Communications II Lecture 2: Probability and Random Processes

Size: px
Start display at page:

Download "Communications II Lecture 2: Probability and Random Processes"

Transcription

1 Commuicatio II Lecture : robabilit ad Radom rocee roeor Ki K. Leug ad Computig Departmet Imperial College Lodo Copright reerved

2 Sigiicace o probabilit theor robabilit i the core mathematical tool or commuicatio ad iormatio theor. Radome pla a importat role i commuicatio. Meage are radom. No radome o iormatio. Noie i radom. Ad ma more dela phae adig...

3 robabilit Sample Space Ω : Set o all radom eperimet outcome Ω { ω : ω i a outcome } ample For toig a coi Ω { H T } Roll a die Ω { 6 } vet Ω Roll a die two time: Ω { HH HT TH TT } vet { HH TT } A collectio o evet F alo called -ield. Obvioul F Ω A probabilit meaure o F i a uctio : F atiig the probabilit aiom: Ω F For evet A B belogig to F i A B AUB A + B 3

4 4 Coditioal robabilit Coider two evet A ad B ot ecearil idepedet o each other Deie A B robabilit o A give B Carr out N idepedet trial eperimet ad cout NA Number o trial with A outcome NAB Number o trial with both A ad B outcome. B deiitio Similarl a B B A B A A A B B A B A N A N A N A N B A N N B A N B N B A N N A N Statitical idepedece betwee A ad B B A B A A B A

5 5 Radom Variable RV For a probabilit pace Ω F a radom variable RV i a mappig rom Ω to a real umber. That i : Ω R A RV ω i a variable whoe value deped o the outcome ω o a radom eperimet with the deied probabilit meaure. Obvioul. ω Ω Coider a gamble i La Vega: Wi 3/8 Draw /4 Lo 3/8 -$5 $5 ω : 5 : : Ω + L L D D W W L D W L D W ω ω ω ω ω ω ω ω ω ω ω ω ω

6 6 robabilit Ditributio Fuctio DF ad robabilit Deit Fuctio pd DF alo ow a Cumulative Ditributio Fuctio CDF decreaig - o i Sice : pd : DF < d df b a d df F d a F b F b a d F d F F

7 Iterpretatio o pd Δ I i uicietl mall + Δ < + Δ d Δ Area Δ pectatio operator epected value or average: Variace: μ d μ μ d μ 7

8 Momet o a RV r r 3 Momet: μ or r... Average mea o : μ or m Cetral momet cetered o the mea Commet r μ r ' m or r 3... μ ' m Variace : Stadard deviatio : m μ ' m μ ' which give a meaure o diperio o about it mea 8

9 9 oio Ditributio Dicrete RV Coider a biomial ditributio with ver large umber o trial ad mall p: α α α α α α α α α α + e B C B p p α!...! lim : above the i Set... iite i where / Let p p C B ercie: Veri α α α α α Ω

10 poetial Ditributio λ λ λe or ercie:veri λ λ

11 Normal Gauia Ditributio A ver importat oe! d e F e m m or π π < < ercie:veri m m

12 Raleigh ad Ricia Ditributio R + Deie a RV where ad are idepedet Gauia with zero mea ad variace R ha Raleigh ditributio: R R r r r + A / Ar r e I r r / e r I ha ozero mea A R ha Ricia ditributio: where I π coθ e dϑ i the modiied zero-order π Beel uctio o the irt id r

13 3 Joit RV DF joit the : pd joit the : : ' F dudv v u F RV ropertie o joit pd: idepedet are 4 3 d b d a dudv v u F F

14 4 Coditioal DF ad pd A F d df dv v dv v du u dudv v u F Δ Δ + < Δ Δ + Δ < + Δ < + Δ + Δ RV : Deie a the coditioal DF or give B coditioal probabilit F The coditioal pd

15 Coditioal Ditributio Fuctio Cot d Coditioa l ditributi o uctio : Coditioa l average : φ φ d Whe φ Coditioa l Coditioa l mea : variace m : m d d 5

16 Coditioal ormal ditributio Coditioa l ditributi o uctio : The margial deit : d Coditioa l deit uctio : π joitl ormall ditribute d with m ρ ep{ π π ρ ρ ep{ m ep{ } ρ ρ + } ρ } Note that thi coditioal pd i alo a ormal deit uctio with mea ρ ad variace ρ. The eect o the coditio havig o i to chage the mea o to ρ ad to reduce the variace b. ρ 6

17 7 Joit Ditributio Fuctio o RV F F F F F : '... F RV The joit DF o RV The joit pd o RV Idepedet RV Ucorrelated RV j i j i j i j i

18 Covariace ad Correlatio Coeiciet RV : Covariace o ad : cov m m Correlatio Coeiciet: ρ cov m m 8

19 9 ropertie o Correlatio Coeiciet. Similarl variace. o deiitio to due i tep lat The / Clearl / / Let V m m U U U V m U m V m U A epectatio o a o-egative RV i o-egative we have ρ ropert : ρ roo: ad + V U V U Thee two iequalitie impl: become above the ad Sice UV V U b V UV U a V UV U ρ ρ ρ + + ρ ρ ρ

20 ropertie o Correlatio Coeiciet ρ ropert : ad are liearl related i ad ol i ± ρ roo: I ad are liearl related let a + b where a b R ρ m From * ρ ρ ± a m m m a ± m m a + b am a * a + bam b b ± b de o m a am ± a

21 ropertie o Correlatio Coeiciet ρ ropert : ad are liearl related i ad ol i ± ρ roo Cot d: Now aume ρ Let ρ U m m / m V UV m / Now coider U V U V U V Thereore ad the U U V m UV + V otherwie U-V with prob. m > i.e. are liearl + related Similarl whe ρ coider U + V ad obtai the ame reult

22 ropertie o Correlatio Coeiciet ρ ropert 3: I ad are idepedet ρ leae tr to prove ropert 3 at home Cautio: The covere o thi propert i ot true i geeral. That i i ad are ot ecearil idepedet! ρ

23 A ample o ucorrelated but depedet R.V. Let θ be uiorml ditributed i π θ or π π Deie R.V. ad a co θ iθ Clearl ad are ot idepedet. I particular or a give θ ad are depedet. θ ρ Locu o ad orthogoal I ad are idepedet we hould ee poible ample poit o aume all poible value o ad i a uit quare. But ad are ucorrelated a ρ π π! m m coθ iθdθ 3

24 Idepedet implie Ucorrelated Ucorrelated doe ot impl Idepedece For ormal RV joitl Gauia Ucorrelated implie Idepedet thi i the ol eceptioal cae! Orthogoal RV i Covariace matri o RV j C cij i μ i j μ j 4

25 Importat robabilit Iequalitie ad Limit Theorem Marov Iequalit: a or o - egative a a d + d a a a a d d a a Marov iequalit i ot tight becaue ol the mea o the RV i utilized Chebhev Iequalit: Let The m ad Sice m m a a a a a i.e. a m a i the variace o b Marov iequalit a m Chebhev iequalit a a Chebhev iequalit i tighter tha Marov iequalit a the ormer ue the variace 5

26 Arithmetic Mea o Sum o RV Deie where That i i W i ' i are idepedet idetical ditributed i.i.d. R.V. W i the ample mea o i ' Let each have a mea ad variace: ad repectivel Appl W i W W ercie :Show W Chebhev i W a i iequalit W Importace: Arithmetic mea o the um o i.i.d. RV will approach it epected value a icreae : a a 6

27 Law o Large Number Wea Law o Large Number For a ε > ad iite lim W ε W Or lim W ε ε < ε a Strog Law o Large Number Or lim W lim W almot urel or with prob. 7

28 Cetral Limit Theorem Deie S i i where i ' are i.i.d. R.V. with μ < Deie a ew RV Cetral Limit Theorem : lim R R < S μ π e / d Importace: The hited ad caled um o a ver large umber o i.i.d. RV ha a ormal ditributio 8

29 9 Setch o roo: Cetral Limit Theorem { }... : epaio Talor the Obtai : or LT The 3 3!! * * 3 / Φ Φ μ μ μ μ μ μ μ μ e e e e e e R i R i R R i i i i i i S R μ μ where * ξ ξ Z that Note * Z e ξ μ μ μ + + e Z * lim large or / to relative eglected be ca term The + μ ξ

30 3 Setch o roo: Cetral Limit Theorem Cot d { } o LT lim } { lim lim lim : have ow We / * * N e e e e R R + Φ + Φ μ μ μ i i S R μ μ

31 What i a Radom roce? A radom proce i a time-varig uctio that aig the outcome o a radom eperimet to each time itat: t; ω. For a ied ample path ω: a radom proce i a time varig uctio e.g. a igal. For ied t: a radom proce i a radom variable I ω ca all poible outcome o the uderlig radom eperimet we hall get a eemble o igal. 3

32 For ied t: the radom proce become a radom variable with epectatio value Autocorrelatio uctio R Auto-covariace uctio μ t t; ω p ; t d t t t; ω t; ω p ; t t dd C t t t; ω μ t t; ω μ t 3

33 Two Radom rocee Cro correlatio: R g Cro covariace: C g t t t; ω g t ; ω t t t; ω μ t g t; ω μg t Ucorrelated radom procee: C g t t t; ω μ t g t; ω μg t 33

34 Statioar Radom rocee A radom proce i tatioar i the trict ee i the joit pd are ivariat to a tralatio o the time ai t p + t t t p t + t t + t t t A radom proce i tatioar i the wide ee i It epectatio value doe ot deped o t ad It autocorrelatio uctio i time-tralatio ivariat R t t t; ω t; ω t + t; ω t + t; ω or a t 34

35 I geeral emble autocorrelatio uctio i a - dimeioal matri. The autocorrelatio uctio Rt t o a wide-ee tatioar radom proce deped ol o the dierece time t t. Thi i eail ee rom the lat equatio o the previou lide. A tatioar radom proce i otherwie ow a a homogeeou proce. 35

36 ercie: Show a iuoid t A co ω t + Θ c with radom phae Θ uiorml ditributed o π i wide-ee tatioar. 36

37 Temporal Statitic o a Radom roce Temporal average: μ ω lim T T T / T / t; ω dt Note: The temporal average above i a uctio o the outcome o which deped i.e. the average i a radom variable. Temporal autocorrelatio uctio o the radom proce: R t T / lim ; ω + T t; ω t t; ω T T / Thi i aother radom variable. dt 37

38 rgodicit A radom proce i ergodic with repect to the mea i iti wide-ee tatioar ad it temporal average i equal to the eemble average. A radom proce i ergodic with repect to the autocorrelatio uctio i it i wide-ee tatioar ad it temporal autocorrelatio uctio i equal to it eemble autocorrelatio uctio: R t lim T T R t t; ω T T ; ω / / t + t t; ω ; ω t + t ; ω dt A radom proce i ergodic whe it i ergodic with repect to the mea ad with repect to it autocorrelatio uctio. 38

39 ercie: Show a iuoid t Acoωct + Θ with radom phae Θ uiorml ditributed o π i ergodic. 39

40 Importat implicatio o ergodicit I a eemble o igal i ergodic we ca calculate it mea ad autocorrelatio uctio b impl calculatig temporal average over a igal o the eemble we happe to have. Statitical propertie o all verio o a igal oe ma ecoutercomputable rom a igle verio o the igal b uig all it ample. 4

41 4

42 Relatiohip o tatitical meaure with meaurable egieerig quatitie I mot cae Gauia oie i commuicatio i a ergodic radom proce. Note that the mea value t locate the ceter o gravit o the area uder the probabilit deit uctio o it value. DC compoet: t t Average power: t t where <.> deote time average. Notice that or a zero-mea proce the variace i equivalet to the average power i.e. t. Thi could be meaured i the lab uig a power meter. 4

43 Autocorrelatio ad ower Spectral Deit The requec cotet o a proce deped o how rapidl the amplitude chage a a uctio o time. Thi ca be meaured b correlatig the amplitude at time t ad t. Autocorrelatio o a real radom proce: R t t t t For a tatioar proce the autocorrelatio deped ol o the time dierece o τ t t + τ R Average power o a waveorm mea quare. Hece t R 43

44 ower Spectral Deit ower pectral deit SD i a uctio that meaure the ditributio o power o a radom igal with requec. SD i ol deied or tatioar igal igal that are homogeeou with repect to the mea ad the autocorrelatio uctio. S T lim T T where width T. T i the Fourier traorm o igal t i a widow o 44

45 Wieer-Khichie Theorem The power pectral deit o a radom proce i equal to the Fourier traorm o it autocorrelatio: S R τ e j π τ dτ See the boo b Lathi or a proo. The the average power o a radom proce ca be oud b itegratig the SD over all requecie: R S d 45

Stochastic Processes

Stochastic Processes Stochastic Processes Review o Elemetar Probabilit Lecture I Hamid R. Rabiee Fall 20 Ali Jalali Outlie Histor/Philosoph Radom Variables Desit/Distributio Fuctios Joit/Coditioal Distributios Correlatio Importat

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

Formula Sheet. December 8, 2011

Formula Sheet. December 8, 2011 Formula Sheet December 8, 2011 Abtract I type thi for your coveice. There may be error. Ue at your ow rik. It i your repoible to check it i correct or ot before uig it. 1 Decriptive Statitic 1.1 Cetral

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotiuous Radom Variables: Coditioig, Expectatio ad Idepedece Berli Che Departmet o Computer ciece & Iormatio Egieerig Natioal Taiwa Normal Uiversit Reerece: - D.. Bertsekas, J. N. Tsitsiklis, Itroductio

More information

Statistical Signal Processing

Statistical Signal Processing ELEG-66 Statistical Sigal Processig Pro. Barer 6 Evas Hall 8-697 barer@udel.edu Goal: Give a discrete time sequece {, how we develop Statistical ad spectral represetatios Filterig, predictio, ad sstem

More information

Statistical Equations

Statistical Equations Statitical Equatio You are permitted to ue the iformatio o thee page durig your eam. Thee page are ot guarateed to cotai all the iformatio you will eed. If you fid iformatio which you believe hould be

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

CH5. Discrete Probability Distributions

CH5. Discrete Probability Distributions CH5. Discrete Probabilit Distributios Radom Variables A radom variable is a fuctio or rule that assigs a umerical value to each outcome i the sample space of a radom eperimet. Nomeclature: - Capital letters:

More information

4. Basic probability theory

4. Basic probability theory Cotets Basic cocepts Discrete radom variables Discrete distributios (br distributios) Cotiuous radom variables Cotiuous distributios (time distributios) Other radom variables Lect04.ppt S-38.45 - Itroductio

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

Inferences of Type II Extreme Value. Distribution Based on Record Values

Inferences of Type II Extreme Value. Distribution Based on Record Values Applied Matheatical Sciece, Vol 7, 3, o 7, 3569-3578 IKARI td, www-hikarico http://doiorg/988/a33365 Ierece o Tpe II tree Value Ditributio Baed o Record Value M Ahaullah Rider Uiverit, awreceville, NJ,

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Another Look at Estimation for MA(1) Processes With a Unit Root

Another Look at Estimation for MA(1) Processes With a Unit Root Aother Look at Etimatio for MA Procee With a Uit Root F. Jay Breidt Richard A. Davi Na-Jug Hu Murray Roeblatt Colorado State Uiverity Natioal Tig-Hua Uiverity U. of Califoria, Sa Diego http://www.tat.colotate.edu/~rdavi/lecture

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

Chapter 1 ASPECTS OF MUTIVARIATE ANALYSIS

Chapter 1 ASPECTS OF MUTIVARIATE ANALYSIS Chapter ASPECTS OF MUTIVARIATE ANALYSIS. Itroductio Defiitio Wiipedia: Multivariate aalyi MVA i baed o the tatitical priciple of multivariate tatitic which ivolve obervatio ad aalyi of more tha oe tatitical

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Tools Hypothesis Tests

Tools Hypothesis Tests Tool Hypothei Tet The Tool meu provide acce to a Hypothei Tet procedure that calculate cofidece iterval ad perform hypothei tet for mea, variace, rate ad proportio. It i cotrolled by the dialog box how

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Linear Regression Model Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Lecture 5. Random variable and distribution of probability

Lecture 5. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Eco 35: Itroductio to Empirical Ecoomics Lecture 3 Discrete Radom Variables ad Probability Distributios Copyright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 4-1 4.1 Itroductio to Probability

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

Chapter 8 Part 2. Unpaired t-test With Equal Variances With Unequal Variances

Chapter 8 Part 2. Unpaired t-test With Equal Variances With Unequal Variances Chapter 8 Part Upaired t-tet With Equal Variace With Uequal Variace December, 008 Goal: To eplai that the choice of the two ample t-tet deped o whether the ample are depedet or idepedet ad for the idepedet

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

NOTES ON DISTRIBUTIONS

NOTES ON DISTRIBUTIONS NOTES ON DISTRIBUTIONS MICHAEL N KATEHAKIS Radom Variables Radom variables represet outcomes from radom pheomea They are specified by two objects The rage R of possible values ad the frequecy fx with which

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2 AMS 216 Stochastic Differetial Equatios Lecture 02 Copyright by Hogyu Wag, UCSC Review of probability theory (Cotiued) Variace: var X We obtai: = E X E( X ) 2 = E( X 2 ) 2E ( X )E X var( X ) = E X 2 Stadard

More information

Lecture 6: Coupon Collector s problem

Lecture 6: Coupon Collector s problem Radomized Algorithms Lecture 6: Coupo Collector s problem Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Radomized Algorithms - Lecture 6 1 / 16 Variace: key features

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Comparing your lab results with the others by one-way ANOVA

Comparing your lab results with the others by one-way ANOVA Comparig your lab results with the others by oe-way ANOVA You may have developed a ew test method ad i your method validatio process you would like to check the method s ruggedess by coductig a simple

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT Samplig Ditributio 1 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BSc. MATHEMATICS COMPLEMENTARY COURSE CUCBCSS 2014 Admiio oward III Semeter STATISTICAL INFERENCE Quetio Bak 1. The umber of poible

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm.

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm. } CHAPTER 6 Cofidece Iterval 6.1 (a) y = 1269; = 145; = 8. The tadard error of the mea i SE ȳ = = 145 8 = 51.3 g/gm. (b) y = 1269; = 145; = 30. The tadard error of the mea i ȳ = 145 = 26.5 g/gm. 30 6.2

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

Differential Entropy

Differential Entropy School o Iormatio Sciece Dieretial Etropy 009 - Course - Iormatio Theory - Tetsuo Asao ad Tad matsumoto Email: {t-asao matumoto}@jaist.ac.jp Japa Advaced Istitute o Sciece ad Techology Asahidai - Nomi

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Hidden Markov Model Parameters

Hidden Markov Model Parameters .PPT 5/04/00 Lecture 6 HMM Traiig Traiig Hidde Markov Model Iitial model etimate Viterbi traiig Baum-Welch traiig 8.7.PPT 5/04/00 8.8 Hidde Markov Model Parameter c c c 3 a a a 3 t t t 3 c a t A Hidde

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

GENERALIZED TWO DIMENSIONAL CANONICAL TRANSFORM

GENERALIZED TWO DIMENSIONAL CANONICAL TRANSFORM IOSR Joural o Egieerig (IOSRJEN) ISSN: 50-30 Volume, Iue 6 (Jue 0), PP 487-49 www.iore.org GENERALIZED TWO DIMENSIONAL CANONICAL TRANSFORM S.B.Chavha Yehawat Mahavidhalaya Naded (Idia) Abtract: The two-dimeioal

More information

A PROBABILITY PRIMER

A PROBABILITY PRIMER CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators Lecture 2: Poisso Sta*s*cs Probability Desity Fuc*os Expecta*o ad Variace Es*mators Biomial Distribu*o: P (k successes i attempts) =! k!( k)! p k s( p s ) k prob of each success Poisso Distributio Note

More information

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS STAT 56 Aswers Homework 6 April 2, 28 Solutios by Mark Daiel Ward PROBLEMS Chapter 6 Problems 2a. The mass p(, correspods to either o the irst two balls beig white, so p(, 8 7 4/39. The mass p(, correspods

More information

18.05 Problem Set 9, Spring 2014 Solutions

18.05 Problem Set 9, Spring 2014 Solutions 18.05 Problem Set 9, Sprig 2014 Solutio Problem 1. (10 pt.) (a) We have x biomial(, θ), o E(X) =θ ad Var(X) = θ(1 θ). The rule-of-thumb variace i jut 4. So the ditributio beig plotted are biomial(250,

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is:

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is: PROBABILITY FUNCTIONS A radom variable X has a probabilit associated with each of its possible values. The probabilit is termed a discrete probabilit if X ca assume ol discrete values, or X = x, x, x 3,,

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Chapter 8.2. Interval Estimation

Chapter 8.2. Interval Estimation Chapter 8.2. Iterval Etimatio Baic of Cofidece Iterval ad Large Sample Cofidece Iterval 1 Baic Propertie of Cofidece Iterval Aumptio: X 1, X 2,, X are from Normal ditributio with a mea of µ ad tadard deviatio.

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information