Recent Developments in 2G HTS Coil Technology

Size: px
Start display at page:

Download "Recent Developments in 2G HTS Coil Technology"

Transcription

1 superior performance. powerful technology. Recent Developments in 2G HTS Coil Technology Drew W Hazelton Principal Engineer SuperPower Inc Applied Superconductivity Conference August 1-6, 2010 Washington, DC SuperPower, Inc. is a subsidiary of Royal Philips Electronics N.V.

2 SuperPower Focus: 2G HTS Wire, Coils Development and manufacture of secondgeneration (2G) high-temperature superconductor (HTS) WIRE Suitable for a wide variety of applications: research, energy, military, defense, industrial, transportation, high energy physics, medical, space Design and fabrication of COILS based on 2G HTS wire Engineering services 2

3 SuperPower 2G HTS Wire Substrate Electropolishing Superconductor: Uniform thickness Silver Sputtering Substrate: Smooth and Clean Buffer: Good Texture Buffer IBAD Copper Electroplating HTS MOCVD Superconductor: Composition 3

4 Modeling 2G HTS Conductor Performance 2G HTS conductor critical current vs. temperature, magnetic field, magnetic field angle and composition ac losses quench initiation and propagation mechanical performance fault current limiting performance Quench Dynamic resistance Thermal modeling temperature rise, conductor re-cool 4

5 SP 2G HTS has excellent performance over a wide field and temperature range I c /I c (77K, 0T) vs. Field (perpendicular) K (Sample 1) 14 K (Sample 1) 22 K (Sample 1) 33 K (Sample 1) 45 K (Sample 2) 50 K (Sample 2) 65 K (Sample 2) 77 K (Sample 2) Ic (H//c)/Ic (77K 0T) H (T) 5

6 2G HTS in-field performance modified with advanced pinning In field performance vs. field angle drives coil design and performance Critical region for coils is often degrees Significant drop-off in Ic Relatively large field component New wire with advanced pinning becoming available Critical current (A/cm-width) micron SmYBCO micron GdYBCO micron Zr:GdYBCO K, 1T Angle (degree) 6

7 Modeling of wire Ic vs. operating parameters for coil performance evaluation Θ (deg) I c (A) Low Field c a b Medium Field High Field HTS coil performance is often determined by anisotropy in field dependence High flux density at small angles (Near B//ab) Medium flux density at intermediate angle (20-30 deg) Low flux density at high angle (B//c) 7

8 Universal Jc/Jco vs. H/Hirr curves can be developed H // c (undoped) Universal Curve for 2G Conductor, H//c Temp (data set) 83K (8) 82K (1) 77K (1) 77K (4) 77K (5) 77K (7) 77K (9) 75K (6) 72K (1) 65K (1) 65K (9) 60K (8) 54K (8) 50K (1) 50K (2) 50K (4) 50K (7) 50K (9) 45K (1) 45K (9) 42K (8) 40K (2) 33K (9) 30K (2) 30K (4) 22K (9) 20K (2) 20K (7) 15K (2) 14K (9) 10K (2) 10K (7) 4.2K (3) 4.2K (6) 4.2K (9) Jc / Jco Data Set 1: NHMFL PB Data Set 2: NHMFL PB Data Set 3: NHMFL PB Data Set 4: NHMFL PB C Data Set 5: NHMFL 1217 Data Set 6: PLee/LANL 1996 data Data Set 7: PB Jc(θ) min Data Set 8: ONRL meas "std" cond Data Set 9: SP release 11/ H / H irr 8

9 Similar data H//a,b (undoped) Universal Curve for 2G Conductor, H//a,b K (8) 77K (7) 75K (6) 60K (8) 54K (8) 50K (7) 42K (8) 20K (7) 10K (7) 4.2K (3) Jc / Jco Data Set 3: NHMFL PB Data Set 6: PLee/LANL 1996 data Data Set 7: PB Jc(θ) max Data Set 8: ONRL meas "std" cond H / H irr 9

10 H irr from normal state phase diagram Superconducting - normal state phase diagram Hirr // c Hirr // ab Poly. (Hirr // ab) Poly. (Hirr // c) Hirr // c = E-02x E+00x E+02 R 2 = E-01 Hirr // ab = E-01x E+01x E+03 R 2 = E H irr //c (Tesla) H irr /ab (Tesla) Temperature (K) 10

11 J co measured from sample materials (undoped) Jco vs. Temp y = E-05x E-03x E-01x E+01 R 2 = E Jco (MA/cm2) Jco Poly. (Jco) Temp (K) 11

12 Three distinct regions exist on universal curve Universal Curve for 2G Conductor, H//c Jc/Jco constant (low fields) Temp (data set) 83K (8) 82K (1) 77K (1) 77K (4) 77K (5) 77K (7) 77K (9) 75K (6) 72K (1) 65K (1) 65K (9) 60K (8) 54K (8) 50K (1) 50K (2) 50K (4) 50K (7) 50K (9) 45K (1) 45K (9) 42K (8) 40K (2) 33K (9) 30K (2) 30K (4) 22K (9) 20K (2) 20K (7) 15K (2) 14K (9) 10K (2) 10K (7) 4.2K (3) 4.2K (6) 4.2K (9) Power Law region (intermediate fields) Kramer Law region (high fields) Jc / Jco Data Set 1: NHMFL PB Data Set 2: NHMFL PB Data Set 3: NHMFL PB Data Set 4: NHMFL PB C Data Set 5: NHMFL 1217 Data Set 6: PLee/LANL 1996 data Data Set 7: PB Jc(θ) min Data Set 8: ONRL meas "std" cond Data Set 9: SP release 11/ H / H irr 12

13 Power Law Region Power Law Fit - Combined Data H//c 10 y = x R 2 = Jc / Jco H / Hirr 13

14 Kramer Law Region Modified Kramer Plot, H//c 83K (8) 82K (1) 77K (1) 77K (4) 77K (5) 77K (7) 77K (9) 75K (6) 72K (1) 65K (1) 65K (9) 50K (7) 50K (9) combined Linear (combined) y = x R 2 = (Jc/Jco) 0.5 (H/Hirr) H / H irr 14

15 Model values match measured values well Refined model check Ic(B,T) / Ic(sf,77K) K Refined 4.2K Data 14K Refined 14K Data 22K Refined 22K Data 33K Refined 33k Data 45K Refined 45K Data 50K Refined 50K Data 65K Refined 656k Data 77K Refined 77k Data Applied Field, B//c (T) 15

16 Peak width shows anomaly? at higher temperatures Peak Width at Δ/2 (deg) y = x R 2 = H / H irr // ab 77K 77K 77K 77K 77K 77K early 75K 75K early 65K 50K 20K 10K summary Power (10K) Power (20K) Power (50K) Power (65K) Power (77K) Power (75K early) Power (summary) 16

17 Model gives design data that can be applied to any point in the 2G windings Top = K 20 Ic(Bφ,T) / Ic(sf, 77K) Ic //a,b Ic // c Peak width Ic(B,T) / Ic(sf,77K) field angle φ (deg) 17

18 Internal codes (MagMan) give field strength vs. location in magnet windings(discrete points) Coil H2 - Total Field total field (gauss) axial position (cm) radial position (cm) 18

19 Internal codes also give field angle information Coil H2 - Field Angle From +Z Axis field angle (deg) radial position (cm) axial position (cm) 19

20 Semi-empirical model developed to predict conductor performance under varied operating conditions Ideally, this type of data is desirable for each location within a coil winding Ic //a,b Ic // c Peak width Ic(B,T) / Ic(sf,77K) Top = K 20 Ic(Bφ,T) / Ic(sf, 77K) field angle φ (deg) 20

21 Evaluating each point using model values gives Iop/Ic value Coil H2 - Iop / Ic Plot Ic (77, sf) = 80 A, Iop = 60 A, Top = 50 K Iop / Ic For each point, we know field strength, field angle and Ic allows us to determine Iop/Ic radial position (cm) axial position (cm)

22 Results can be used to look at coil heating, quench initiation Coil H2 - Iop / Ic Plot Ic (77, sf) = 80 A, Iop = 60 A, Top = 60 K Iop / Ic axial position (cm) radial position (cm) 22

23 Further steps Further refinement of Ic vs. field angle model Need to update model for advancements in pinning Power law exponent changes Peak width broadening with second phase dopants Introduction of minor Ic // c peak Further refinement of thermal model using generated data 23

24 Other modeling efforts 2G HTS wire critical current vs. temperature, magnetic field, magnetic field angle and composition impact of dopants ac losses quench initiation and propagation mechanical performance fault current limiting performance Quench Dynamic resistance Thermal modeling temperature rise, conductor re-cool Impact of parallel shunt element on performance 24

25 Modeling of impact of nano-defect sources for bidirectional pinning at different temperatures and fields HREM of nanocluster HREM of nanorod Horizontal (Gd,Y) 2 O 3 nano cluster Vertical BZO Nanorod TEM by F. Kametani (TEM) and D. Larbalestier, FSU 25

26 Multfilamentary 2G HTS tapes for low ac loss applications being developed Filamentization of 2G HTS tapes is desired for low ac loss applications. Refined modeling of ac loss reduction required ac loss (W/m) Hz B ac rms (T) unstriated 5.1 x multifilamentary 4 mm 5-filament tape, 4 mm wide 32-filament tape, 4 mm wide 26

27 Stress modeling in mechanically anisotropic coil structures Coil 1 Stress Distribution Stress (MPa) σ θ (adjacent turn) σ θ (independent turn) σr (adjacent turn) Normalized Radius ε 2G HTS coil generates 27T in 20 T background 27

28 Modeling of 2G wire for SFCL High-power SFCL test Prospective current Limited current Peak current through element Response time Element quality range Fast response time 2G 90 ka* 32 ka 3 ka < 1 ms Narrow Quench Dynamic resistance Thermal modeling of temperature rise, conductor re-cool Impact of parallel shunt element on performance Current [ka] Current [ka] Time [ms] Voltage across HTS elements [kv] Iprospective I_total_KEMA I_HTS Ish V_total_KEMA Quench speed around 0.5 ms Time [ms] I_total_KEMA I_HTS Ish V_total_KEMA Voltage across HTS elements [kv] 28

29 Summary Many aspects of the 2G HTS conductors need to be modeled Models will need to be upgraded as conductor improvements are implemented Different architectures Composition changes in the HTS layer impacting Ic performance characteristics In addition to conductor based models, application specific evaluations will need to be conducted Quench Heat transfer within device and transfer to coolant Mechanical 29

30 Questions? Thank you for your interest! For further information about SuperPower, please visit us at: or 30

Recent Developments in YBCO for High Field Magnet Applications

Recent Developments in YBCO for High Field Magnet Applications superior performance. powerful technology. Recent Developments in YBCO for High Field Magnet Applications D.W. Hazelton Principal Engineer, SuperPower, Inc. 2008 Low Temperature Superconductor Workshop

More information

Application of SuperPower 2G HTS Wire to High Field Devices

Application of SuperPower 2G HTS Wire to High Field Devices superior performance. powerful technology. Application of SuperPower 2G HTS Wire to High Field Devices Drew W. Hazelton Principal Engineer, SuperPower, Inc. 2011 MT22 Conference Marseille, France Sept.

More information

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors superior performance. powerful technology. Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors Drew W. Hazelton - Principal Engineer, HTS Applications

More information

Second-Generation HTS Wire for Magnet Applications

Second-Generation HTS Wire for Magnet Applications superior performance. powerful technology. Second-Generation HTS Wire for Magnet Applications Yi-Yuan Xie, V. Selvamanickam, J. Dackow, D. Hazelton, Y. Chen, X. Xiong, A. Rar, Y. Qiao, K. Lenseth, and

More information

Applications Using SuperPower 2G HTS Conductor

Applications Using SuperPower 2G HTS Conductor superior performance. powerful technology. Applications Using SuperPower 2G HTS Conductor Drew W. Hazelton Principal Engineer, SuperPower Inc. 2011 CEC/ICMC Conference June 16, 2011 Spokane, WA SuperPower

More information

Second Generation HTS Wire for Electric Power Applications

Second Generation HTS Wire for Electric Power Applications superior performance. powerful technology. Second Generation HTS Wire for Electric Power Applications Yi-Yuan Xie, D. Hazelton, J.C. Llambes, Y. Chen, X. Xiong, A. Rar, K. Lenseth, Y. Qiao, A. Knoll J.

More information

2G HTS Wire and High Field Magnet Demonstration

2G HTS Wire and High Field Magnet Demonstration 2G HTS Wire and High Field Magnet Demonstration Presented by: Drew W. Hazelton SuperPower, Inc. Low Temperature Superconductivity Workshop S. Lake Tahoe, CA October 29, 2007 Providing HTS Solutions for

More information

2G HTS Coil Winding Technology Development at SuperPower

2G HTS Coil Winding Technology Development at SuperPower superior performance. powerful technology. 2G HTS Coil Winding Technology Development at SuperPower D.W. Hazelton, P. Brownsey, H. Song, Y. Zhang Tuesday, June 18, 2013 2013 CEC-ICMC Anchorage Alaska Paper

More information

2G HTS Wires for High Magnetic

2G HTS Wires for High Magnetic 2G HTS Wires for High Magnetic Field Applications Venkat Selvamanickam Department of Mechanical Engineering Texas Center for Superconductivity University it of Houston, Houston, TX, USA SuperPower Inc,

More information

Second-generation HTS Wire for Wind Energy Applications

Second-generation HTS Wire for Wind Energy Applications Second-generation HTS Wire for Wind Energy Applications Venkat Selvamanickam, Ph.D. Department of Mechanical Engineering Texas Center for Superconductivity University of Houston, Houston, TX SuperPower

More information

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Superior performance. Powerful technology. REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Yifei Zhang, Satoshi Yamano, Drew Hazelton, and Toru Fukushima 2018 IAS-HEP Mini-Workshop

More information

Progress in Scale-up of 2G HTS Wire at SuperPower Part III

Progress in Scale-up of 2G HTS Wire at SuperPower Part III superior performance. powerful technology. Progress in Scale-up of 2G HTS Wire at SuperPower Part III V. Selvamanickam & Y. Xie Y. Chen, X. Xiong, M. Martchevski, Y. Qiao, A. Rar, B. Gogia, R. Schmidt,

More information

Fault Current Limiter Based on Coated Conductor

Fault Current Limiter Based on Coated Conductor superior performance. powerful technology. Fault Current Limiter Based on Coated Conductor Juan-Carlos H. Llambes, Ph.D. SFCL Program Manager / Senior High Voltage Engineer University of Houston: V. Selvamanickam,

More information

Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates

Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates 3MPo2A-2 Improved Current Density in 2G HTS Conductors Using Thin Hastelloy C276 Substrates D.W. Hazelton, H. Fukushima*, A. Knoll, A. Sundaram, Y. Zhang SuperPower Inc. 45 Duane Ave Schenectady, NY 1234

More information

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower

Development, Manufacturing and Applications of 2G HTS Wire at SuperPower superior performance. powerful technology. Development, Manufacturing and Applications of 2G HTS Wire at SuperPower Traute Lehner - Senior Director of Marketing & Govt. Affairs Yifei Zhang, Ph.D. - Senior

More information

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply

High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply superior performance. powerful technology. High-Performance 2G HTS Wire for an Efficient and Reliable Electricity Supply Drew W. Hazelton Principal Engineer, SuperPower Inc. 2010 IEEE Conf Innovative Technology

More information

高性能第二代高温超导带材 - 批量化生产和持续技术更新

高性能第二代高温超导带材 - 批量化生产和持续技术更新 superior performance. powerful technology. 高性能第二代高温超导带材 - 批量化生产和持续技术更新 High-performance 2G HTS wire: manufacturing and technology advancement 谢义元 (Yi-Yuan Xie), V. Selvamanickam, Y. Chen, X. Xiong, M.

More information

Progress in development of MOCVDbased coated conductors

Progress in development of MOCVDbased coated conductors Progress in development of MOCVDbased coated conductors Venkat Selvamanickam, Y. Yao, Y. Liu, J. Liu, N. Khatri, E. Galtsyan, and dg. Majkic Department of Mechanical Engineering g Texas Center for Superconductivity

More information

2G HTS Wire for Demanding Applications and Continuous Improvement Plans

2G HTS Wire for Demanding Applications and Continuous Improvement Plans superior performance. powerful technology. 2G HTS Wire for Demanding Applications and Continuous Improvement Plans DW Hazelton Tuesday, September 17, 2013 EUCAS-2013, Genova, Italy SuperPower Inc. is a

More information

2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications

2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications 2LX04 1 2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications Y.Y. Xie, K. Tekletsadik, D. Hazelton and V. Selvamanickam Abstract In this paper, we report the results

More information

High critical currents in Zr:GdYBCO superconducting tapes processed by multipass MOCVD

High critical currents in Zr:GdYBCO superconducting tapes processed by multipass MOCVD superior performance. powerful technology. High critical currents in Zr:GdYBCO superconducting tapes processed by multipass MOCVD Y. Chen 1, T. Shi 2, A. P. Guevara 2, Y. Yao 2, G. Majkic 2, Y. Zhang 2,

More information

Status of HTS Projects at SuperPower: 2G HTS Wire and Cable

Status of HTS Projects at SuperPower: 2G HTS Wire and Cable superior performance. powerful technology. Status of HTS Projects at SuperPower: 2G HTS Wire and Cable Yi-Yuan Xie, Y. Chen, X. Xiong, Y. Xie, M. Marchevsky, A. Rar, Y. Qiao, R. Schmidt, A. Knoll, K. Lenseth,

More information

Development of 2G HTS Wire for Demanding Electric Power Applications

Development of 2G HTS Wire for Demanding Electric Power Applications superior performance. powerful technology. Development of 2G HTS Wire for Demanding Electric Power Applications Traute F. Lehner Sr. Director of Marketing & Government Affairs June 20-21, 2011 Santiago

More information

High Performance 2G Wire: From R&D to Pilotscale Manufacturing

High Performance 2G Wire: From R&D to Pilotscale Manufacturing 3MA ASC 28 Preprint High Performance 2G Wire: From R&D to Pilotscale Manufacturing V. Selvamanickam, Y. Chen, X. Xiong, Y.Y. Xie, M. Marchevsky, A. Rar, Y. Qiao, R.M. Schmidt, A. Knoll, K.P. Lenseth, and

More information

2G Conductor Delivery for the Albany Cable Project

2G Conductor Delivery for the Albany Cable Project 2G Conductor Delivery for the Albany Cable Project HTS Solutions for a New Dimension in Power Superconductivity for Electric Systems 26 Annual DOE Peer Review Next challenge: Delivery of nearly 1, m of

More information

C-axis Tensile Strength of 2G HTS

C-axis Tensile Strength of 2G HTS superior performance. powerful technology. C-axis Tensile Strength of 2G HTS Yi-Yuan Xie, Brian Liebl, Sofia Soloveichik, Lance Hope, Drew Hazelton, and John Dackow SuperPower, Inc, Schenectady, NY Ronald

More information

2G HTS Wire Status in the USA

2G HTS Wire Status in the USA 2G HTS Wire Status in the USA Traute F. Lehner Sr. Director of Marketing & Government Affairs, SuperPower Inc. CCAS Secretary International Superconductivity Industry Summit October 31, 2011 November 1,

More information

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements superior performance. powerful technology. Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements Traute F. Lehner, Sr. Director of Marketing 7 th MEM Workshop (Mechanical

More information

Superconductivity for Electric Systems DOE 2006 Wire Development Workshop

Superconductivity for Electric Systems DOE 2006 Wire Development Workshop Superconductivity for Electric Systems DOE 2006 Wire Development Workshop St. Petersburg, FL Jan. 31- Feb. 1, 2006 HTS Solutions for a New Dimension in Power 2G HTS Conductors for Fault Current Limiter

More information

Recent Developments in 2G HTS Coil Technology

Recent Developments in 2G HTS Coil Technology IEEE/CSC & ESAS European Superconductivity News Forum (ESNF), No. 6, October 28 (ASC Preprint 3LY1 conforming to IEEE Policy on Electronic Dissemination, Section 8.1.9) The published version of this manuscript

More information

Conductor Requirements for Superconducting Fault Current Limiters

Conductor Requirements for Superconducting Fault Current Limiters superior performance. powerful technology. Conductor Requirements for Superconducting Current Limiters Chuck Weber, Director HTS Applications Coated Conductors in Applications 2008 Houston, Texas - December

More information

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES

RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES RE-Ba 2 Cu 3 O 7-d coated conductor helical cables for electric power transmission and SMES D.C. van der Laan and X.F. Lu University of Colorado & National Institute of Standards and Technology, Boulder,

More information

Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors

Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors Testing of Single Phase Short Sample Cable Core Made with YBCO Conductors C. S. Weber, V. Selvamanickam, Y.Y. Xie - SuperPower, Inc. T. Masuda, H. Yumura - Sumitomo Electric Industries Session # 4LW1 HTS

More information

Impact of High-Temperature Superconductors on the Superconducting Maglev

Impact of High-Temperature Superconductors on the Superconducting Maglev Impact of High-Temperature Superconductors on the Superconducting Maglev No. 92 H. Ohsaki The University of Tokyo, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan ABSTRACT: This paper reviews

More information

Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs

Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs superior performance. powerful technology. Status of 2G HTS Wire Development & Production in the US, plus an Overview of the SFCL Transformer and 2G SMES Programs Traute Lehner Sr. Director Marketing &

More information

Leonardo Civale and Yi-Yuan Yuan Xie

Leonardo Civale and Yi-Yuan Yuan Xie LANL-SuperPower CRADA: Development and Multi-Scale Characterization of IBAD MgO/MOCVD YBCO Coated Conductors Leonardo Civale and Yi-Yuan Yuan Xie Superconductivity for Electric Power Systems Annual Peer

More information

Progress in Reactive Co-Evaporation on IBAD

Progress in Reactive Co-Evaporation on IBAD Progress in Reactive Co-Evaporation on IBAD Vladimir Matias, Yehyun Jung, Chris Sheehan Superconductivity Technology Center Los Alamos National Laboratory LANL FY10 Funding: RCE R&D 2.1: $150K; 0.3 FTE

More information

ADVANTAGES OF SECOND-GENERATION HIGH TEMPERATURE SUPERCONDUCTORS FOR PULSED POWER APPLICATIONS

ADVANTAGES OF SECOND-GENERATION HIGH TEMPERATURE SUPERCONDUCTORS FOR PULSED POWER APPLICATIONS ADVANTAGES OF SECOND-GENERATION HIGH TEMPERATURE SUPERCONDUCTORS FOR PULSED POWER APPLICATIONS J.C. Hernandez-Llambes ξ, D. Hazelton SUPERPOWER, Inc., 450 Duane Avenue Schenectady, New York, 12304 USA

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

High-Performance 2G HTS Wire for Efficient and Reliable Electricity Supply

High-Performance 2G HTS Wire for Efficient and Reliable Electricity Supply High-Performance 2G HTS Wire for Efficient and Reliable Electricity Supply Drew Hazelton*, Yi-Yuan Xie*, Venkat Selvamanickam**, Reid Anthony*, Juan Carlos Llambes* and Traute Lehner* *SuperPower, Inc.,

More information

High temperature superconductors for fusion magnets - influence of neutron irradiation

High temperature superconductors for fusion magnets - influence of neutron irradiation High temperature superconductors for fusion magnets - influence of neutron irradiation Michal Chudý M.Eisterer, H.W.Weber Outline 1. Superconductors in thermonuclear fusion 2. High temperature superconductors

More information

HTS Coated Conductor Characterization and Analysis

HTS Coated Conductor Characterization and Analysis FY 9 Funding: $55 K (ORNL) $1 K (FSU) HTS Coated Conductor Characterization and Analysis 1 OAK RIDGE NATIONAL LABORATORY Presenters: Yuri Zuev, Alex Gurevich, Jim Thompson Contributors: C. Cantoni, D.

More information

Variation of critical current and n-value of 2G HTS tapes in external magnetic fields of different orientation

Variation of critical current and n-value of 2G HTS tapes in external magnetic fields of different orientation Journal of Physics: Conference Series PAPER OPEN ACCESS Variation of critical current and n-value of 2G HTS tapes in external magnetic fields of different orientation To cite this article: V V Sychugov

More information

Design Principles of Superconducting Magnets

Design Principles of Superconducting Magnets 1 Design Principles of Superconducting Magnets Aki Korpela Tampere University of Technology DESIGN PRINCIPLES OF SUPERCONDUCTING MAGNETS 2 Content of the presentation Background Short-sample measurement

More information

Recent Development for REBaCuO Coated Conductors in China

Recent Development for REBaCuO Coated Conductors in China IO-12, 17:40-18:05 pm Monday, September 12 Recent Development for REBaCuO Coated Conductors in China Chuanbing Cai Shanghai Key Laboratory for High Temperature Superconductors, Shanghai University, China

More information

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH chemistry meets energy All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH Michael Baecker; Martina Falter; Ron Feenstra; Brygida Wojtyniak; Jan Bennewitz; Jan Kunert; Mark O. Rikel Deutsche

More information

Status of 2G HTS Wire Production at SuperOx

Status of 2G HTS Wire Production at SuperOx Status of 2G HTS Wire Production at SuperOx Sergey Samoilenkov SuperOx, Moscow, Russia 1 Outline About SuperOx 2G HTS wire characteristics New customization options for 2G HTS wire Development for applications

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

Overview of HTS conductors and MgB 2 wires

Overview of HTS conductors and MgB 2 wires HTS4 Fusion Conductor Workshop Karlsruhe, 26./27.5.2011 Overview of HTS conductors and MgB 2 wires René Flükiger University of Geneva (GAP) & CERN (TE-MSC) Geneva Switzerland 1 Outlook * Overview: recent

More information

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus Alternative Approach to ReBCO HTS Magnet Operation and Protection: - Influence of Turn-to-turn Equivalent Resistivity and Coil Size on Fast-discharge and Ramping of Metallic Insulation HTS Coils Honghai

More information

THE NUMERICAL MODEL OF 2G YBCO SUPERCONDUCTING TAPE IN THE WINDINGS OF THE TRANSFORMER

THE NUMERICAL MODEL OF 2G YBCO SUPERCONDUCTING TAPE IN THE WINDINGS OF THE TRANSFORMER Applied Computer Science, vol. 13, no. 2, pp. 23 38 doi: 10.23743/acs-2017-11 Submitted: 2017-04-10 Revised: 2017-05-30 Accepted: 2017-06-14 YBCO 2G tape, superconducting transformer, current limitation

More information

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011

HTS Roebel cables. N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd. HTS4Fusion Workshop, 26 May 2011 HTS Roebel cables N.J. Long, Industrial Research Ltd and General Cable Superconductors Ltd HTS4Fusion Workshop, 26 May 2011 Contents Cable dimensions Wire qualification Manufacturing Punching Retained

More information

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Ronald Agustsson Josiah Hartzell, Scott Storms RadiaBeam Technologies, LLC Santa Monica, CA US DOE SBIR Phase I Contract #

More information

CONFERENCE PRESENTATIONS AND INVITED LECTURES SINCE OCT. 2008

CONFERENCE PRESENTATIONS AND INVITED LECTURES SINCE OCT. 2008 CONFERENCE PRESENTATIONS AND INVITED LECTURES SINCE OCT. 2008 1. (plenary) V. Selvamanickam, Status of Coated Conductor and HTS Device Projects in USA, International Superconductivity Symposium, Tokyo,

More information

2G superconducting tape for magnet applications

2G superconducting tape for magnet applications 20 YEARS 2G superconducting tape for magnet applications Markus Bauer THEVA Dünnschichttechnik GmbH WAMHTS-4 Workshop, Barcelona, 16.2.2017 1 2 HTS PRODUCTION LINE Setting worldwide standards Pilot line

More information

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors Development of MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors M Kotari, H Kojima, N Hayakawa, F Endo, H Okubo Department of Electrical Engineering and

More information

Inductance and Current Distribution Analysis of a Prototype HTS Cable

Inductance and Current Distribution Analysis of a Prototype HTS Cable Journal of Physics: Conference Series OPEN ACCESS Inductance and Current Distribution Analysis of a Prototype HTS Cable To cite this article: Jiahui Zhu et al J. Phys.: Conf. Ser. 7 7 Recent citations

More information

A parameter- free method to extract the superconductor s J c (B,θ) field- dependence from in- field current- voltage characteristics of HTS tapes

A parameter- free method to extract the superconductor s J c (B,θ) field- dependence from in- field current- voltage characteristics of HTS tapes A parameter- free method to extract the superconductor s J c (B,θ) field- dependence from in- field current- voltage characteristics of HTS tapes Víctor M. R. Zermeño 1, Krzysztof Habelok 2, M. Stępień

More information

MgB 2 and BSCCO. S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS

MgB 2 and BSCCO.   S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS MgB 2 and BSCCO S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

High Magnetic Field Science and the Magnetic Resonance Industry

High Magnetic Field Science and the Magnetic Resonance Industry and the Magnetic Resonance Industry Presentation to the Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States Jim Hollenhorst Senior Director of

More information

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS Francesco Grilli and Víctor M. R. Zermeño Karlsruhe Institute of

More information

High Field HTS SMES Coil

High Field HTS SMES Coil High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil

More information

Computing Implementation of stabilized HTS tape Model based on distribution of currents between the tape layers

Computing Implementation of stabilized HTS tape Model based on distribution of currents between the tape layers 1 Computing Implementation of stabilized HTS tape Model based on distribution of currents between the tape layers Alfredo Álvarez, Pilar Suárez, Belén Pérez and João Murta-Pina "Benito Mahedero" Group

More information

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction TRANSFORMERS Pascal Tixador Grenoble INP - Institut Néel / GElab Introduction! Discovered in 188 «!secondary generator!»! The transformers: an essential link in the a.c. electric systems Adjust with very

More information

Electromagnetic Design of 10 MW Class Fully Superconducting Wind Turbine Generator

Electromagnetic Design of 10 MW Class Fully Superconducting Wind Turbine Generator Electromagnetic Design of 1 M Class Fully Superconducting ind Turbine Generator Yutaka Terao a, Masaki Sekino a and Hiroyuki Ohsaki b a Department of Electrical Engineering and Information systems, Graduate

More information

The development of a Roebel cable based 1 MVA HTS transformer

The development of a Roebel cable based 1 MVA HTS transformer The development of a Roebel cable based 1 MVA HTS transformer Neil Glasson 11 October 2011 Mike Staines 1, Mohinder Pannu 2, N. J. Long 1, Rod Badcock 1, Nathan Allpress 1, Logan Ward 1 1 Industrial Research

More information

of a Large Aperture High Field HTS SMES Coil

of a Large Aperture High Field HTS SMES Coil Design, Construction and Testing of a Large Aperture High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer High Field HTS SMES Coil R.

More information

AC-induced DC voltage in HTS coil

AC-induced DC voltage in HTS coil Ž. Physica C 310 1998 111 115 AC-induced voltage in HTS coil I.A. Al-Omari b, N. Shaked a, A. Friedman a,), Y. Wolfus a, A. Shaulov a, M. Sinvani a, Y. Yeshurun a a Institute for SuperconductiÕity, Department

More information

Superconductivity for Electric Systems 2006 Annual DOE Peer Review

Superconductivity for Electric Systems 2006 Annual DOE Peer Review Superconductivity for Electric Systems 26 Annual DOE Peer Review July 25 27, 26 HTS Solutions for a New Dimension in Power Superconductivity for Electric Systems 26 Annual DOE Peer Review Progress in Scale-up

More information

Parameterization of the critical surface of REBCO conductors from Bruker

Parameterization of the critical surface of REBCO conductors from Bruker Parameterization of the critical surface of REBCO conductors from Bruker M. Danial and J. van Nugteren July 20, 2017 Contents 1 Introduction 2 1.1 Bruker HTS................................ 2 2 Critical

More information

Use of High Temperature Superconductors for Future Fusion Magnet Systems

Use of High Temperature Superconductors for Future Fusion Magnet Systems Use of High Temperature Superconductors for Future Fusion Magnet Systems W.H. Fietz 1), G. Celentano 2), A. della Corte 2), W. Goldacker 1), R. Heller 1), P. Komarek 1), G. Kotzyba 1), R. Nast 1), B. Obst

More information

Development of cost-effective chemical solution deposition YBCO superconductor tapes

Development of cost-effective chemical solution deposition YBCO superconductor tapes Chemistry meets Energy Development of cost-effective chemical solution deposition YBCO superconductor tapes R. Feenstra, B. Wojtyniak, J. Kunert, J. Bennewitz, M. Falter, M. Rikel, M. Baecker Deutsche

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EASITrain Summer School,, September 3rd-7th 2018, Vienna KIT-ENERGY

More information

SuperPower s path to leadership in clean, green and smart energy technology

SuperPower s path to leadership in clean, green and smart energy technology superior performance. powerful technology. SuperPower s path to leadership in clean, green and smart energy technology Traute F. Lehner Sr. Director, Marketing & Gov t Affairs Advanced Energy Conference

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

Modeling of superconductors interacting with non-linear magnetic materials: 3D variational principles, force-free effects and applications

Modeling of superconductors interacting with non-linear magnetic materials: 3D variational principles, force-free effects and applications Modeling of superconductors interacting with non-linear magnetic materials: 3D variational principles, force-free effects and applications Enric Pardo, Milan Kapolka Institute of Electrical Engineering

More information

High-Performance Y-based Superconducting Wire and Their Applications

High-Performance Y-based Superconducting Wire and Their Applications High-Performance Y-based Superconducting Wire and Their Applications Yasuhiro Iijima 1 Yttrium(Y)-based superconducting wires are expected to be applied to various superconducting apparatus. They have

More information

Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes

Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes M. Vojenčiak a,*, F. Grilli a, A. Stenvall b, A. Kling a, W. Goldacker a a Karlsruhe

More information

Transmission Level HTS Fault Current Limiter

Transmission Level HTS Fault Current Limiter Superconductivity for Electric Systems Peer Review U. S. Department of Energy August 7 9, 2007 Transmission Level HTS Fault Current Limiter Chuck Weber & Drew Hazelton SuperPower Shigeki Isojima SEI Isidor

More information

High-Current Y-Ba-Cu-O Coated Conductor using Metal Organic Chemical-Vapor Deposition and Ion-Beam-Assisted Deposition

High-Current Y-Ba-Cu-O Coated Conductor using Metal Organic Chemical-Vapor Deposition and Ion-Beam-Assisted Deposition SP-T-152 High-Current Y-Ba-Cu-O Coated Conductor using Metal Organic Chemical-Vapor Deposition and Ion-Beam-Assisted Deposition V. Selvamanickam, G. Carota, M. Funk, N. Vo, and P. Haldar U. Balachandran,

More information

Application Driven Superconducting Wires Development and Future Prospects in US. Qiang Li. Advanced Energy Materials Group

Application Driven Superconducting Wires Development and Future Prospects in US. Qiang Li. Advanced Energy Materials Group Application Driven Superconducting Wires Development and Future Prospects in US Qiang Li Advanced Energy Materials Group Plenary talk at 1st Asian ICMC CSSJ50, Kanazawa, Japan, Nov 10, 2016) 1 Department

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Current and Resistance

Current and Resistance PHYS102 Previous Exam Problems CHAPTER 26 Current and Resistance Charge, current, and current density Ohm s law Resistance Power Resistance & temperature 1. A current of 0.300 A is passed through a lamp

More information

Magnetisation of 2G Coils and Artificial Bulks

Magnetisation of 2G Coils and Artificial Bulks ASEMD-3317 1 Magnetisation of 2G Coils and Artificial Bulks T.A. Coombs, J.F. Fagnard, K Matsuda Abstract The use of (Re)BCO is limited by the problems of magnetisation / demagnetisation. (Re)BCO is available

More information

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 High Field DC Magnet Technology David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 NSF Site Visit Review December 6-8, 2011 2006 MagLab

More information

HTS Magnets for Accelerator Applications

HTS Magnets for Accelerator Applications 8 th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017 HTS Magnets for Accelerator Applications K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear

More information

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of a 3.3kV Resistive type Superconducting Fault Current Limiter S.Vasudevamurthy 1, Ashwini.V 2 1 Department of Electrical

More information

Superconducting Fault Current Limiters

Superconducting Fault Current Limiters Superconducting Fault Current Limiters First Friday Club 1 st April 2011 Gerhard Novak UK Technical Manager Joachim Bock Managing Director, Nexans Superconductors 1 Smart Grid Solutions 2 Fault current

More information

LANL/STI CRADA: Progress in Reactive Co-Evaporation on IBAD

LANL/STI CRADA: Progress in Reactive Co-Evaporation on IBAD LANL/STI CRADA: Progress in Reactive Co-Evaporation on IBAD Vladimir Matias, Chris Sheehan, Yates Coulter Superconductivity Technology Center Los Alamos National Laboratory Brian Moeckly, Viktor Glyantsev,

More information

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch

Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch The MIT Faculty has made this article openly available. Please share how

More information

KIT-ENERGY CENTRE. KIT The research University in the Helmholtz Association

KIT-ENERGY CENTRE.  KIT The research University in the Helmholtz Association Superconducting Fault Current Limiters Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EUCAS Short Course Power Applications,, September 17th 2017, Geneva

More information

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications 15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications Joseph V. Minervini, Makoto Takayasu, Franco Mangioarotti, Leslie Bromberg, Phillip Michael, Michael

More information

Paolo Mele. Tenure-Track Lecturer Institute for Sustainable Sciences and Development Hiroshima University

Paolo Mele. Tenure-Track Lecturer Institute for Sustainable Sciences and Development Hiroshima University Paolo Mele Tenure-Track Lecturer Institute for Sustainable Sciences and Development Hiroshima University 1 Support by, collaboration with and discussions to: S. Saini - ISSD, Hiroshima University, Japan

More information

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors C. Scheuerlein 1, R. Bjoerstad 1, A. Grether 1, M. Rikel 2, J. Hudspeth 3, M. Sugano

More information

Batavia, Illinois, 60510, USA

Batavia, Illinois, 60510, USA HIGH TEMPERATURE SUPERCONDUCTORS FOR HIGH FIELD SUPERCONDUCTING MAGNETS E. Barzi 1, L. Del Frate 1, D. Turrioni 1, R. Johnson 2, and M. Kuchnir 2 1 Fermi National Accelerator Laboratory Batavia, Illinois,

More information

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges 1 IT/2-2 High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges G. Janeschitz, R. Heller, W.H. Fietz, W. Goldacker, G. Kotzyba, R. Lietzow, R. Nast, B. Obst,

More information

D.C. Machine Design Problem (EE Electrical Machine Design I) By Pratik Mochi CSPIT, CHARUSAT

D.C. Machine Design Problem (EE Electrical Machine Design I) By Pratik Mochi CSPIT, CHARUSAT D.C. Machine Design Problem (EE401.01 Electrical Machine Design I) By Pratik Mochi CSPIT, CHARUSAT 1 2 Cross Section View of 4 pole DC Machine Design Problem Design a 250kW, 400V, 625A, 600 rpm, lap wound

More information