Size: px
Start display at page:

Download ""

Transcription

1 Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig Bloch electron in a magnetic eld and the Ising model by Igor V. Krasovsky Preprint no.:

2

3 Bloch electron in a magnetic eld and the Ising model I. V. Krasovsky Max-Planck-Institut fur Mathematik in den Naturwissenschaften Inselstr. 22{26, D-0403, Leipzig, Germany and B.I.Verkin Institute for Low Temperature Physics and Engineering 47 Lenina Ave., Kharkov 3064, Ukraine. Abstract. The spectral determinant det(h ; "I) of the Azbel-Hofstadter Hamiltonian H is related to Onsager's partition function of the 2D Ising model for any value of magnetic ux = 2P=Q through an elementary cell, where P and Q are coprime integers. The band edges of H correspond to the critical temperature of the Ising model the spectral determinant at these (and other points dened in a certain similar way) is independent of P. A connection of the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is indicated.

4 Although the problems of an electron in a constant magnetic eld and that of an electron on a periodic lattice were solved in the early days of quantum mechanics, the case where a magnetic eld and a lattice are present simultaneously still dees adequate understanding. The simplest model for this case is commonly referred to as the Hofstadter or Azbel-Hofstadter model [,2]. The corresponding Hamiltonian describes an electron on a two-dimensional (2D) N N square lattice with nearest-neighbour hopping subject to a perpendicular uniform magnetic eld: (H ) nx n y = nx; n y + nx+ n y + e ;inx n x n y; + e inx n x n y+ n x n y =0 ::: N ; () where = 2P=Q is the ux through an elementary cell (measured in units of the elementary ux), P and Q are coprime positive integers, = t =t 2 0 is a ratio of hopping amplitudes in x and y directions. We impose periodic boundary conditions ( N ny = 0 ny, ; ny = N; ny, similarly for n y ). This Hamiltonian and the related one-dimensional operator were studied in manyworks (see the reviews [3{5]). Usually, the Hamiltonian () is dened on an innite lattice at the outset in the present paper, however, we shall deal rst with a nite N and take the limit N!later on. It was noticed by Wiegmann and Zabrodin [6,3] that the model is related to integrable systems and the algebra U q (sl 2 ). In the present paper, we nd a dierent type of relation to integrable systems. We shall see that the spectral determinantdet(h ;"I) for any =2P=Q is related to Onsager's partition function of the 2D Ising model. It is well known that the spectrum of H for an innite lattice (on l 2 (Z)) consists of Q intervals (bands). When Q!, the total width W of the bands for 6= is known [7] to approach 4j ; j exponentially fast in Q for =, it is of order =Q [8]. Thouless formulated a conjecture [9,0] that for = the total width W 32G=Q as Q!, where G =;=3 2 +=5 2 ;=7 2 :::is Catalan's constant. (Notation A B means, henceforth, that A=B tends to in the limit.) This result was derived only for P =, P = 2 so far [0,,2] but is supposed to hold in the general case (even when P=Q tends to a nonzero limit) for which it is supported by extensive numerical data. In the present paper, we shall generalize this conjecture and recast it into a simpler type of statement by relating the quantity lim N! (=N 2 )lnjdet(h ; "I)j to the bandwidth. 2

5 Substitute nx ny = e ikyny nx, k y = 2k=N, k = 0 ::: N ; into () to get H = N; k=0 H k,theeigenvalue equation for H k being 2P (H k ) n = n; + n+ +2cos Q n + 2k! n = " n N (2) n = n x =0 ::: N ; : When n is allowed to range from ; to, the corresponding H k on l 2 (Z) is called the almost Mathieu operator. Let us assume that N is divisible by Q and substitute j+ql = e i!l j, j = 0 ::: Q ;,! = 2m, m = 0 ::: N=Q ; into (2). We get N=Q H k = N=Q; m=0 H km, (H km ) j = j; + j+ +2 cos 2P Q j + 2k! j N j =0 ::: Q; Q = e i! 0 ; = e ;i! Q; : Chamber's formula [3] gives the dependence of the spectral determinant of H km on k and m, namely: det(h km ; "I QQ )=(;) Q (") ; 2 Q cos 2k! 2m ; 2 cos (4) N=Q N=Q where (") is a polynomial of degree Q which depends on and, but not on k and m. It is easy to verify (4) by considering the matrix given by (3) and the one obtained after the substitution j = P Q; l=0 exp 2i(jlP=Q + jm=n + lk=n)l. 0 It is the expression (4) which implies that the spectrum of H in the limit N!consists exactly of Q bands: the image of the interval [;2( + Q ) 2( + Q )] under the inverse of the transform = ("). Thus, det(h ; "I) = N=Q; Y (;) N 2 k m=0 NY k=0 N=Q; Y m=0 det(h km ; "I QQ )= (") ; 2 Q cos 2k! Q 2m ; 2 cos : N=Q N=Q In the limit of innite lattice (N! ), let us replace 2k=N in (2) by a continuous parameter, denote H k by H, and consider the mean (") of 3 (3) (5)

6 Lyapunov exponents over all. By virtue of the 3-term recursion (2), any n is obtained from initial conditions 0,. The Lyapunov exponent (") corresponding to H describes the exponential rate of growth (or decay) of a solution to the equation (H ) n = " n, n =0 :::. More precisely, (") = lim n! n ; max = ln( 2 n + 2 n+) =2 : (6) Note that the dierence between H dened in the space of square-summable sequences with indices n =0 ::: and the almost Mathieu operator corresponding to n = ::: ; 0 ::: is that the spectrum of the latter is doubly degenerate. However, the normalized to unity density of states (x) is the same in both cases. According to the Thouless formula [4], (") = R ln j" ; xj (x)dx. Using this formula and (5), we get for the mean of (") over all (to ensure that the determinant is nonzero we assume that " has an imaginary part after taking the limit N!we can let ="! 0): (") = lim 2 Q N! Z Z 0 0 ln j det(h ; "I)j = 2 N ln j(") ; 2 Q cos x ; 2 cos yjdxdy: (7) On the other hand, Onsager's partition function Z for the 2D Ising model on a square N N lattice satises [5]: lim N! Z N ln Z ; 2 2 ln(2 sinh a0 )= Z ln a cosh a0 0 2cosh sinh a 0 ; 2 sinh a sinh a (8) cos x ; 2 cos y 0 dxdy: Here a =2J=T, a 0 =2J 0 =T, where T is the temperature J, J 0,interaction constants in x and y direction. We now set sinh a= sinh a 0 = Q (hence a 0 = arcsinh ( ;Q sinh a)) cosh a cosh a0 (") =2 sinh a 0 q =2 Q coth a + ;2Q sinh 2 a (9) to obtain the equivalence (as N!) for any " and coprime P and Q: j det ~t 2 (H ; "I)j Z 2=Q (0) 4

7 where ~t Q 2 =2sinha 0. A simple analysis of (9) shows that for any real T, j(")j 2( + Q ). The minimum of j(")j as a function of T, j(")j = 2( + Q ), corresponds to the critical temperature T c of the Ising model (at T c the argument of the logarithm in (7) and (8) vanishes at an integration limit). On the other hand, the energies " ei at which j(" ei )j = 2( + Q ) are the band edges of lim N! H. It is well known [6] that Z at T c equals the square of the partition function Z D of dimers on the lattice if r = p 2sinha and r 2 = p 2sinha 0 are interpreted as activities of dimers in x and y directions. Let us identify r 2 = t Q and r 2 2 = t Q 2 (recall that t and t 2 are hopping amplitudes in x and y directions, and = t =t 2 ). One result of Lieb and Loss [7] says that det H f ZD 2 as N!for the ux =, that is for P =,Q =2. Here fh = t 2 H a more symmetric form of the Azbel-Hofstadter Hamiltonian. Since it is known that " = 0 is a band edge for Q even, we have from (0) det H f Z 4=Q D, which is a generalization of the mentioned result to any P odd, Q even. Henceforth, we only consider the limit of innite N. Let us simplify expression (7) (note an important fact that depends on " and P only through (")!). Because of the obvious equality ( )= ln + (= Q =), it is sucient to consider only the case 0. In this case, taking the integral over y in (7) we get: () = 8 R >< Q 0 arccosh (jj=2+ Q cos x)dx jj 2( + Q ) R arccos(2;jj)=2 Q 0 arccosh (jj=2+ Q cos x)dx 2( + Q ) > jj > 2( ; Q ) Q >: 0 jj 2( ; Q ) () The fact that (") is zero on the image of the interval 2 [;2( ; Q ) 2( ; Q )] is in agreement with the general argument: this image is an intersection of the intervals of the spectra of the operators H. The generalized eigenfunction of any H is just a Bloch wave on a periodic lattice with Q atoms in an elementary cell. Therefore, the Lyapunov exponents (") are zero on this set. By denition, (") isamean of these exponents. Now we can note that in the limit Q!, xed, () tends to the following Lyapunov exponent on the spectrum of H: (")! 0 if, : 5

8 (")! ln if >, in accordance with a statement of Aubry and Andre [8]. (Naturally, we obtain the same asymptotic result for any individual (").) For T c (jj = 2(+ Q )), let us represent () in another form by reducing the integral to R =2 0 arcsinh ( Q=2 cos x)dx and then using dierentiation w.r.t. the parameter. We get for any >0: (" ei )= 4 Z Q=2 Q 0 arctan x dx =ln + 4 Z ;Q=2 x Q 0 arctan x dx: (2) x In what follows, we always consider (the most interesting from the point of view of bandwidth) case =. It is not, however, dicult to generalize the argument below to the case of any. For =, the expression (2) reads: (" ei )=4G=Q. In these terms, the Thouless conjecture says that the total bandwidth behaves as 8(" ei ) asymptotically for large Q. The following more general fact appears to hold and is supported by numerics. Let W (x) be the total length of the image of [0 x] under the inverse of the transform = (") (recall that the whole spectrum is the image of [;4 4], i.e., the total bandwidth is W = W (;4) + W (4)). Then for any P (including P changing with Q such that P=Q is not small) as Q!: W () 4() = 2 Q Z jj 0 K(x=4)dx 2 [;4 4]: (3) The last equation is just another form of () for = K(k) = R =2 0 ( ; k 2 sin 2 x) ;=2 dx is the complete elliptic integral of the rst kind. It is easy to derive (3) in the case P =,where we can use the known from semiclassics [2] asymptotic expression for ("). In this case, the main asymptotic contribution to W () comes from the bands in a small neighbourhood of " = 0. These bands have width of order =Q ln Q, while the others are exponentially narrow. For j"j, P =, andq!, (") 4cosh("Q=4) cos "Q 2 ln 4Q ; 2 arg ; 2 + i"q 4 ; Q 2 Hence, the asymptotic contribution of an individual band to W () is : (4) 2 Q ln Q arcsin jj=4 cosh("q=4) (5) 6

9 and the numberofsuch bands in an interval dt = d("q=4) is 2 dt ln Q. Therefore, the sum of all contributions W () 8 Z arcsin jj=4 Q 0 cosh t dt = 2 Z jj K(x=4)dx =4() (6) Q 0 which completes the derivation of (3) for P =. If we could show that for a general P, W () c(), where c is independent of, then the value of c could be found using a result of Last and Wilkinson [9] that for any coprime P and Q, P Q i= j 0 (" i )j ; = Q ;, where (" i )=0,i = ::: Q. This can be written as jw(0)j 0 ==Q (right or left derivative) because, obviously, jw()j 0 = P Q i= j 0 (" i )j ;, where (" i ) =, i = ::: Q. On the other hand, since K(0) = =2, we have j(0)j 0 ==4Q, which implies that c =4. Putting our results and conjectures together, we can roughly say that the logarithm of Onsager's partition function, the mean of Lyapunov exponents, and the asymptotic bandwidth are basically the same object which is universal in that for a xed value of, itdoesnot depend on P. I am grateful to P. B. Wiegmann for encouraging my interest in the problem. I also thank R. Seiler, J. Kellendonk, and D. J. Thouless for valuable suggestions which helped me to improve thispaper. References [] M. Ya. Azbel, Zh.Eksp.Teor.Fiz. 46, 929 (964) [ Sov.Phys.JETP 9, 634 (964) ] [2] D. R. Hofstadter, Phys.Rev. B4, 2239 (976) [3] P. B. Wiegmann, Prog.Theor.Phys. Suppl. 34, 7 (999) [4] Y. Last, XI th Intl. Congress Math. Phys. Proceedings. p.366 (Boston: Intl. Press, 995) S. Ya. Jitomirskaya ibid p.373 [5] Ch. Kreft and R. Seiler, J.Math.Phys. 37, 5207 (996) [6] P. B. Wiegmann and A. V. Zabrodin, Phys.Rev.Lett. 72, 890 (994) 7

10 [7] J. Avron, P. van Mouche, B. Simon, Commun.Math.Phys. 32, 03 (990) [8] Y. Last, Commun.Math.Phys. 64, 42 (994) [9] D. J. Thouless, Phys.Rev. B28, 4272 (983) [0] D. J. Thouless, Commun.Math.Phys. 27, 87 (990) [] D. J. Thouless and Yong Tan, J.Phys.A:Math.Gen. 24, 4055 (99) [2] G. I. Watson, J.Phys.A: Math.Gen. 24, 4999 (99) [3] W. Chambers, Phys.Rev. A40, 35 (965) [4] D. J. Thouless, J.Phys.C 5, 77 (972) J. Avron and B. Simon, Duke Math.J. 50, 369 (983) A. L. Figotin and L. A. Pastur, J.Math.Phys. 25, 774 (984) [5] L. Onsager, Phys.Rev. 65, 7 (944) [6] P. W. Kasteleyn, Physica 27, 209 (96) H. N. V. Temperley and M. E. Fisher, Philos. Mag. 6, 06 (96) M. E. Fisher, Phys.Rev. 24, 664 (96) [7] E. H. Lieb and M. Loss, Duke Math.J. 7, 337 (993) [8] S. Aubry, G. Andre, Ann. Israel Phys. Soc. 3, 33 (980) [9] Y. Last and M. Wilkinson, J.Phys.A: Math.Gen. 25, 623 (992) 8

THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand

THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand, London, WCR LS, England March 5, 99 Abstract The

More information

Constrained Leja points and the numerical solution of the constrained energy problem

Constrained Leja points and the numerical solution of the constrained energy problem Journal of Computational and Applied Mathematics 131 (2001) 427 444 www.elsevier.nl/locate/cam Constrained Leja points and the numerical solution of the constrained energy problem Dan I. Coroian, Peter

More information

Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions

Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions Quasiperiodic Schrodinger operators: sharp arithmetic spectral transitions and universal hierarchical structure of eigenfunctions S. Jitomirskaya Atlanta, October 10, 2016 Almost Mathieu operators (H λ,α,θ

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig Uniformly distributed measures in Euclidean spaces by Bernd Kirchheim and David Preiss Preprint-Nr.: 37 1998 Uniformly Distributed

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

4.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial

4.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial Linear Algebra (part 4): Eigenvalues, Diagonalization, and the Jordan Form (by Evan Dummit, 27, v ) Contents 4 Eigenvalues, Diagonalization, and the Jordan Canonical Form 4 Eigenvalues, Eigenvectors, and

More information

Unstable K=K T=T. Unstable K=K T=T

Unstable K=K T=T. Unstable K=K T=T G252651: Statistical Mechanics Notes for Lecture 28 I FIXED POINTS OF THE RG EQUATIONS IN GREATER THAN ONE DIMENSION In the last lecture, we noted that interactions between block of spins in a spin lattice

More information

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Pasteurgasse 6/7 Institute for Mathematical Physics A-1090 Wien, Austria On the Flux{phase Problem Andras Sut}o Vienna, Preprint ESI 297 (1996) January 30, 1996

More information

460 HOLGER DETTE AND WILLIAM J STUDDEN order to examine how a given design behaves in the model g` with respect to the D-optimality criterion one uses

460 HOLGER DETTE AND WILLIAM J STUDDEN order to examine how a given design behaves in the model g` with respect to the D-optimality criterion one uses Statistica Sinica 5(1995), 459-473 OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION WHEN THE DEGREE IS NOT KNOWN Holger Dette and William J Studden Technische Universitat Dresden and Purdue University Abstract:

More information

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Ground state and low excitations of an integrable chain with alternating spins St Meinerz and B - D Dorfelx Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Invalidenstrae 110,

More information

REPORTRAPPORT. Centrum voor Wiskunde en Informatica. Asymptotics of zeros of incomplete gamma functions. N.M. Temme

REPORTRAPPORT. Centrum voor Wiskunde en Informatica. Asymptotics of zeros of incomplete gamma functions. N.M. Temme Centrum voor Wiskunde en Informatica REPORTRAPPORT Asymptotics of zeros of incomplete gamma functions N.M. Temme Department of Analysis, Algebra and Geometry AM-R9402 994 Asymptotics of Zeros of Incomplete

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

2 J.H. SCHENKER AND M. AIENMAN Figure. A schematic depiction of the spectral relation (H) =? ((H o )). of functions in `2(G) which vanish at O G. Thus

2 J.H. SCHENKER AND M. AIENMAN Figure. A schematic depiction of the spectral relation (H) =? ((H o )). of functions in `2(G) which vanish at O G. Thus THE CREATION OF SPECTRAL GAPS BY GRAPH DECORATION JEFFREY H. SCHENKER (a) AND MICHAEL AIENMAN (a;b) Abstract. We present a mechanism for the creation of gaps in the spectra of self-adjoint operators dened

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

Boundary-Layer Transition. and. NASA Langley Research Center, Hampton, VA Abstract

Boundary-Layer Transition. and. NASA Langley Research Center, Hampton, VA Abstract Eect of Far-Field Boundary Conditions on Boundary-Layer Transition Fabio P. Bertolotti y Institut fur Stromungsmechanik, DLR, 37073 Gottingen, Germany and Ronald D. Joslin Fluid Mechanics and Acoustics

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

IMC 2015, Blagoevgrad, Bulgaria

IMC 2015, Blagoevgrad, Bulgaria IMC 05, Blagoevgrad, Bulgaria Day, July 9, 05 Problem. For any integer n and two n n matrices with real entries, B that satisfy the equation + B ( + B prove that det( det(b. Does the same conclusion follow

More information

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING A. DELSHAMS, V. GELFREICH, A. JORBA AND T.M. SEARA At the end of the last century, H. Poincare [7] discovered the phenomenon of separatrices splitting,

More information

Renormalization Group analysis of 2D Ising model

Renormalization Group analysis of 2D Ising model Renormalization Group analysis of D Ising model Amir Bar January 7, 013 1 Introduction In this tutorial we will see explicitly how RG can be used to probe the phase diagram of d > 1 systems, focusing as

More information

MODELLING OF FLEXIBLE MECHANICAL SYSTEMS THROUGH APPROXIMATED EIGENFUNCTIONS L. Menini A. Tornambe L. Zaccarian Dip. Informatica, Sistemi e Produzione

MODELLING OF FLEXIBLE MECHANICAL SYSTEMS THROUGH APPROXIMATED EIGENFUNCTIONS L. Menini A. Tornambe L. Zaccarian Dip. Informatica, Sistemi e Produzione MODELLING OF FLEXIBLE MECHANICAL SYSTEMS THROUGH APPROXIMATED EIGENFUNCTIONS L. Menini A. Tornambe L. Zaccarian Dip. Informatica, Sistemi e Produzione, Univ. di Roma Tor Vergata, via di Tor Vergata 11,

More information

[7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108

[7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108 [5] G. Parisi, Statistical Field Theory, Addisson Wesley 1992. [6] U. Wol, Phys. Lett. 228B 3(1989) [7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108 (1982) 331.

More information

2 Section 2 However, in order to apply the above idea, we will need to allow non standard intervals ('; ) in the proof. More precisely, ' and may gene

2 Section 2 However, in order to apply the above idea, we will need to allow non standard intervals ('; ) in the proof. More precisely, ' and may gene Introduction 1 A dierential intermediate value theorem by Joris van der Hoeven D pt. de Math matiques (B t. 425) Universit Paris-Sud 91405 Orsay Cedex France June 2000 Abstract Let T be the eld of grid-based

More information

The average dimension of the hull of cyclic codes

The average dimension of the hull of cyclic codes Discrete Applied Mathematics 128 (2003) 275 292 www.elsevier.com/locate/dam The average dimension of the hull of cyclic codes Gintaras Skersys Matematikos ir Informatikos Fakultetas, Vilniaus Universitetas,

More information

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f 1 Bernstein's analytic continuation of complex powers c1995, Paul Garrett, garrettmath.umn.edu version January 27, 1998 Analytic continuation of distributions Statement of the theorems on analytic continuation

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

On the Law of Distribution of Energy in the Normal Spectrum

On the Law of Distribution of Energy in the Normal Spectrum On the Law of Distribution of Energy in the Normal Spectrum Max Planck Annalen der Physik vol.4, p.553 ff (1901) The recent spectral measurements made by O. Lummer and E. Pringsheim[1], and even more notable

More information

of the gauge eld U which one obtains after integrating through K = (8 + 2m) 1. It is easy to show that the lattice Dirac operator

of the gauge eld U which one obtains after integrating through K = (8 + 2m) 1. It is easy to show that the lattice Dirac operator A new simulation algorithm for lattice QCD with dynamical quarks B. Bunk a, K. Jansen b, B. Jegerlehner c, M. Luscher b, H. Simma b and R. Sommer d a Humboldt Universitat, Institut fur Physik Invalidenstrasse

More information

Our rst result is the direct analogue of the main theorem of [5], and can be roughly stated as follows: Theorem. Let R be a complex reection of order

Our rst result is the direct analogue of the main theorem of [5], and can be roughly stated as follows: Theorem. Let R be a complex reection of order Unfaithful complex hyperbolic triangle groups II: Higher order reections John R. Parker Department of Mathematical Sciences, University of Durham, South Road, Durham DH LE, England. e-mail: j.r.parker@durham.ac.uk

More information

Iterative procedure for multidimesional Euler equations Abstracts A numerical iterative scheme is suggested to solve the Euler equations in two and th

Iterative procedure for multidimesional Euler equations Abstracts A numerical iterative scheme is suggested to solve the Euler equations in two and th Iterative procedure for multidimensional Euler equations W. Dreyer, M. Kunik, K. Sabelfeld, N. Simonov, and K. Wilmanski Weierstra Institute for Applied Analysis and Stochastics Mohrenstra e 39, 07 Berlin,

More information

CORRELATION FUNCTIONS IN 2D SIMPLICIAL GRAVITY. Universite de Paris XI, b^atiment 211, Orsay Cedex, France

CORRELATION FUNCTIONS IN 2D SIMPLICIAL GRAVITY. Universite de Paris XI, b^atiment 211, Orsay Cedex, France UNIVERSALITY IN THE CRITICAL BEHAVIOR OF THE CORRELATION FUNCTIONS IN 2D SIMPLICIAL GRAVITY J. Jurkiewicz 1 Laboratoire de Physiue Theoriue et Hautes Energies 2 Universite de Paris XI, b^atiment 211, 91405

More information

The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions

The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions The Time{Dependent Born{Oppenheimer Approximation and Non{Adiabatic Transitions George A. Hagedorn Department of Mathematics, and Center for Statistical Mechanics, Mathematical Physics, and Theoretical

More information

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993)

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) Start of body part published in Russian in: Yadernaya Fizika, 56 (1993) 45-5 translated in English in: Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) A METHOD FOR CALCULATING THE HEAT KERNEL

More information

2 THE COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET The structure of E has been the subject of much investigation over the past fty- ve years, s

2 THE COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET The structure of E has been the subject of much investigation over the past fty- ve years, s ON THE FILTER OF COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET Steffen Lempp Andre Nies D. Reed Solomon Department of Mathematics University of Wisconsin Madison, WI 53706-1388 USA Department of

More information

2 W. LAWTON, S. L. LEE AND ZUOWEI SHEN is called the fundamental condition, and a sequence which satises the fundamental condition will be called a fu

2 W. LAWTON, S. L. LEE AND ZUOWEI SHEN is called the fundamental condition, and a sequence which satises the fundamental condition will be called a fu CONVERGENCE OF MULTIDIMENSIONAL CASCADE ALGORITHM W. LAWTON, S. L. LEE AND ZUOWEI SHEN Abstract. Necessary and sucient conditions on the spectrum of the restricted transition operators are given for the

More information

Bernoulli Polynomials

Bernoulli Polynomials Chapter 4 Bernoulli Polynomials 4. Bernoulli Numbers The generating function for the Bernoulli numbers is x e x = n= B n n! xn. (4.) That is, we are to expand the left-hand side of this equation in powers

More information

5 Eigenvalues and Diagonalization

5 Eigenvalues and Diagonalization Linear Algebra (part 5): Eigenvalues and Diagonalization (by Evan Dummit, 27, v 5) Contents 5 Eigenvalues and Diagonalization 5 Eigenvalues, Eigenvectors, and The Characteristic Polynomial 5 Eigenvalues

More information

Convergence Acceleration of Alternating Series

Convergence Acceleration of Alternating Series Convergence Acceleration of Alternating Series Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier CONTENTS The First Acceleration Algorithm Two Flavors of the Second Algorithm Applicability Extension

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

The universality of this eect had then an explanation. Moreover, as proposed by Prange [20, 16], Thouless [22] and Halperin [15], the Hall conductance

The universality of this eect had then an explanation. Moreover, as proposed by Prange [20, 16], Thouless [22] and Halperin [15], the Hall conductance Non-Commutative Geometry and Quantum Hall Eect J. Bellissard y Universite Paul Sabatier, Toulouse, France z April 9, 2002 Abstract A mathematical framework based on Non-Commutative Geometry is proposed

More information

SBS Chapter 2: Limits & continuity

SBS Chapter 2: Limits & continuity SBS Chapter 2: Limits & continuity (SBS 2.1) Limit of a function Consider a free falling body with no air resistance. Falls approximately s(t) = 16t 2 feet in t seconds. We already know how to nd the average

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania

density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania IFA-FT-396-994 Damped quantum harmonic oscillator: density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania Internet:

More information

f(z)dz = 0. P dx + Qdy = D u dx v dy + i u dy + v dx. dxdy + i x = v

f(z)dz = 0. P dx + Qdy = D u dx v dy + i u dy + v dx. dxdy + i x = v MA525 ON CAUCHY'S THEOREM AND GREEN'S THEOREM DAVID DRASIN (EDITED BY JOSIAH YODER) 1. Introduction No doubt the most important result in this course is Cauchy's theorem. Every critical theorem in the

More information

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Pasteurgasse 6/7 Institute for Mathematical Physics A-1090 Wien, Austria On the Point Spectrum of Dirence Schrodinger Operators Vladimir Buslaev Alexander Fedotov

More information

Ising Lattice Gauge Theory with a Simple Matter Field

Ising Lattice Gauge Theory with a Simple Matter Field Ising Lattice Gauge Theory with a Simple Matter Field F. David Wandler 1 1 Department of Physics, University of Toronto, Toronto, Ontario, anada M5S 1A7. (Dated: December 8, 2018) I. INTRODUTION Quantum

More information

Monte Carlo Simulation of the 2D Ising model

Monte Carlo Simulation of the 2D Ising model Monte Carlo Simulation of the 2D Ising model Emanuel Schmidt, F44 April 6, 2 Introduction Monte Carlo methods are a powerful tool to solve problems numerically which are dicult to be handled analytically.

More information

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr Scattering Theory Consider scattering of two particles in the center of mass frame, or equivalently scattering of a single particle from a potential V (r), which becomes zero suciently fast as r. The initial

More information

Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence

Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence NASA/CR-21-2116 ICASE Report No. 21-24 Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence Robert Rubinstein NASA Langley Research Center, Hampton, Virginia

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-19 Wien, Austria The Negative Discrete Spectrum of a Class of Two{Dimentional Schrodinger Operators with Magnetic

More information

On the Theory of Metals.

On the Theory of Metals. On the Theory of Metals. I. Eigenvalues and eigenfunctions of a linear chain of atoms H. Bethe in Rome Zeitschrift für Physik 71 (1931) 05 6. 17 June 1931 Original title: Zur Theorie der Metalle. I. Eigenwerte

More information

Brazilian Journal of Physics, vol. 27, no. 4, december, with Aperiodic Interactions. Instituto de Fsica, Universidade de S~ao Paulo

Brazilian Journal of Physics, vol. 27, no. 4, december, with Aperiodic Interactions. Instituto de Fsica, Universidade de S~ao Paulo Brazilian Journal of Physics, vol. 27, no. 4, december, 1997 567 Critical Behavior of an Ising Model with periodic Interactions S. T. R. Pinho, T.. S. Haddad, S. R. Salinas Instituto de Fsica, Universidade

More information

Roots of Unity, Cyclotomic Polynomials and Applications

Roots of Unity, Cyclotomic Polynomials and Applications Swiss Mathematical Olympiad smo osm Roots of Unity, Cyclotomic Polynomials and Applications The task to be done here is to give an introduction to the topics in the title. This paper is neither complete

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

Critical exponents of two-dimensional Potts and bond percolation models

Critical exponents of two-dimensional Potts and bond percolation models J. Phys. A: Math. Gen. 14 (1981) L45-L49. Printed in Great Britain LETTER TO THE EDITOR Critical exponents of two-dimensional Potts and bond percolation models H W J Blotet, M P Nightingale? and B DerridaS

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

Minimal Surfaces. December 13, Alex Verzea. MATH 580: Partial Dierential Equations 1. Professor: Gantumur Tsogtgerel

Minimal Surfaces. December 13, Alex Verzea. MATH 580: Partial Dierential Equations 1. Professor: Gantumur Tsogtgerel Minimal Surfaces December 13, 2012 Alex Verzea 260324472 MATH 580: Partial Dierential Equations 1 Professor: Gantumur Tsogtgerel 1 Intuitively, a Minimal Surface is a surface that has minimal area, locally.

More information

The 1+1-dimensional Ising model

The 1+1-dimensional Ising model Chapter 4 The 1+1-dimensional Ising model The 1+1-dimensional Ising model is one of the most important models in statistical mechanics. It is an interacting system, and behaves accordingly. Yet for a variety

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig H 2 -matrix approximation of integral operators by interpolation by Wolfgang Hackbusch and Steen Borm Preprint no.: 04 200 H 2 -Matrix

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Domain and range of exponential and logarithmic function *

Domain and range of exponential and logarithmic function * OpenStax-CNX module: m15461 1 Domain and range of exponential and logarithmic function * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle.

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle. Rostock. Math. Kolloq. 49, 51{56 (1995) Subject Classication (AMS) 46B15, 54A20, 54E15 Harry Poppe A theorem on summable families in normed groups Dedicated to the professors of mathematics L. Berg, W.

More information

A. Figotin. P. Kuchment y. Wichita State University. Abstract

A. Figotin. P. Kuchment y. Wichita State University. Abstract SIAM J. APPL. MATH. Vol. 56, No. 6, pp. 1561-162, December 1996 Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. 2D Photonic Crystals A. Figotin Department of Mathematics University

More information

Homework 1 Solutions ECEn 670, Fall 2013

Homework 1 Solutions ECEn 670, Fall 2013 Homework Solutions ECEn 670, Fall 03 A.. Use the rst seven relations to prove relations (A.0, (A.3, and (A.6. Prove (F G c F c G c (A.0. (F G c ((F c G c c c by A.6. (F G c F c G c by A.4 Prove F (F G

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

Random matrix theory in lattice statistical mechanics

Random matrix theory in lattice statistical mechanics Available online at www.sciencedirect.com Physica A 321 (23) 325 333 www.elsevier.com/locate/physa Random matrix theory in lattice statistical mechanics J.-Ch. Angles d Auriac a;b;, J.-M. Maillard a;b

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

Complex-q zeros of the partition function of the Potts model with long-range interactions

Complex-q zeros of the partition function of the Potts model with long-range interactions Physica A 30 (00) 9 08 www.elsevier.com/locate/physa Complex-q zeros of the partition function of the Potts model with long-range interactions Zvonko Glumac a;, Katarina Uzelac b a Faculty of Electrical

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

arxiv:hep-th/ v3 16 May 1996

arxiv:hep-th/ v3 16 May 1996 BNL-63106 An Exact Solution for Quantum Tunneling in a Dissipative System arxiv:hep-th/9605081v3 16 May 1996 Li Hua Yu National Synchrotron Light Source, Brookhaven National Laboratory, N.Y.11973 Abstract

More information

Bandwidths Statistics from the Eigenvalue Moments for Harper-Hofstadter Problem

Bandwidths Statistics from the Eigenvalue Moments for Harper-Hofstadter Problem arxiv:cond-mat/9910225v1 [cond-mat.mes-hall] 15 Oct 1999 Bandwidths Statistics from the Eigenvalue Moments for Harper-Hofstadter Problem O. Lipan Division of Physics, Mathematics, and Astronomy, California

More information

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary Prexes and the Entropy Rate for Long-Range Sources Ioannis Kontoyiannis Information Systems Laboratory, Electrical Engineering, Stanford University. Yurii M. Suhov Statistical Laboratory, Pure Math. &

More information

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract A Finite Element Method for an Ill-Posed Problem W. Lucht Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D-699 Halle, Germany Abstract For an ill-posed problem which has its origin

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

Institute for Theoretical Physics. State University of New York. Abstract

Institute for Theoretical Physics. State University of New York. Abstract ITP-SB-95-9 April, 1995 Zeros of the Partition Function for Higher{Spin 2D Ising Models PostScript processed by the SLAC/DESY Libraries on 10 May 1995. Victor Matveev and Robert Shrock Institute for Theoretical

More information

Monte Carlo simulations of harmonic and anharmonic oscillators in discrete Euclidean time

Monte Carlo simulations of harmonic and anharmonic oscillators in discrete Euclidean time Monte Carlo simulations of harmonic and anharmonic oscillators in discrete Euclidean time DESY Summer Student Programme, 214 Ronnie Rodgers University of Oxford, United Kingdom Laura Raes University of

More information

Asymptotics of generating the symmetric and alternating groups

Asymptotics of generating the symmetric and alternating groups Asymptotics of generating the symmetric and alternating groups John D. Dixon School of Mathematics and Statistics Carleton University, Ottawa, Ontario K2G 0E2 Canada jdixon@math.carleton.ca October 20,

More information

Liliana Borcea, and George C. Papanicolaou y. October 2, Abstract. We show that the eective complex impedance of materials with conductivity and

Liliana Borcea, and George C. Papanicolaou y. October 2, Abstract. We show that the eective complex impedance of materials with conductivity and Network Approximation for Transport Properties of High Contrast Materials Liliana Borcea, and George C. Papanicolaou y October, 996 Abstract We show that the eective complex impedance of materials with

More information

/N

/N 1.5 3 Positive Alternated 2 1.0 1.01 Gap α=1.01 2 0.5 3 1.01 0.0 0 0.05 0.1 0.15 0.2 0.25 1/N 0.2 0.1 Gap ε 0.0-0.1 α=1.01-0.2 0.0 0.5 1.0 1.5 2.0 ω 0.2 0.1 Gap ε 0.0-0.1 α=2-0.2 0.0 0.5 1.0 1.5 2.0 ω

More information

The following can also be obtained from this WWW address: the papers [8, 9], more examples, comments on the implementation and a short description of

The following can also be obtained from this WWW address: the papers [8, 9], more examples, comments on the implementation and a short description of An algorithm for computing the Weierstrass normal form Mark van Hoeij Department of mathematics University of Nijmegen 6525 ED Nijmegen The Netherlands e-mail: hoeij@sci.kun.nl April 9, 1995 Abstract This

More information

MATH : Calculus II (42809) SYLLABUS, Spring 2010 MW 4-5:50PM, JB- 138

MATH : Calculus II (42809) SYLLABUS, Spring 2010 MW 4-5:50PM, JB- 138 MATH -: Calculus II (489) SYLLABUS, Spring MW 4-5:5PM, JB- 38 John Sarli, JB-36 O ce Hours: MTW 3-4PM, and by appointment (99) 537-5374 jsarli@csusb.edu Text: Calculus of a Single Variable, Larson/Hostetler/Edwards

More information

Higher dimensional dynamical Mordell-Lang problems

Higher dimensional dynamical Mordell-Lang problems Higher dimensional dynamical Mordell-Lang problems Thomas Scanlon 1 UC Berkeley 27 June 2013 1 Joint with Yu Yasufuku Thomas Scanlon (UC Berkeley) Higher rank DML 27 June 2013 1 / 22 Dynamical Mordell-Lang

More information

The Pacic Institute for the Mathematical Sciences http://www.pims.math.ca pims@pims.math.ca Surprise Maximization D. Borwein Department of Mathematics University of Western Ontario London, Ontario, Canada

More information

A(t) L T *(t) t/t t/t

A(t) L T *(t) t/t t/t he Real Story behind Floquet-Lyapunov Factorizations RAYMOND J. SPIERI Department of Mathematics and Statistics Acadia University Wolfville, NS BP X CANADA raymond.spiteri@acadiau.ca http//ace.acadiau.ca/~rspiteri

More information

arxiv: v1 [math.nt] 22 Jan 2019

arxiv: v1 [math.nt] 22 Jan 2019 Factors of some truncated basic hypergeometric series Victor J W Guo School of Mathematical Sciences, Huaiyin Normal University, Huai an 223300, Jiangsu People s Republic of China jwguo@hytceducn arxiv:190107908v1

More information

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8 Contents 17 Galois Fields 2 17.1 Introduction............................... 2 17.2 Irreducible Polynomials, Construction of GF(q m )... 3 17.3 Primitive Elements... 6 17.4 Roots of Polynomials..........................

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig A nonlocal anisotropic model for phase transitions Part II: Asymptotic behaviour of rescaled energies by Giovanni Alberti and Giovanni

More information

On Joint Eigenvalues of Commuting Matrices. R. Bhatia L. Elsner y. September 28, Abstract

On Joint Eigenvalues of Commuting Matrices. R. Bhatia L. Elsner y. September 28, Abstract On Joint Eigenvalues of Commuting Matrices R. Bhatia L. Elsner y September 28, 994 Abstract A spectral radius formula for commuting tuples of operators has been proved in recent years. We obtain an analog

More information

Introduction Finding the explicit form of Killing spinors on curved spaces can be an involved task. Often, one merely uses integrability conditions to

Introduction Finding the explicit form of Killing spinors on curved spaces can be an involved task. Often, one merely uses integrability conditions to CTP TAMU-22/98 LPTENS-98/22 SU-ITP-98/3 hep-th/98055 May 998 A Construction of Killing Spinors on S n H. Lu y, C.N. Pope z and J. Rahmfeld 2 y Laboratoire de Physique Theorique de l' Ecole Normale Superieure

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

290 J.M. Carnicer, J.M. Pe~na basis (u 1 ; : : : ; u n ) consisting of minimally supported elements, yet also has a basis (v 1 ; : : : ; v n ) which f

290 J.M. Carnicer, J.M. Pe~na basis (u 1 ; : : : ; u n ) consisting of minimally supported elements, yet also has a basis (v 1 ; : : : ; v n ) which f Numer. Math. 67: 289{301 (1994) Numerische Mathematik c Springer-Verlag 1994 Electronic Edition Least supported bases and local linear independence J.M. Carnicer, J.M. Pe~na? Departamento de Matematica

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

hep-lat/ Apr 1994

hep-lat/ Apr 1994 CERN-TH.7182/94 HU-RI-2/94 MS-TPI-94-3 April 1994 High Precision Renormalization Group Study of the Roughening Transition Martin Hasenbusch 1, Mihai Marcu 2, and Klaus Pinn 3 hep-lat/9404016 29 Apr 1994

More information

Complex WKB analysis of energy-level degeneracies of non-hermitian Hamiltonians

Complex WKB analysis of energy-level degeneracies of non-hermitian Hamiltonians INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 4 (001 L1 L6 www.iop.org/journals/ja PII: S005-4470(01077-7 LETTER TO THE EDITOR Complex WKB analysis

More information

Balance properties of multi-dimensional words

Balance properties of multi-dimensional words Theoretical Computer Science 273 (2002) 197 224 www.elsevier.com/locate/tcs Balance properties of multi-dimensional words Valerie Berthe a;, Robert Tijdeman b a Institut de Mathematiques de Luminy, CNRS-UPR

More information

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Pasteurgasse 6/7 Institute for Mathematical Physics A-090 Wien, Austria Why Schrodinger's Cat is Most Likely to be Either Alive or Dead H. Narnhofer W. Thirring

More information