Free-Fall Timescale of Sun

Size: px
Start display at page:

Download "Free-Fall Timescale of Sun"

Transcription

1 Free-Fall Timescale of Sun Free-fall timescale: The time it would take a star (or cloud) to collapse to a point if there was no outward pressure to counteract gravity. We can calculate the free-fall timescale of the sun. Consider a mass element dm at rest in the sun at a radius r. What is its potential energy? du = GM(r )dm r,

2 Next, apply the conservation of energy: E i = E f U i +K i = U f +K f GM(r )dm r dm(dr dt )2 = GM(r )dm r Remember, we are looking for free-fall time. Simplify: ( dr dt )2 = 2[ GM(r ) GM(r ) ] r r ( dr dt )=[ 2GM(r )( 1 r 1 r )] 1 2

3 Continuing to simplify: ( dr dt )=[ 2GM(r )( 1 r 1 r )] 1 2 dt =[ 2GM(r )( 1 r 1 r )] 1 2 dr To find t ff we integrate: τ ff = Z τff dt = Z r 2GM(r ) µ 1 r 1 r 1/2 dr As 5 points extra credit (due at the beginning of next class), show that from the above equation, you get the free-fall time of τ ff = µ 1/2 3π 32G ρ

4 Let's examine the solution. Does it contain the correct units (use cgs)? τ ff = µ 1/2 3π 32G ρ G = [erg][cm][g -2 ] ρ = [g][cm -3 ] erg = [g][cm 2 ][s -2 ] units = p [gcm 2 s 2 ][cm][g 2 ][g][cm 3 ] units =[s]

5 For the parameters of the Sun, calculate the free-fall timescale. τ ff = µ 1/2 3π cgs 1.4 g cm 3 = 18 s. Observation: Without pressure support, the sun would collapse very quickly! The sun does not collapse because it is in hydrostatic equilibrium. This means that the sun is in a state of balance by which the internal pressure exactly balances the gravitational pressure.

6 Hydrostatic Equilibrium Back to Introductory Mechanics! Consider a small cylinder-shaped star mass element of area A and height dr. The pressure difference between the top and bottom of the cylinder is dp. It leads to a net force (due to pressure) F pressure = AdP Equilibrium will exist if there is no net force. ΣF = GM(r)dm r 2 AdP =

7 The mass element dm is given by the definition of density GM(r)dm r 2 AdP = dm = ρ(r)adr, Combining with our expression for equilibrium, we find AdP = GM(r)ρ(r) r 2 Simplifying gives us the Equation of Hydrostatic Equilibrium, the first equation of stellar structure that we will study. dp(r) dr = GM(r)ρ(r) r 2. Stop and Think: This pressure gradient is negative. Does that make sense?

8 Now let s add some thermodynamics (for fun): dp(r) dr = GM(r)ρ(r) r 2. First, let s introduce a cleaver 1. Multiply both sides of our equation by 4 r 3 dr. 4πr 3dP dr dr = GM(r)ρ(r) r 2 4πr 3 dr Simplify and integrate from the star s interior to it s radius: 4πr 3 dp dr dr = GM(r)ρ(r)4πr 2 dr r. This side we will have to integrate by parts to solve. This is the gravitational self-potential energy of the star. It is equal to Egr.

9 Recall integration by parts: Z udv = uv Z vdu 4πr 3 dp dr dr Let u =4πr 3 du = 3(4πr 2 )dr dv = dp(r) dr dr v = Z dp(r) dr = P(r) dr Putting it together: 4πr 3dP(r) dr dr =[4πr 3 P(r)] r P(r)(3)(4)πr 2 dr = 3 P(r)4πr 2 dr = 3 P V This is the volume-averaged pressure divided by the volume of the star

10 Putting it all together: 4πr 3 dp dr dr = GM(r)ρ(r)4πr 2 dr r. 3 P V = E gr Which gives the one form of the viral theorem for a gravitationally bound system. P = 1 3 E gr V This tells us that the pressure inside a star is one third its gravitational energy density.

11 Now let s add some classical thermodynamics. If a star is composed of a classical, non relativistic, mono-atomic ideal gas of N particles, what is the gas equation of stat of the star? PV = NkT, (1) What is its thermal energy? E th = 3 2 NkT (2) Substituting NkT from (2) into (1) we find P = 2 3 E th V, The local pressure is equal to 2/3 the local thermal energy density.

12 Multiply by 4 r 2 and integrating over the volume of the star, we find PV = 2 3 Etot th Recall the our first form of the viral theorem: P = 1 3 E gr V Substituting gives another form of the viral theorem: E tot th = E gr 2, The second form of the viral theorem says when a star contacts and losses energy, its self gravity becomes more negative.

13 Pressure Inside a Star Let s examine the following equation again. E gr = GM(r)ρ(r)4πr 2 dr r This is the gravitational self-potential energy of the star. It is equal to Egr. Let s assume that the density profile is constant, then E gr = GM(r)ρ(r)4πr 2 dr r = G 4π 3 r3 ρ 2 4πr 2 dr r A little math and we get. recall: ρ const = M V = M 4 3 πr3 E gr = 3 5 GM 2 r

14 Mean Pressure of the Sun Take a characteristic E gr ~ -GM 2 /r and calculate the mean pressure in the sun. Using the first form of the viral theorem, we get P = 1 3E gr V 1 3 GM 2 4 = GM2 3 πr3 r 4πr 4 P = ( erg cmg 2 )( g) 2 4π( cm) 4 = erg cm 3 P erg cm 3 Note: Your textbook uses units of dyne cm dyne = 1 erg cm -1.

15 Typical Temperature Viral Temperature is the typical temperature inside a star. To find the viral temperature we start with our second form of the virial theorem. 3 2 NkT vir = E tot th = E gr 2, 1 2 GM 2 r If the particles have a mean mass m we can write: 3 2 NkT vir 1 2 GM N m r The sun is comprised of mostly ionized hydrogen gas, consisting of an equal number of protons and electrons. m = m e + m p 2 = m H 2 Note: m e << m p, thus m H ~ 1/2 m p.

16 Putting this together, we have 3 2 NkT vir 1 2 GM N m r kt vir GM m H 6r = cgs g g cm = erg Divide by k = erg K 1 T vir ~ 4 x 1-6 K Nuclear reactions take place at temperatures of this order of magnitude. So nuclear reactions can take place and thus replenish the thermal energy that a star radiates away. This, temporarily halts the gravitational collapse.

17 Mass Continuity For a spherically symmetric star, consider a shell of mass dm r and thickness dr located a distance r from the center. If the shell is thin(dr << r) the volume of the shell can be approximated as dv = 4 r 2 dr. If the local density is given by ρ(r), then the shell s mass is given by dm(r)=ρ(r)4πr 2 dr, Re-arranging terms yields the Equation of Mass Continuity. dm(r) dr =4πr 2 ρ(r).

Equations of Stellar Structure

Equations of Stellar Structure Equations of Stellar Structure Stellar structure and evolution can be calculated via a series of differential equations involving mass, pressure, temperature, and density. For simplicity, we will assume

More information

Stellar structure Conservation of mass Conservation of energy Equation of hydrostatic equilibrium Equation of energy transport Equation of state

Stellar structure Conservation of mass Conservation of energy Equation of hydrostatic equilibrium Equation of energy transport Equation of state Stellar structure For an isolated, static, spherically symmetric star, four basic laws / equations needed to describe structure: Conservation of mass Conservation of energy (at each radius, the change

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 9 Energy Production and Scaling Laws Equations of Stellar Structure Hydrostatic Equilibrium : dp Mass Continuity : dm(r) dr (r) dr =4πr 2 ρ(r)

More information

Static Stellar Structure

Static Stellar Structure Most of the Life of A Star is Spent in Equilibrium Evolutionary Changes are generally slow and can usually be handled in a quasistationary manner We generally assume: Hydrostatic Equilibrium Thermodynamic

More information

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton.

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton. From Last Time: Mean mass m m = m e + m p 2 = m H 2 The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

The Virial Theorem for Stars

The Virial Theorem for Stars The Virial Theorem for Stars Stars are excellent examples of systems in virial equilibrium. To see this, let us make two assumptions: 1) Stars are in hydrostatic equilibrium 2) Stars are made up of ideal

More information

The structure and evolution of stars. Introduction and recap

The structure and evolution of stars. Introduction and recap The structure and evolution of stars Lecture 3: The equations of stellar structure 1 Introduction and recap For our stars which are isolated, static, and spherically symmetric there are four basic equations

More information

Ay123 Set 1 solutions

Ay123 Set 1 solutions Ay13 Set 1 solutions Mia de los Reyes October 18 1. The scale of the Sun a Using the angular radius of the Sun and the radiant flux received at the top of the Earth s atmosphere, calculate the effective

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

2. Equations of Stellar Structure

2. Equations of Stellar Structure 2. Equations of Stellar Structure We already discussed that the structure of stars is basically governed by three simple laws, namely hyostatic equilibrium, energy transport and energy generation. In this

More information

Basic concepts in stellar physics

Basic concepts in stellar physics Basic concepts in stellar physics Anthony Brown brown@strw.leidenuniv.nl 1.2.21 Abstract. These notes provide extra material on the basics of stellar physics. The aim is to provide an overview of the nature

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age HW PREVIEW read 9.4-end Questions 9.9(HW#4), 9(HW#4) 9.14(HW#5), 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age Chap 11 The death of high h mass stars Contraction of Giant

More information

The Interiors of the Stars

The Interiors of the Stars The Interiors of the Stars Hydrostatic Equilibrium Stellar interiors, to a good first approximation, may be understood using basic physics. The fundamental operating assumption here is that the star is

More information

Ay101 Set 1 solutions

Ay101 Set 1 solutions Ay11 Set 1 solutions Ge Chen Jan. 1 19 1. The scale of the Sun a 3 points Venus has an orbital period of 5 days. Using Kepler s laws, what is its semi-major axis in units of AU Start with Kepler s third

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics? Stellar Objects: Introduction 1 Introduction Why should we care about star astrophysics? stars are a major constituent of the visible universe understanding how stars work is probably the earliest major

More information

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc/MSci Examination Day 28th April 2015 18:30 21:00 SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL

More information

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg Stellar Interiors. Hydrostatic Equilibrium 2. Mass continuity 3. Equation of State. The pressure integral 4. Stellar Energy Sources. Where does it come from? 5. Intro to Nuclear Reactions. Fission 2. Fusion

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 01-06-2015 Examination time: 09:00 13:00 Permitted examination

More information

Summary of stellar equations

Summary of stellar equations Chapter 8 Summary of stellar equations Two equations governing hydrostatic equilibrium, dm dr = 4πr2 ρ(r) Mass conservation dp dr = Gm(r) r 2 ρ Hydrostatic equilibrium, three equations for luminosity and

More information

Physics 161 Homework 7 - Solutions Wednesday November 16, 2011

Physics 161 Homework 7 - Solutions Wednesday November 16, 2011 Physics 161 Homework 7 - s Wednesday November 16, 2011 Make sure your name is on every page, and please box your final answer Because we will be giving partial credit, be sure to attempt all the problems,

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

Phases of Stellar Evolution

Phases of Stellar Evolution Phases of Stellar Evolution Phases of Stellar Evolution Pre-Main Sequence Main Sequence Post-Main Sequence The Primary definition is thus what is the Main Sequence Locus of core H burning Burning Process

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

dt 2 = 0, we find that: K = 1 2 Ω (2)

dt 2 = 0, we find that: K = 1 2 Ω (2) 1 1. irial Theorem Last semester, we derived the irial theorem from essentially considering a series of particles which attract each other through gravitation. The result was that d = K + Ω (1) dt where

More information

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains

More information

1.1 Motivation. 1.2 The H-R diagram

1.1 Motivation. 1.2 The H-R diagram 1.1 Motivation Observational: How do we explain stellar properties as demonstrated, e.g. by the H-R diagram? Theoretical: How does an isolated, self-gravitating body of gas behave? Aims: Identify and understand

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

ASTR 1040 Recitation: Stellar Structure

ASTR 1040 Recitation: Stellar Structure ASTR 1040 Recitation: Stellar Structure Ryan Orvedahl Department of Astrophysical and Planetary Sciences University of Colorado at Boulder Boulder, CO 80309 ryan.orvedahl@colorado.edu February 12, 2014

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 17, 2014 1:00PM to 3:00PM General Physics (Part I) Section 5. Two hours are permitted for the completion of this section

More information

9.1 Introduction. 9.2 Static Models STELLAR MODELS

9.1 Introduction. 9.2 Static Models STELLAR MODELS M. Pettini: Structure and Evolution of Stars Lecture 9 STELLAR MODELS 9.1 Introduction Stars are complex physical systems, but not too complex to be modelled numerically and, with some simplifying assumptions,

More information

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun

Stellar Interiors ASTR 2110 Sarazin. Interior of Sun Stellar Interiors ASTR 2110 Sarazin Interior of Sun Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 13 Thermodynamics of QM particles Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home) Final Project, May 4

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information

PHYS 231 Lecture Notes Week 3

PHYS 231 Lecture Notes Week 3 PHYS 231 Lecture Notes Week 3 Reading from Maoz (2 nd edition): Chapter 2, Sec. 3.1, 3.2 A lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with

More information

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin Davis Solar Neutrino Experiment Hydrogen Burning Want 4H = 4p è 4 He = (2p,2n) p è n, only by weak interaction Much slower than pure fusion protons

More information

1.1 An introduction to the cgs units

1.1 An introduction to the cgs units Chapter 1 Introduction 1.1 An introduction to the cgs units The cgs units, instead of the MKS units, are commonly used by astrophysicists. We will therefore follow the convention to adopt the former throughout

More information

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i)

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time:

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time: Page 1 of 18 The Norwegian University of Science and Technology Department of Physics Contact person Name: Robert Hibbins Tel: 93551, mobile: 94 82 08 34 Examination, course FY2450 Astrophysics Wednesday

More information

Hot White Dwarf Stars

Hot White Dwarf Stars Bakytzhan A. Zhami K.A. Boshkayev, J.A. Rueda, R. Ruffini Al-Farabi Kazakh National University Faculty of Physics and Technology, Almaty, Kazakhstan Supernovae, Hypernovae and Binary Driven Hypernovae

More information

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Stars + Galaxies: Back of the Envelope Properties. David Spergel Stars + Galaxies: Back of the Envelope Properties David Spergel Free-fall time (1) r = GM r 2 (2) r t = GM 2 r 2 (3) t free fall r3 GM 1 Gρ Free-fall time for neutron star is milliseconds (characteristic

More information

Quick Review. To a good first approximation, universe consists of H, He, plus heavier elements or metals such as C, O, Fe.

Quick Review. To a good first approximation, universe consists of H, He, plus heavier elements or metals such as C, O, Fe. Quick Review To a good first approximation, universe consists of H, He, plus heavier elements or metals such as C, O, Fe. Bulk of He produced by nuclear reactions which occurred during the first few minutes

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass Stellar Evolution ASTR 2110 Sarazin HR Diagram vs. Mass Trip to Conference Away on conference in the Netherlands next week. Molly Finn, TA, will be our guest lecturer Stellar Evolution ASTR 2110 Sarazin

More information

11.1 Local Thermodynamic Equilibrium. 1. the electron and ion velocity distributions are Maxwellian,

11.1 Local Thermodynamic Equilibrium. 1. the electron and ion velocity distributions are Maxwellian, Section 11 LTE Basic treatments of stellar atmospheres adopt, as a starting point, the assumptions of Local Thermodynamic Equilibrium (LTE), and hydrostatic equilibrium. The former deals with the microscopic

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.282 April 16, 2003 Quiz 2 Name SOLUTIONS (please print) Last First 1. Work any 7 of the 10 problems - indicate clearly which 7 you want

More information

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc Examination Day 15th May 2014 14:30 17:00 ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY

More information

arxiv: v1 [physics.pop-ph] 12 Apr 2017

arxiv: v1 [physics.pop-ph] 12 Apr 2017 arxiv:1704.03770v1 [physics.pop-ph] 12 Apr 27 Gravity Defied From potato asteroids to magnetised neutron stars II. The failed stars Sushan Konar Gravitation, the universal attractive force, acts upon all

More information

ASTR3007/4007/6007, Class 2: Stellar Masses; the Virial Theorem

ASTR3007/4007/6007, Class 2: Stellar Masses; the Virial Theorem ASTR7/47/67, Class : Stellar Masses; the Virial Theorem 4 February In the first class we discussed stars light output and the things than can be derived directly from it luminosity, temperature, and composition.

More information

White Dwarfs - Degenerate Stellar Configurations

White Dwarfs - Degenerate Stellar Configurations White Dwarfs - Degenerate Stellar Configurations Austen Groener Department of Physics - Drexel University, Philadelphia, Pennsylvania 904, USA Quantum Mechanics II May 7, 200 I Abstract The end product

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

AST101 Lecture 13. The Lives of the Stars

AST101 Lecture 13. The Lives of the Stars AST101 Lecture 13 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Formation of Stars Stars form in molecular clouds (part of the interstellar medium) Molecular clouds Cold: temperatures

More information

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME!

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME! Physics 160: Stellar Astrophysics 27 October 2011 Name: S O L U T I O N S Student ID #: INSTRUCTIONS READ ME! 1. There are 4 questions on the exam; complete at least 3 of them. 2. You have 80 minutes to

More information

Handout 18: Convection

Handout 18: Convection Handout 18: Convection The energy generation rate in the center of the sun is ~ 16 erg/gm/s Homework, sum of p-p and CNO production The average energy generation needed to supply the sun s luminosity is

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars Stellar Evolution Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

More information

Mass-Radius Relation: Hydrogen Burning Stars

Mass-Radius Relation: Hydrogen Burning Stars Mass-Radius Relation: Hydrogen Burning Stars Alexis Vizzerra, Samantha Andrews, and Sean Cunningham University of Arizona, Tucson AZ 85721, USA Abstract. The purpose if this work is to show the mass-radius

More information

Physics 314 (Survey of Astronomy) Exam 3

Physics 314 (Survey of Astronomy) Exam 3 Physics 314 (Survey of Astronomy) Exam 3 Please show all significant steps clearly in all problems. Please give clear, legible, and reasonably complete (although brief) responses to qualitative questions.

More information

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG Stellar structure and evolution Pierre Hily-Blant 2017-18 April 25, 2018 IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 10 Protostars and Pre-Main-Sequence Stars 10.1. Introduction 10 Protostars

More information

The Stellar Black Hole

The Stellar Black Hole The Stellar Black Hole Kenneth Dalton e-mail: kxdalton@yahoo.com Abstract A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in

More information

AST Homework V - Solutions

AST Homework V - Solutions AST 341 - Homework V - Solutions TA: Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook November, 010 1 (1 point) Derive the homologous form of the luminosity equation

More information

Gasdynamical and radiative processes, gaseous halos

Gasdynamical and radiative processes, gaseous halos Gasdynamical and radiative processes, gaseous halos Houjun Mo March 19, 2004 Since luminous objects, such as galaxies, are believed to form through the collapse of baryonic gas, it is important to understand

More information

Astro 210 Lecture 5 Sept. 6, 2013

Astro 210 Lecture 5 Sept. 6, 2013 Astro 210 Lecture 5 Sept. 6, 2013 Announcements: PS 1 due now PS 2 available, due next Friday Sept 13 1 Last time: star distances Q: what s the gold plated way to measure distance? update: 2013 www: discovery

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

CHAPTER 16. Hydrostatic Equilibrium & Stellar Structure

CHAPTER 16. Hydrostatic Equilibrium & Stellar Structure CHAPTER 16 Hydrostatic Equilibrium & Stellar Structure Hydrostatic Equilibrium: A fluid is said to be in hydrostatic equilibrium (HE) when it is at rest. This occurs when external forces such as gravity

More information

EVOLUTION OF STARS: A DETAILED PICTURE

EVOLUTION OF STARS: A DETAILED PICTURE EVOLUTION OF STARS: A DETAILED PICTURE PRE-MAIN SEQUENCE PHASE CH 9: 9.1 All questions 9.1, 9.2, 9.3, 9.4 at the end of this chapter are advised PRE-PROTOSTELLAR PHASE SELF -GRAVITATIONAL COLL APSE p 6

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Polytropic Stars. c 2

Polytropic Stars. c 2 PH217: Aug-Dec 23 1 Polytropic Stars Stars are self gravitating globes of gas in kept in hyostatic equilibrium by internal pressure support. The hyostatic equilibrium condition, as mentioned earlier, is:

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 6/99 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT.

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT. Name: Astronomy 18 - Problem Set 8 1. Fundamental Planetary Science problem 14.4 a) Calculate the ratio of the light reflected by Earth at 0.5 µm to that emitted by the Sun at the same wavelength. The

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

Physics 556 Stellar Astrophysics Prof. James Buckley

Physics 556 Stellar Astrophysics Prof. James Buckley hysics 556 Stellar Astrophysics rof. James Buckley Lecture 8 Convection and the Lane Emden Equations for Stellar Structure Reading/Homework Assignment Read sections 2.5 to 2.9 in Rose over spring break!

More information

Lecture 22 Stability of Molecular Clouds

Lecture 22 Stability of Molecular Clouds Lecture 22 Stability of Molecular Clouds 1. Stability of Cloud Cores 2. Collapse and Fragmentation of Clouds 3. Applying the Virial Theorem References Myers, Physical Conditions in Molecular Clouds in

More information

Problem Score Worth

Problem Score Worth Exam #3 79205 Astronomy Fall 1997 NAME: Solutions You have two hours to complete this exam. There are a total of six problems and you are to solve all of them. Not all the problems are worth the same number

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies Jean s Law Star/Galaxy Formation is most simply defined as the process of going from hydrostatic equilibrium to gravitational

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Astronomy 112: The Physics of Stars. Class 9 Notes: Polytropes

Astronomy 112: The Physics of Stars. Class 9 Notes: Polytropes Astronomy 112: The Physics of Stars Class 9 Notes: Polytropes With our discussion of nuclear reaction rates last time, we have mostly completed our survey of the microphysical properties of stellar matter

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

Homework 4 Astro Order of Magnitude: Fall 2016

Homework 4 Astro Order of Magnitude: Fall 2016 1) Supernova Explosions. Type Ia supernovae are believed to be the thermonuclear explosions of accreting white dwarfs that have reached the Chandrasekhar limit. A). Mean pressure inside a white dwarf of

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 5 The virial theorem 1 The virial theorem We have seen that we can solve the equation of motion for the two-body problem analytically and thus obtain expressions describing the future

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Chapter 16. White Dwarfs

Chapter 16. White Dwarfs Chapter 16 White Dwarfs The end product of stellar evolution depends on the mass of the initial configuration. Observational data and theoretical calculations indicate that stars with mass M < 4M after

More information

The Sun: Our Nearest Star

The Sun: Our Nearest Star The Sun: Our Nearest Star Check out: http://www.boston.com/bigpicture/2008/10/the_sun.html http://sohowww.nascom.nasa.gov/gallery/ 6 day animation in Ultraviolet http://www.youtube.com/watch?v=jeamkkrivlc

More information

Astrophysics (Physics 489) Exam 2

Astrophysics (Physics 489) Exam 2 Astrophysics (Physics 489) Exam 2 Please show all significant steps clearly in all problems. 1. Fun with dark energy. Since the dark energy is currently a total mystery, many theoretical cosmologists have

More information

The Ledoux Criterion for Convection in a Star

The Ledoux Criterion for Convection in a Star The Ledoux Criterion for Convection in a Star Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook August 2, 2012 Contents 1 Mass Distribution and Gravitational Fields

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information