Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10

Size: px
Start display at page:

Download "Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 10"

Transcription

1 Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 10

2 Reading/Homework Assignment Makeup class tomorrow morning at 9:00AM Read sections 2.5 to 2.9 in Rose over spring break!

3 Stellar Structure

4 Equations of Stellar Structure Hyostatic Equilibrium : Mass Continuity : dm(r) (r) =4πr 2 ρ(r) = ρ(r) GM(r) r 2 Eqn. of State : P gas = nkt(r) = ρ(r) µm u kt(r) P rad (r) = 1 at (r)4 3 Radiative transport equation : T 3 κρ L r = 16πac r 2 T 3 Energy dl(r) Production/Conservation= T γ 4πr 2 ρ(r)ɛ(r) Convective Energy Transport: P dt = γ 1

5 Convection ρ i,p i,t i ρ o (r + r), P o (r + r), T o (r + r) P i = P o,t i >T o ρ i <ρ o ρ i,p i,t i ρo(r + r), Po(r + r), To(r + r) ρ i,p i,t i ρ o (r), P o (r), T o (r)

6 Adiabatic Expansion C v dq dt Enthalpy : H U + PV V = U T dh = du +(PdV + V ) H C p T Using the ideal gas law PV = NkT dh =(α + 1)(P dv + V ) V Nk C p =(α + 1)P =(α + 1)P T P For adiabatic expansion, dq =0=dU + P dv, substituting for du gives: P du = αnk dt C v = αnk d(pv)=nkdt du = αnkdt = αd(pv)=α(p dv + V ) P α(p dv + V )= P dv (α + 1)P dv = αv V =(α + 1)Nk (α + 1) dv V = α P

7 Adiabatic Expansion (α + 1) dv V = α P ln Integrating both sides: = α +1 α ln Pb P a Pb P a = Vb V a α+1 α Vb V a PV γ = constant where γ α +1 α = C p C v γ mn PV γ = const P = const ρ P ρ γ = const Substituting P = ρ m kt gives PTγ P γ = const P 1 γ T γ = const

8 Convection r + δr ρ i (r + δr) P i (r + δr) T i (r + δr) r ρ i,p i,t i ρ o (r + δr) P o (r + δr) T o (r + δr) Assume no heat flows across the boundary adiabatic expansion Assume that pressure balance is always established by free expansion/contraction of the element P o (r) =P i (r) Start by considering the adiabatic expansion of the element: P o (r + δr)ρ i (r + δr) γ = P o (r)ρ i (r) γ (Note P i = P o ) Expanding : P o (r)+ δr ρ i (r) γ 1 γ 1 dρ i ρ i (r) δr = P o (r)ρ i (r) γ dρ i = ρ i(r) γp o (r) o Now, we compare this with the outside density gradient to see if the object continues to be boyant (convective instability) or sinks back down (convective stability). Stability condition : ρ i (r) γp o (r) o > dρ o to first order, we can assume that ρ i (r) ρ o (r), substitute, divide both sides by o / to obtain Po dρo < 1 o γ ρ o

9 Convection For a stellar atmosphere where radiation pressure is negligible, the equation of state is given by the ideal gas law: Differentiating both sides gives P = ρ m kt ln P = ln ρ + ln T + constant P Starting with the expression for stability = dρ ρ + dt T Po ρ o dρo o < 1 γ or dρ o ρ o 1 γ o P o < o γ P o Stability condition : P T dt o T o < 0 dt > γ 1 γ

10 Stability Condition Stability condition : P T dt > γ 1 γ dt < γ 1 γ T P Hyostatic Equilibrium : defining g GM r 2 (r) PV = NkT P = ρkt m = ρ(r) GM(r) r 2 = ρ g substituting for / and P dt < dt < γ 1 T ( ρ g) γ ρkt/m γ 1 gm γ k

11 Convective Transport Stability condition : P T dt > γ 1 γ In your textbook, the stability condition is derived in terms of the temperature gradient giving Stability condition : dt < g c p The δt and velocity (from the boyant force) of the rising elements are determined by the difference between the temperature gradient (outside) and the adiabatic gradient (inside), any difference will result in convective transport that tends to reduce the outside temperature gradient. So, to a reasonable degree of accuracy we can assume that in a convective zone, the temperature gradient takes on almost exactly the adiabatic value, turning our inequality into an equality: P T dt = γ 1 γ Giving us the equation for convective transport

12 Convective Energy Flux In your textbook, Rose calculates the difference in potential and kinetic energy over a characteristic length scale, i.e., the scale height λ of the stellar atmosphere, defined to be the height at which the pressure ops by 1/e δr = λ P / I prefer another model, as described in Kippenhahn and Weigert. Here, we assume that convective elements are constantly being born out of small temperature perturbations with initial velocity v c = 0. They start there motion at a range of different distances from the center of the star, and pick uo (or loose) speed as they rise (or sink) until after moving through a distance l m they mix with the surroundings and loose their identity. δr = l m /2 The change in kinetic energy of the rising element (per unit volume) is v c = kinetic energy density = 1 2 ρv2 c Equating this to the change in potential energy, and setting δr = l m /2 1 ρ 1 2 ρv2 c = ρ GM(r) r 2 δr 1/2 1 GM(r) P r 2 dρ 1 γ 1/2 l m 2

13 Convective Energy Flux δv Stability condition : ρ i (r) γp o (r) Adiabatic density gradient : o > dρ o dρ i = ρ γp δv δr External density gradient : dρ The deficiency of the density of the bubble (or a little differential volume element δv thereof) compared with the surroundings is: ρ dρ δr dρ i dρ δr = 1 ρ δr γ P The change in the potential energy density is then GM(r) GM(r + δr) GM(r) u ρ r (r + δr) r 2 δr This expression could be equated to the change in kinetic energy density, and we could solve for some sort of velocity. Then we need to do some sort of very complicated average over elements throughout the star. Doing this correctly is very difficult, so we can use one of a couple of simple models that get the basic physics...

14 Convective Flux δv δv δr P (r)+δr 1 + (1 γ)δr 1 P P 1 γ T γ = const P (r + δr) 1 γ T i (r + δr) γ = P (r) 1 γ T i (r) γ 1 + (1 γ)δr 1 P 1 γ T i (r)+δr dt γ i P (r) 1 γ T i (r) γ 1+γδr 1 dt i T i 1 + γδr 1 T i dt i + O(δr2 ) 1 dt i = γ 1 γ T P The difference in temperature of the element and the surroundings is given by: T dt δr dt i γ 1 T δr = γ P dt δr T δr u = c p T And the convective energy flux is F c = L c 4πr 2 = c p T δr ρv c u mass flux

15 Convective flux F c = L c 4πr 2 = c p T δr ρv c u mass flux v c = 1 ρ dρ 1 γ 1 P 1/2 GM(r) r 2 1/2 l m 2 and we can show this can be rewritten as v c =( T ) 1/2 GM(r) Tr 2 1/2 l m 2 Combining these equations, and dividing by two (to account for both rising and falling convective blobs???) F c = L c 4πr 2 = c pρ( T ) 3/2 GM(r) Tr 2 1/2 l 2 m 4

16 Polytropes In general we have a system of equations to solve for 3 variables (the temperature, pressure and density gradients). Solving this equation depends on the details of the equation of state, opacity and other physics that may change throughout the star. If we have a relationship that instead gave a relationship between pressure and density P = P (ρ) (with no explicit temperature dependence) we can solve for the structure of the star using the equations of hyostatic equilibrium and mass conservation alone. We call hypothetical stars with a simple relationship between pressure and density polytropes, where P = Kρ 1+1/n The equations of hyostatic equilibrium and mass continuity are (i) (ii) = ρgm(r) r 2 dm(r) = 4πr 2 ρ combining (i) and (ii) we obtain 4πr 2 ρ = d r2 ρg

17 Polytropes d r 2 ρ r 2 = 4πGρ substituting ρ(r) = ρ c θ n (r) P = Kρ (1+1/n) c θ (n+1) = Kρ(1+1/n) c (n + 1)θ n (r) dθ Define a new dimensionless variable corresponding to the radial distance from the center of the star: r = aξ r d 2 ρ d a 2 ξ 2 ρ c θ Kρ (1+1/n) r 2 = n c (n + 1)θ n dθ adξ a 3 ξ 2 dξ if we choose a = (n + 1)Kρ (1/n 1) c 4πG = 4πGρ c θ n 1/2 Lane-Emden equation of index n 1 ξ 2 d dθ ξ2 dξ dξ = θn

18 Polytropes Analytic solutions of the Lane-Emden equation exist only for a few values of n ξ 2 n = 0, θ = 1 6 n = 1, θ = sin ξ ξ 1 n = 5, θ = ξ2 0.5 For other values of n, we can solve the equations numerically, starting with the boundary conditions ρ = ρ c at r = 0 so θ(0) = 1 = 0 at r = 0 dθ dξ = 0 ξ=0 Then, rewrite the Lane-Emden equation 1 ξ 2 d dθ ξ2 dξ dξ = θn 2ξ dθ dξ + ξ2 d2 θ dξ + θn ξ 2 = 0 d 2 θ dξ 2 = 2 ξ dθ dξ θn

19 Polytropes d 2 θ dξ 2 = 2 ξ dθ dξ θn Now convert this differential equation to a finite difference equation dθ dξ 1 ξ (θ i+1 θ i ) d 2 θ dξ 2 1 ξ 2 (θ i+1 2θ i + θ i 1 ) ξ i ξ θ n θ n i Then, starting at the middle of the star with i = 0, θ = 1, ξ = 0 and dθ/dξ = 0, solve for θ i+1 and repeat until the surface is reached (when θ ops below zero, and hence density ops below zero) The surface of the star R = aξ s can be found by finding the root, θ(ξ s )=0

20 Numerical Solutions θ(ξ) ξ Hint: Start integration at ξ =, i.e., some small positive number not exactly equal to zero!

21 Polytropes We can derive some useful physical quantities from the solution of the Lane- Emden equation: Stellar radius : R = aξ s = (n + 1)K 4πG 1/2 ρ (1 n)/2n c ξ s Total mass : M =4πa 3 ρ c ξs 0 θ n ξ 2 dξ using 1 ξ 2 d dθ ξ2 dξ dξ = θn we see that M =4πa 3 ρ c ξs o d ξ 2 dθ dξ and thus M =4π (n + 1)K 4πG 3/2 ρ (3 n)/2n c ξ 2 dθ dξ ξ s

Physics 556 Stellar Astrophysics Prof. James Buckley

Physics 556 Stellar Astrophysics Prof. James Buckley hysics 556 Stellar Astrophysics rof. James Buckley Lecture 8 Convection and the Lane Emden Equations for Stellar Structure Reading/Homework Assignment Read sections 2.5 to 2.9 in Rose over spring break!

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 11 Polytropes and the Lane Emden Equation

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 11 Polytropes and the Lane Emden Equation Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 11 Polytropes and the Lane Emden Equation Reading/Homework Assignment Makeup class tomorrow morning at 9:00AM Read sections 2.5 to 2.9 in Rose

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 9 Energy Production and Scaling Laws Equations of Stellar Structure Hydrostatic Equilibrium : dp Mass Continuity : dm(r) dr (r) dr =4πr 2 ρ(r)

More information

Summary of stellar equations

Summary of stellar equations Chapter 8 Summary of stellar equations Two equations governing hydrostatic equilibrium, dm dr = 4πr2 ρ(r) Mass conservation dp dr = Gm(r) r 2 ρ Hydrostatic equilibrium, three equations for luminosity and

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information

Static Stellar Structure

Static Stellar Structure Most of the Life of A Star is Spent in Equilibrium Evolutionary Changes are generally slow and can usually be handled in a quasistationary manner We generally assume: Hydrostatic Equilibrium Thermodynamic

More information

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc/MSci Examination Day 28th April 2015 18:30 21:00 SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL

More information

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc Examination Day 15th May 2014 14:30 17:00 ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY

More information

CHAPTER 16. Hydrostatic Equilibrium & Stellar Structure

CHAPTER 16. Hydrostatic Equilibrium & Stellar Structure CHAPTER 16 Hydrostatic Equilibrium & Stellar Structure Hydrostatic Equilibrium: A fluid is said to be in hydrostatic equilibrium (HE) when it is at rest. This occurs when external forces such as gravity

More information

2. Equations of Stellar Structure

2. Equations of Stellar Structure 2. Equations of Stellar Structure We already discussed that the structure of stars is basically governed by three simple laws, namely hyostatic equilibrium, energy transport and energy generation. In this

More information

ASTR 1040 Recitation: Stellar Structure

ASTR 1040 Recitation: Stellar Structure ASTR 1040 Recitation: Stellar Structure Ryan Orvedahl Department of Astrophysical and Planetary Sciences University of Colorado at Boulder Boulder, CO 80309 ryan.orvedahl@colorado.edu February 12, 2014

More information

PHYS 633: Introduction to Stellar Astrophysics

PHYS 633: Introduction to Stellar Astrophysics PHYS 6: Introduction to Stellar Astrophysics Spring Semester 2006 Rich Townsend (rhdt@bartol.udel.edu Convective nergy Transport From our derivation of the radiative diffusion equation, we find that in

More information

dp dr = ρgm r 2 (1) dm dt dr = 3

dp dr = ρgm r 2 (1) dm dt dr = 3 Week 5: Simple equilibrium configurations for stars Follows on closely from chapter 5 of Prialnik. Having understood gas, radiation and nuclear physics at the level necessary to have an understanding of

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Astronomy 112: The Physics of Stars. Class 9 Notes: Polytropes

Astronomy 112: The Physics of Stars. Class 9 Notes: Polytropes Astronomy 112: The Physics of Stars Class 9 Notes: Polytropes With our discussion of nuclear reaction rates last time, we have mostly completed our survey of the microphysical properties of stellar matter

More information

Equations of Stellar Structure

Equations of Stellar Structure Equations of Stellar Structure Stellar structure and evolution can be calculated via a series of differential equations involving mass, pressure, temperature, and density. For simplicity, we will assume

More information

Tides in Higher-Dimensional Newtonian Gravity

Tides in Higher-Dimensional Newtonian Gravity Tides in Higher-Dimensional Newtonian Gravity Philippe Landry Department of Physics University of Guelph 23 rd Midwest Relativity Meeting October 25, 2013 Tides: A Familiar Example Gravitational interactions

More information

Convection and Other Instabilities. Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10

Convection and Other Instabilities. Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10 Convection and Other Instabilities Prialnik 6 Glatzmair and Krumholz 11 Pols 3, 10 What is convection? A highly efficient way of transporting energy in the stellar interior Highly idealized schematic.

More information

Convection. If luminosity is transported by radiation, then it must obey

Convection. If luminosity is transported by radiation, then it must obey Convection If luminosity is transported by radiation, then it must obey L r = 16πacr 2 T 3 3ρκ R In a steady state, the energy transported per time at radius r must be equal to the energy generation rate

More information

dr + Gm dr Gm2 2πr 5 = Gm2 2πr 5 < 0 (2) Q(r 0) P c, Q(r R) GM 2 /8πR 4. M and R are total mass and radius. Central pressure P c (Milne inequality):

dr + Gm dr Gm2 2πr 5 = Gm2 2πr 5 < 0 (2) Q(r 0) P c, Q(r R) GM 2 /8πR 4. M and R are total mass and radius. Central pressure P c (Milne inequality): 1 Stellar Structure Hydrostatic Equilibrium Spherically symmetric Newtonian equation of hydrostatics: dp/dr = Gmρ/r 2, dm/dr = 4πρr 2. 1) mr) is mass enclosed within radius r. Conditions at stellar centers

More information

Ay123 Set 1 solutions

Ay123 Set 1 solutions Ay13 Set 1 solutions Mia de los Reyes October 18 1. The scale of the Sun a Using the angular radius of the Sun and the radiant flux received at the top of the Earth s atmosphere, calculate the effective

More information

Polytropic Stars. c 2

Polytropic Stars. c 2 PH217: Aug-Dec 23 1 Polytropic Stars Stars are self gravitating globes of gas in kept in hyostatic equilibrium by internal pressure support. The hyostatic equilibrium condition, as mentioned earlier, is:

More information

Energy transport: convection

Energy transport: convection Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions for classic stellar atmospheres: geometry, hydrostatic equilibrium, conservation of momentum-mass-energy,

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

9.1 Introduction. 9.2 Static Models STELLAR MODELS

9.1 Introduction. 9.2 Static Models STELLAR MODELS M. Pettini: Structure and Evolution of Stars Lecture 9 STELLAR MODELS 9.1 Introduction Stars are complex physical systems, but not too complex to be modelled numerically and, with some simplifying assumptions,

More information

Chapter 16. White Dwarfs

Chapter 16. White Dwarfs Chapter 16 White Dwarfs The end product of stellar evolution depends on the mass of the initial configuration. Observational data and theoretical calculations indicate that stars with mass M < 4M after

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Part 4 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Ordinary Differential Equations p. 1/23 Two-point Boundary Value Problems NRiC 17. BCs specified at two

More information

The Equations of Stellar structure

The Equations of Stellar structure PART IV: STARS I Section 1 The Equations of Stellar structure 1.1 Hyostatic Equilibrium da P P + dp r Consider a volume element, density ρ, thickness and area da, at distance r from a central point. The

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

M J v2 s. Gm (r) P dm = 3. For an isothermal gas, using the fact that m r, this is GM 2 R = 3N ot M 4πR 3 P o, P o = 3N ot M

M J v2 s. Gm (r) P dm = 3. For an isothermal gas, using the fact that m r, this is GM 2 R = 3N ot M 4πR 3 P o, P o = 3N ot M 1 Stellar Birth Criterion for stability neglect magnetic fields. Critical mass is called the Jean s mass M J, where a cloud s potential energy equals its kinetic energy. If spherical with uniform temperature,

More information

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg Stellar Interiors. Hydrostatic Equilibrium 2. Mass continuity 3. Equation of State. The pressure integral 4. Stellar Energy Sources. Where does it come from? 5. Intro to Nuclear Reactions. Fission 2. Fusion

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI March 15, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

Free-Fall Timescale of Sun

Free-Fall Timescale of Sun Free-Fall Timescale of Sun Free-fall timescale: The time it would take a star (or cloud) to collapse to a point if there was no outward pressure to counteract gravity. We can calculate the free-fall timescale

More information

Handout 18: Convection

Handout 18: Convection Handout 18: Convection The energy generation rate in the center of the sun is ~ 16 erg/gm/s Homework, sum of p-p and CNO production The average energy generation needed to supply the sun s luminosity is

More information

Linear Theory of Stellar Pulsation

Linear Theory of Stellar Pulsation Linear Theory of Stellar Pulsation Mir Emad Aghili Department of Physics and Astronomy, University of Mississippi, University, MS, 38677 Introduction The first pulsating star to be discovered was omicron

More information

ρ dr = GM r r 2 Let s assume that µ(r) is known, either as an arbitrary input state or on the basis of pre-computed evolutionary history.

ρ dr = GM r r 2 Let s assume that µ(r) is known, either as an arbitrary input state or on the basis of pre-computed evolutionary history. Stellar Interiors Modeling This is where we take everything we ve covered so far and fold it into models of spherically symmetric, time-steady stellar structure. (We ll emphasize insight over rigorous

More information

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation,

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation, Astronomy 715 Final Exam Solutions Question 1 (i). The equation of hydrostatic equilibrium is dp dr GM r r 2 ρ. (1) This corresponds to the scaling P M R ρ, (2) R2 where P and rho represent the central

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Substellar Interiors. PHY 688, Lecture 13

Substellar Interiors. PHY 688, Lecture 13 Substellar Interiors PHY 688, Lecture 13 Outline Review of previous lecture curve of growth: dependence of absorption line strength on abundance metallicity; subdwarfs Substellar interiors equation of

More information

PAPER 68 ACCRETION DISCS

PAPER 68 ACCRETION DISCS MATHEMATICAL TRIPOS Part III Tuesday, 2 June, 2009 9:00 am to 11:00 am PAPER 68 ACCRETION DISCS There are THREE questions in total Full marks can be obtained by completing TWO questions The questions carry

More information

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton.

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton. From Last Time: Mean mass m m = m e + m p 2 = m H 2 The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 13 Thermodynamics of QM particles Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home) Final Project, May 4

More information

The structure and evolution of stars. Introduction and recap

The structure and evolution of stars. Introduction and recap The structure and evolution of stars Lecture 3: The equations of stellar structure 1 Introduction and recap For our stars which are isolated, static, and spherically symmetric there are four basic equations

More information

Phases of Stellar Evolution

Phases of Stellar Evolution Phases of Stellar Evolution Phases of Stellar Evolution Pre-Main Sequence Main Sequence Post-Main Sequence The Primary definition is thus what is the Main Sequence Locus of core H burning Burning Process

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Lecture 5-2: Polytropes. Literature: MWW chapter 19

Lecture 5-2: Polytropes. Literature: MWW chapter 19 Lecture 5-2: Polytropes Literature: MWW chapter 9!" Preamble The 4 equatios of stellar structure divide ito two groups: Mass ad mometum describig the mechaical structure ad thermal equilibrium ad eergy

More information

1.1 An introduction to the cgs units

1.1 An introduction to the cgs units Chapter 1 Introduction 1.1 An introduction to the cgs units The cgs units, instead of the MKS units, are commonly used by astrophysicists. We will therefore follow the convention to adopt the former throughout

More information

The Chaplygin dark star

The Chaplygin dark star The Chaplygin dark star O. Bertolami, J. Páramos Instituto Superior Técnico, Departamento de Física, Av. Rovisco Pais 1, 149-1 Lisboa, Portugal and E-mail addresses: orfeu@cosmos.ist.utl.pt; x jorge@fisica.ist.utl.pt

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

Astrophysics Assignment; Kramers Opacity Law

Astrophysics Assignment; Kramers Opacity Law Astrophysics Assignment; Kramers Opacity Law Alenka Bajec August 26, 2005 CONTENTS Contents Transport of Energy 2. Radiative Transport of Energy................................. 2.. Basic Estimates......................................

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

Lecture 2. Relativistic Stars. Jolien Creighton. University of Wisconsin Milwaukee. July 16, 2012

Lecture 2. Relativistic Stars. Jolien Creighton. University of Wisconsin Milwaukee. July 16, 2012 Lecture 2 Relativistic Stars Jolien Creighton University of Wisconsin Milwaukee July 16, 2012 Equation of state of cold degenerate matter Non-relativistic degeneracy Relativistic degeneracy Chandrasekhar

More information

Summary of the Equations of Fluid Dynamics

Summary of the Equations of Fluid Dynamics Reference: Summary of the Equations of Fluid Dynamics Fluid Mechanics, L.D. Landau & E.M. Lifshitz 1 Introduction Emission processes give us diagnostics with which to estimate important parameters, such

More information

3. Stellar radial pulsation and stability

3. Stellar radial pulsation and stability 3. Stellar radial pulsation and stability m V δ Cephei T eff spectral type v rad R = Z vdt stellar disk from ΔR 1 1.55 LD Angular diam. (mas) 1.50 1.45 1.40 res. (mas) 1.35 0.04 0.02 0.00 0.02 0.04 0.0

More information

General Relativity and Compact Objects Neutron Stars and Black Holes

General Relativity and Compact Objects Neutron Stars and Black Holes 1 General Relativity and Compact Objects Neutron Stars and Black Holes We confine attention to spherically symmetric configurations. The metric for the static case can generally be written ds 2 = e λ(r)

More information

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin Davis Solar Neutrino Experiment Hydrogen Burning Want 4H = 4p è 4 He = (2p,2n) p è n, only by weak interaction Much slower than pure fusion protons

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

Introduction to Astrophysics Tutorial 2: Polytropic Models

Introduction to Astrophysics Tutorial 2: Polytropic Models Itroductio to Astrophysics Tutorial : Polytropic Models Iair Arcavi 1 Summary of the Equatios of Stellar Structure We have arrived at a set of dieretial equatios which ca be used to describe the structure

More information

The Ledoux Criterion for Convection in a Star

The Ledoux Criterion for Convection in a Star The Ledoux Criterion for Convection in a Star Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook August 2, 2012 Contents 1 Mass Distribution and Gravitational Fields

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

The Interiors of the Stars

The Interiors of the Stars The Interiors of the Stars Hydrostatic Equilibrium Stellar interiors, to a good first approximation, may be understood using basic physics. The fundamental operating assumption here is that the star is

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies Jean s Law Star/Galaxy Formation is most simply defined as the process of going from hydrostatic equilibrium to gravitational

More information

Simple Seismic Tests of the Solar Core 1

Simple Seismic Tests of the Solar Core 1 DOE/ER/02A-40561-INT99-31 UF-IFT-HEP-99-7 July 1999 Simple Seismic Tests of the Solar Core 1 Dallas C. Kennedy Institute for Nuclear Theory, University of Washington and University of Florida ABSTRACT

More information

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples Moment of inertia January 15, 016 A systematic account is given of the concept and the properties of the moment of inertia. Contents 1 Introduction and simple cases 1 1.1 Introduction.............. 1 1.

More information

Stellar Structure & Evolution

Stellar Structure & Evolution Stellar Structure & Evolution Sommersemester 2007 Ralf Klessen Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik rklessen@ita.uni-heidelberg.de Albert-Überle-Straße

More information

Ay101 Set 1 solutions

Ay101 Set 1 solutions Ay11 Set 1 solutions Ge Chen Jan. 1 19 1. The scale of the Sun a 3 points Venus has an orbital period of 5 days. Using Kepler s laws, what is its semi-major axis in units of AU Start with Kepler s third

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Exercise: A Toy Model for Dust-driven Winds

Exercise: A Toy Model for Dust-driven Winds Astrofysikalisk dynamik, VT 00 Exercise: A Toy Model for Dust-driven Winds Susanne Höfner Department of Physics and Astronomy, Uppsala University Cool luminous giants stars, in particular pulsating AGB

More information

Stars Lab 2: Polytropic Stellar Models

Stars Lab 2: Polytropic Stellar Models Monash University Stars Lab 2: Polytropic Stellar Models School of Mathematical Sciences ASP3012 2009 1 Introduction In the last lab you learned how to use numerical methods to solve various ordinary differential

More information

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics? Stellar Objects: Introduction 1 Introduction Why should we care about star astrophysics? stars are a major constituent of the visible universe understanding how stars work is probably the earliest major

More information

The Metric and The Dynamics

The Metric and The Dynamics The Metric and The Dynamics r τ c t a () t + r + Sin φ ( kr ) The RW metric tell us where in a 3 dimension space is an event and at which proper time. The coordinates of the event do not change as a function

More information

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki Stellar Magnetospheres part deux: Magnetic Hot Stars Stan Owocki Key concepts from lec. 1 MagRe# --> inf => ideal => frozen flux breaks down at small scales: reconnection Lorentz force ~ mag. pressure

More information

Stellar Winds: Mechanisms and Dynamics

Stellar Winds: Mechanisms and Dynamics Astrofysikalisk dynamik, VT 010 Stellar Winds: Mechanisms and Dynamics Lecture Notes Susanne Höfner Department of Physics and Astronomy Uppsala University 1 Most stars have a stellar wind, i.e. and outflow

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities:

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities: CHAPTER 19 Fluid Instabilities In this Chapter we discuss the following instabilities: convective instability (Schwarzschild criterion) interface instabilities (Rayleight Taylor & Kelvin-Helmholtz) gravitational

More information

From the last time, we ended with an expression for the energy equation. u = ρg u + (τ u) q (9.1)

From the last time, we ended with an expression for the energy equation. u = ρg u + (τ u) q (9.1) Lecture 9 9. Administration None. 9. Continuation of energy equation From the last time, we ended with an expression for the energy equation ρ D (e + ) u = ρg u + (τ u) q (9.) Where ρg u changes in potential

More information

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days.

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days. 5 Pulsations Most AGB stars are variable stars, due to the fact that they pulsate. The periods are long, from 10 to 1000s of days, and they are therefore called Long Period Variables, or LPVs. These long

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

AST111 PROBLEM SET 6 SOLUTIONS

AST111 PROBLEM SET 6 SOLUTIONS AST111 PROBLEM SET 6 SOLUTIONS Homework problems 1. Ideal gases in pressure balance Consider a parcel of molecular hydrogen at a temperature of 100 K in proximity to a parcel of ionized hydrogen at a temperature

More information

Chapter 1 Some Properties of Stars

Chapter 1 Some Properties of Stars Chapter 1 Some Properties of Stars This chapter is assigned reading for review. 1 2 CHAPTER 1. SOME PROPERTIES OF STARS Chapter 2 The Hertzsprung Russell Diagram This chapter is assigned reading for review.

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

dp dr = GM c = κl 4πcr 2

dp dr = GM c = κl 4πcr 2 RED GIANTS There is a large variety of stellar models which have a distinct core envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

Gas Dynamics: Basic Equations, Waves and Shocks

Gas Dynamics: Basic Equations, Waves and Shocks Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks Susanne Höfner Susanne.Hoefner@fysast.uu.se Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks

More information

Model Atmospheres. Model Atmosphere Assumptions

Model Atmospheres. Model Atmosphere Assumptions Model Atmospheres Problem: Construct a numerical model of the atmosphere to estimate (a) Variation of physical variables (T, P) with depth (b) Emergent spectrum in continuum and lines Compare calculated

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

Stellar Winds. Star. v w

Stellar Winds. Star. v w Stellar Winds Star v w Stellar Winds Geoffrey V. Bicknell 1 Characteristics of stellar winds Solar wind Velocity at earth s orbit: Density: Temperature: Speed of sound: v 400 km/s n 10 7 m 3 c s T 10 5

More information

Advanced Newtonian gravity

Advanced Newtonian gravity Foundations of Newtonian gravity Solutions Motion of extended bodies, University of Guelph h treatment of Newtonian gravity, the book develops approximation methods to obtain weak-field solutions es the

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information