 Joint work with François Caron (Univ. Oxford), Marie

More information

Linear dimensionality reduction for data analysis

Linear dimensionality reduction for data analysis Linear dimensionality reduction for data analysis Nicolas Gillis Joint work with Robert Luce, François Glineur, Stephen Vavasis, Robert Plemmons, Gabriella Casalino The setup Dimensionality reduction for

More information

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task Binary Principal Component Analysis in the Netflix Collaborative Filtering Task László Kozma, Alexander Ilin, Tapani Raiko first.last@tkk.fi Helsinki University of Technology Adaptive Informatics Research

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

A Simple Algorithm for Nuclear Norm Regularized Problems

A Simple Algorithm for Nuclear Norm Regularized Problems A Simple Algorithm for Nuclear Norm Regularized Problems ICML 00 Martin Jaggi, Marek Sulovský ETH Zurich Matrix Factorizations for recommender systems Y = Customer Movie UV T = u () The Netflix challenge:

More information

1-Bit matrix completion

1-Bit matrix completion Information and Inference: A Journal of the IMA 2014) 3, 189 223 doi:10.1093/imaiai/iau006 Advance Access publication on 11 July 2014 1-Bit matrix completion Mark A. Davenport School of Electrical and

More information

Universal low-rank matrix recovery from Pauli measurements

Universal low-rank matrix recovery from Pauli measurements Universal low-rank matrix recovery from Pauli measurements Yi-Kai Liu Applied and Computational Mathematics Division National Institute of Standards and Technology Gaithersburg, MD, USA yi-kai.liu@nist.gov

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

Matrix Completion: Fundamental Limits and Efficient Algorithms

Matrix Completion: Fundamental Limits and Efficient Algorithms Matrix Completion: Fundamental Limits and Efficient Algorithms Sewoong Oh PhD Defense Stanford University July 23, 2010 1 / 33 Matrix completion Find the missing entries in a huge data matrix 2 / 33 Example

More information

Spectral k-support Norm Regularization

Spectral k-support Norm Regularization Spectral k-support Norm Regularization Andrew McDonald Department of Computer Science, UCL (Joint work with Massimiliano Pontil and Dimitris Stamos) 25 March, 2015 1 / 19 Problem: Matrix Completion Goal:

More information

Matrix Completion from Fewer Entries

Matrix Completion from Fewer Entries from Fewer Entries Stanford University March 30, 2009 Outline The problem, a look at the data, and some results (slides) 2 Proofs (blackboard) arxiv:090.350 The problem, a look at the data, and some results

More information

An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion

An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion Robert M. Freund, MIT joint with Paul Grigas (UC Berkeley) and Rahul Mazumder (MIT) CDC, December 2016 1 Outline of Topics

More information

Sparse and Low Rank Recovery via Null Space Properties

Sparse and Low Rank Recovery via Null Space Properties Sparse and Low Rank Recovery via Null Space Properties Holger Rauhut Lehrstuhl C für Mathematik (Analysis), RWTH Aachen Convexity, probability and discrete structures, a geometric viewpoint Marne-la-Vallée,

More information

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University Matrix completion: Fundamental limits and efficient algorithms Sewoong Oh Stanford University 1 / 35 Low-rank matrix completion Low-rank Data Matrix Sparse Sampled Matrix Complete the matrix from small

More information

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Raghunandan H. Keshavan, Andrea Montanari and Sewoong Oh Electrical Engineering and Statistics Department Stanford University,

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

PU Learning for Matrix Completion

PU Learning for Matrix Completion Cho-Jui Hsieh Dept of Computer Science UT Austin ICML 2015 Joint work with N. Natarajan and I. S. Dhillon Matrix Completion Example: movie recommendation Given a set Ω and the values M Ω, how to predict

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

Concentration-Based Guarantees for Low-Rank Matrix Reconstruction

Concentration-Based Guarantees for Low-Rank Matrix Reconstruction JMLR: Workshop and Conference Proceedings 9 20 35 339 24th Annual Conference on Learning Theory Concentration-Based Guarantees for Low-Rank Matrix Reconstruction Rina Foygel Department of Statistics, University

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

Low-rank Matrix Completion from Noisy Entries

Low-rank Matrix Completion from Noisy Entries Low-rank Matrix Completion from Noisy Entries Sewoong Oh Joint work with Raghunandan Keshavan and Andrea Montanari Stanford University Forty-Seventh Allerton Conference October 1, 2009 R.Keshavan, S.Oh,

More information

Lecture 8: February 9

Lecture 8: February 9 0-725/36-725: Convex Optimiation Spring 205 Lecturer: Ryan Tibshirani Lecture 8: February 9 Scribes: Kartikeya Bhardwaj, Sangwon Hyun, Irina Caan 8 Proximal Gradient Descent In the previous lecture, we

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

Mathematical Methods for Data Analysis

Mathematical Methods for Data Analysis Mathematical Methods for Data Analysis Massimiliano Pontil Istituto Italiano di Tecnologia and Department of Computer Science University College London Massimiliano Pontil Mathematical Methods for Data

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Statistical Performance of Convex Tensor Decomposition

Statistical Performance of Convex Tensor Decomposition Slides available: h-p://www.ibis.t.u tokyo.ac.jp/ryotat/tensor12kyoto.pdf Statistical Performance of Convex Tensor Decomposition Ryota Tomioka 2012/01/26 @ Kyoto University Perspectives in Informatics

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

A Unified Approach to Proximal Algorithms using Bregman Distance

A Unified Approach to Proximal Algorithms using Bregman Distance A Unified Approach to Proximal Algorithms using Bregman Distance Yi Zhou a,, Yingbin Liang a, Lixin Shen b a Department of Electrical Engineering and Computer Science, Syracuse University b Department

More information

Stochastic dynamical modeling:

Stochastic dynamical modeling: Stochastic dynamical modeling: Structured matrix completion of partially available statistics Armin Zare www-bcf.usc.edu/ arminzar Joint work with: Yongxin Chen Mihailo R. Jovanovic Tryphon T. Georgiou

More information

Rank minimization via the γ 2 norm

Rank minimization via the γ 2 norm Rank minimization via the γ 2 norm Troy Lee Columbia University Adi Shraibman Weizmann Institute Rank Minimization Problem Consider the following problem min X rank(x) A i, X b i for i = 1,..., k Arises

More information

Low-Rank Matrix Recovery

Low-Rank Matrix Recovery ELE 538B: Mathematics of High-Dimensional Data Low-Rank Matrix Recovery Yuxin Chen Princeton University, Fall 2018 Outline Motivation Problem setup Nuclear norm minimization RIP and low-rank matrix recovery

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

New ways of dimension reduction? Cutting data sets into small pieces

New ways of dimension reduction? Cutting data sets into small pieces New ways of dimension reduction? Cutting data sets into small pieces Roman Vershynin University of Michigan, Department of Mathematics Statistical Machine Learning Ann Arbor, June 5, 2012 Joint work with

More information

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering Matrix Factorization Techniques For Recommender Systems Collaborative Filtering Markus Freitag, Jan-Felix Schwarz 28 April 2011 Agenda 2 1. Paper Backgrounds 2. Latent Factor Models 3. Overfitting & Regularization

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Matrix Completion for Structured Observations

Matrix Completion for Structured Observations Matrix Completion for Structured Observations Denali Molitor Department of Mathematics University of California, Los ngeles Los ngeles, C 90095, US Email: dmolitor@math.ucla.edu Deanna Needell Department

More information

The Stability of Low-Rank Matrix Reconstruction: a Constrained Singular Value Perspective

The Stability of Low-Rank Matrix Reconstruction: a Constrained Singular Value Perspective Forty-Eighth Annual Allerton Conference Allerton House UIUC Illinois USA September 9 - October 1 010 The Stability of Low-Rank Matrix Reconstruction: a Constrained Singular Value Perspective Gongguo Tang

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Generalized Principal Component Analysis: Projection of Saturated Model Parameters

Generalized Principal Component Analysis: Projection of Saturated Model Parameters Generalized Principal Component Analysis: Projection of Saturated Model Parameters Andrew J. Landgraf and Yoonkyung Lee Abstract Principal component analysis (PCA) is very useful for a wide variety of

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Bhargav Kanagal Department of Computer Science University of Maryland College Park, MD 277 bhargav@cs.umd.edu Vikas

More information

A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure

A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure 1 A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure Ashkan Esmaeili and Farokh Marvasti ariv:1810.1260v1 [stat.ml] 29 Oct 2018 Abstract In this paper, we introduce a novel and robust

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Estimation of (near) low-rank matrices with noise and high-dimensional scaling

Estimation of (near) low-rank matrices with noise and high-dimensional scaling Estimation of (near) low-rank matrices with noise and high-dimensional scaling Sahand Negahban Department of EECS, University of California, Berkeley, CA 94720, USA sahand n@eecs.berkeley.edu Martin J.

More information

Information-Theoretic Limits of Matrix Completion

Information-Theoretic Limits of Matrix Completion Information-Theoretic Limits of Matrix Completion Erwin Riegler, David Stotz, and Helmut Bölcskei Dept. IT & EE, ETH Zurich, Switzerland Email: {eriegler, dstotz, boelcskei}@nari.ee.ethz.ch Abstract We

More information

Symmetric Factorization for Nonconvex Optimization

Symmetric Factorization for Nonconvex Optimization Symmetric Factorization for Nonconvex Optimization Qinqing Zheng February 24, 2017 1 Overview A growing body of recent research is shedding new light on the role of nonconvex optimization for tackling

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

Matrix Factorizations: A Tale of Two Norms

Matrix Factorizations: A Tale of Two Norms Matrix Factorizations: A Tale of Two Norms Nati Srebro Toyota Technological Institute Chicago Maximum Margin Matrix Factorization S, Jason Rennie, Tommi Jaakkola (MIT), NIPS 2004 Rank, Trace-Norm and Max-Norm

More information

From Compressed Sensing to Matrix Completion and Beyond. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison

From Compressed Sensing to Matrix Completion and Beyond. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison From Compressed Sensing to Matrix Completion and Beyond Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Netflix Prize One million big ones! Given 100 million ratings on a

More information

arxiv: v3 [stat.me] 8 Jun 2018

arxiv: v3 [stat.me] 8 Jun 2018 Between hard and soft thresholding: optimal iterative thresholding algorithms Haoyang Liu and Rina Foygel Barber arxiv:804.0884v3 [stat.me] 8 Jun 08 June, 08 Abstract Iterative thresholding algorithms

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems Kim-Chuan Toh Sangwoon Yun March 27, 2009; Revised, Nov 11, 2009 Abstract The affine rank minimization

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jiaming Xu Joint work with Rui Wu, Kai Zhu, Bruce Hajek, R. Srikant, and Lei Ying University of Illinois, Urbana-Champaign

More information

Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization Maximum Margin Matrix Factorization Nati Srebro Toyota Technological Institute Chicago Joint work with Noga Alon Tel-Aviv Yonatan Amit Hebrew U Alex d Aspremont Princeton Michael Fink Hebrew U Tommi Jaakkola

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Recovery of Simultaneously Structured Models using Convex Optimization

Recovery of Simultaneously Structured Models using Convex Optimization Recovery of Simultaneously Structured Models using Convex Optimization Maryam Fazel University of Washington Joint work with: Amin Jalali (UW), Samet Oymak and Babak Hassibi (Caltech) Yonina Eldar (Technion)

More information

(k, q)-trace norm for sparse matrix factorization

(k, q)-trace norm for sparse matrix factorization (k, q)-trace norm for sparse matrix factorization Emile Richard Department of Electrical Engineering Stanford University emileric@stanford.edu Guillaume Obozinski Imagine Ecole des Ponts ParisTech guillaume.obozinski@imagine.enpc.fr

More information

Lecture: Matrix Completion

Lecture: Matrix Completion 1/56 Lecture: Matrix Completion http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html Acknowledgement: this slides is based on Prof. Jure Leskovec and Prof. Emmanuel Candes s lecture notes Recommendation systems

More information

Collaborative Filtering

Collaborative Filtering Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin

More information

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Mathurin Massias https://mathurinm.github.io INRIA Saclay Joint work with: Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Topics in matrix completion and genomic prediction

Topics in matrix completion and genomic prediction Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 018 Topics in matrix completion and genomic prediction Xiaojun Mao Iowa State University Follow this and additional

More information

Learning with matrix and tensor based models using low-rank penalties

Learning with matrix and tensor based models using low-rank penalties Learning with matrix and tensor based models using low-rank penalties Johan Suykens KU Leuven, ESAT-SCD/SISTA Kasteelpark Arenberg 10 B-3001 Leuven (Heverlee), Belgium Email: johan.suykens@esat.kuleuven.be

More information

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk)

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk) 10-704: Information Processing and Learning Spring 2015 Lecture 21: Examples of Lower Bounds and Assouad s Method Lecturer: Akshay Krishnamurthy Scribes: Soumya Batra Note: LaTeX template courtesy of UC

More information

A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients

A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients Weimin Miao, Shaohua Pan and Defeng Sun RMI Working Paper No. 2/0 Submitted: 3 October, 202 Abstract In this paper, we address

More information

ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING

ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING Submitted to the Annals of Statistics ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING By Sahand Negahban and Martin J. Wainwright University of California, Berkeley We study

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information