Application of Blind Source Separation Algorithms. to the Preamplifier s Output Signals of an HPGe. Detector Used in γ-ray Spectrometry

Size: px
Start display at page:

Download "Application of Blind Source Separation Algorithms. to the Preamplifier s Output Signals of an HPGe. Detector Used in γ-ray Spectrometry"

Transcription

1 Adv. Studies Theor. Phys., Vol. 8, 24, no. 9, HIKARI Ltd, Application of Blind Source Separation Algorithms to the Preamplifier s Output Signals of an HPGe Detector Used in γ-ray Spectrometry Abdelhamid Mekaoui, El-Mehdi Hamzaoui,2 and Rajaa Cherkaoui El Moursli 2 LPNR, University Mohammed V Agdal, Faculty of Sciences, Rabat, Morocco 2 National Centre for Nuclear Energy, Sciences and Techniques (CNESTEN), B.P.: 382 R.P., Rabat, Morocco Copyright 24 Abdelhamid Mekaoui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this article, we investigate the application of blind source separation methods to extract independent components from signals recorded at the output of detectors used in γ-ray spectrometry. First, we calculate the probability density and the autocorrelation functions of each recorded signal. This allowed us to confirm that the independent component analysis algorithms, based on the computation of higher order statistics, are the best one to solve the blind source separation problem in our case of study. Among all algorithms of this approach, only four are found to be stable. The classification of these algorithms according to their performance index of separability showed that the symmetric pre-whitening algorithm is the most efficient one to achieve the separation task. Tests were performed in the presence and the absence of gamma radiation emitter. Keywords: Autocorrelation, Blind source separation, γ-ray spectrometry, Probability density function, SYM-WHITE Corresponding author

2 394 Abdelhamid Mekaoui et al.. Introduction Blind source separation (BSS)) designatess the methods used for solving the t problem of recovering mutually independent components, called sources, from a set of measured observations [], [2]. These last, which are recordedd from sensors (antennas, microphones, cameras, detectors,...), are mixtures formed, throughh a system H, during the propagation of the information fromm its original sources s( (k) to sensors and also from the noise ν(k) introduced by thee sensors themselves [ ], [2]. The figure bellow illustrates the BSS problem []. Figure : Bloc diagram illustrating the basic BSS problem []. Since the BSS methods requiree no hypothesis on thee way that the signal and the noise are mixed, they are increasingly used in wide number n of applications in diverse fields such as telecommunications, astronomy, seismology, biomedical engineering, [], [2]. In the literature, we have not yett found a research survey on the application of BSS methods in the field of nuclear signal and image processing. This encouraged us to apply these methods to the identification and characterization of γ-rayy and neutron emitters and also for the neutron-gamma discrimination. In this paper, we consider the application of BSS techniques to analyze HPGe preamplifier s output signals. Indeed, we performed various tests, both in the t presence and absence of γ-ray emitters, in order to determine the best algorithm which will allow us to recover r the independent components of our spectrometric data, for characterization and classification use. 2. Material and Method 2.. Signal database The signal database is formed by 28 signals, of size of samples, issued from a γ-rayy spectrometry chain used for environmentall monitoringg application. Indeed, we used a high performance e digital oscilloscope ( Model Tektronix 34)

3 Application of blind source separation algorithms 395 [3] to record the preamplifier s output signals of HPGe Well Detector (Model GC38) [4] at a sampling frequency of MHz. We performed two experiments both in the presence and in the absence of a gamma radiation emitter. For nuclear safety and security reasons, we used a 4M solution of one radionuclide whose gamma disintegration is limited and its time-life is short [5], [6] BSS formalism As shown in the above figure, we can express the blind source separation problem in matrix form using the following equation: where: x( k) = H s( k) + ν ( k) ( eq.) x(k) [ x (k), x (k),, x (k)] T = 2 m represents an m-dimensional vector that corresponds to the m observations. In our application, x(k) is formed by the recorded HPGe preamplifiers output signals; s(k) = [ s (k), s (k),, s (k)] T 2 n designates the vector of n independent components to be estimated; ν(t) is an additive noise vector. Each observation x i (k) is assumed to be an instantaneous mixture of m unknown components or sources s i (k), via the unknown n-by-m mixing matrix H [], [2]. The BSS approaches use the observation x(k) and nothing else to generate an n-by-m separating matrix W (that approximates H - ) such as the vector y(k), defined by the equation 2 below, contains components that are as independent as possible [], [2]. y ( k) = W x( k) ( eq.2) Many different BSS algorithms exist, their principles are regrouped, according to [] into four major approaches. In order to define which one of the BSS families is the most effective to our study, we proceeded to calculate the autocorrelation and the probability density functions of each observation. Indeed, some BSS approaches exploit the gaussianity of the observations as hypothesis to perform the separation task, whereas others take into account the non stationarity, the second order statistics and/or the correlation information to estimate the mixing matrix H and the sources s(k) []. Once the adequate approach is defined, its algorithms are applied to our set of data. The algorithms effectiveness is evaluated through the computation of the performance index of separability (PI) which is given by the following equation:

4 396 Abdelhamid Mekaoui et al. PI = n( n ) n n g n g ik ki + = max j g ij k max j g ji i= k = ( eq.3) where g ij is the (i,j) element of the global system matrix G = WH and max i (g ij ) represents the maximum value among the elements in the i th row vector of G. Also, the term max j (g ji ) corresponds to the maximum value among the elements in the j th column vector of G [], [2], [7]. When the perfect separation is achieved, the PI is equal to zero. In practice, a PI value around -2 indicates quite a good performance [], [2], [7]. 3. Results and discussion As mentioned above, we analyzed the autocorrelation and the probability density functions of each recorded observation. The results reveal that, in both experiments, the observations have different correlation function shapes. This means that the power spectra of the original sources are not identical. In addition, the probability density of some observations looks like the Gaussian one. The figure 2 hereafter shows an example of the obtained results. In this case, the independent component analysis (ICA) approach, based on higher order statistics, is the most suitable one to perform the BSS task in our application. Thus, the main hypothesis of this method is that the original sources are assumed to be statistically independent with different temporal structures. []. Based on these results, we performed various tests in order to choose the appropriate algorithm that permits the best separation of the original sources. For this reason, we used the toolbox ICALAB-SP (version 3.) [], [8], which contains 3 BSS algorithms. In this tool, they are 6 different implemented algorithms matching the selected approach. However, the tests showed that only 5 algorithms are stable: POWERICA: Power iteration for ICA [9], []; MULCOMBI: Multi-Combination of weight-adjusted Second Order Blind Identification (WASOBI) [] and Efficient Variant of Fast ICA (EFICA) [2]; NG-FICA: Natural Gradient Flexible ICA [3]; SYM-WHITE: Symmetric Pre-Whitening algorithm [4]; ThinICA: Thin algorithm for Independent Component Analysis [5]; The computed PI values permits us to classify the above algorithms. As the table shows, the symmetric pre-whitening (SYM-WHITE) and the MULCOMBI are the most effective BSS methods to analyze our recorded signals, especially in the presence of γ-ray emitter. We performed an additional test based on the evaluation of the mean value of the signal to noise ratio (SNR) in order to confirm the algorithm choice. As a result, the SYM-WHITE algorithm has an SNR=-9,3534 db which is higher than the one of the MULCOMBI (SNR= -9,3532 db). Consequently, the SYM-WHITE algorithm is the most appropriate one to solve

5 Application of blind source separation algorithms 397 our BSS problem. PDF of background signals (Exp) PDF of signals in presence of Gamma source (Exp) x x -4.2 Autocorrelation (Rxx) of background signals (Exp).2 Autocorrelation (Rxx) of signals in presence of Gamma source (Exp) (a) (b).8 PDF of HPGe Background signals (Exp2).8 PDF of signals in presence of Gamma source (Exp2) x x -4.2 Autocorrelation (Rxx) of HPGe Background signals (Exp2)).2 Autocorrelation (Rxx) of signals in presence of Gamma source (Exp2) (c) (d) Figure 2: Plots of probability density (top subplots) an autocorrelation (bottom subplots) functions of the recorded observations. (a) and (b) correspond to signals recorded in the st experiment and (c) and (d) those of the 2 nd experiment. On the left, the HPGe background noise and on the right, the signals recorded in the presence of γ-ray emitter. Table : Performance Index (PI) of the 4 stable BSS algorithms Experiment Experiment 2 Algorithm Background noise Presence of γ-ray emitter Background noise Presence of γ-ray emitter POWERICA,25257,95,3542,2429 MULCOMBI,47,89,393,55 NG-FICA,253,346,7357,5785 ThinICA SYM-WHITE,79,22,988,524 The algorithm SYM-WHITE performs special form of pre-whitening. It computes a symmetric pre-whitening matrix W on the basis of the covariance matrix R xx, such as: W = inv( Rxx ) ( eq.4) The power of this algorithm is its ability to separate sources under weak

6 398 Abdelhamid Mekaoui et al. conditions and when a mixing matrix H is symmetric and the covariance matrix of the original sources is supposed to be R ss =I m [8], [4]. 4. Conclusion In this paper, we consider the HPGe preamplifiers output signals, of a γ-ray spectrometry chain, as mixtures of m-unknown independent components. In order to extract the mixing matrix and the original sources of the recorded signal, we applied different blind source separation methods to 28 recorded signals corresponding to two experiments, both in the presence and the absence of a γ-ray emitter. The computation of the autocorrelation and the probability density functions of the signals showed that the ICA techniques based on higher order statistics are the most suitable BSS approach to analyze our set of data. The obtained results showed, while the evaluation of the performance index and the signal to noise ratio, that the SYM-WHITE algorithm is the most effective one among all stable ICA algorithms of this approach. In a forthcoming works, the SYM-WHITE algorithm will be applied to extract the mixing matrix and the original sources from the recorded spectrometric data. The isolated independent sources will be then characterized using spectral and statistical methods. References [] A. Cichocki, S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, 25. [2] E-M. Hamzaoui. Identification and characterization of visual evoked potentials sources for a better clinical use. Ph.D. thesis, Mohammed V-Agdal Univ., Fac. of Sci., Rabat, Morocco, September 2. [3] Tektronix Inc. TDS 34A, TDS 36 and TDS 38 Digital Real-Time Oscilloscopes User Manual. [4] Canberra. Germanium Well Detector C39793 Datasheet. [5] L. El Badri, E-M. Hamzaoui, K. Laraki, R. Cherkaoui-Elmorsli, "Adaptive filtering of the preamplifier's output signals of a gamma spectrometry chain", Advanced Studies in Theoretical Physics. Vol. 7, 23, no. 5, [6] L. Elbadri, E-M. Hamzaoui, K. Laraki, R. Cherkaoui-Elmoursli, Development of Wavelet Based Tools for Improving the γ-ray Spectrometry, 3 rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA 23), June 23-27, 23, Marseille, France. [7] E-M. Hamzaoui, F. Regragui, Identification and Characterization of the Sources of the Noise Affecting the Visual Evoked Potentials, Contemporary Engineering Sciences, Vol. 4, 2, no.,

7 Application of blind source separation algorithms 399 [8] A. Cichocki, S. Amari, K. Siwek, T. Tanaka, Anh Huy Phan et al., ICALAB Toolboxes, Version 3., [9] S. Fiori, Fully-multiplicative orthogonal-group ICA neural algorithm, Electronics Letters, 39(24), 23, pp [] S. Ding, A Power Iteration Algorithm for ICA Based on Diagonalizations of Non-Linearized Covariance Matrix, ICICIC (2) 26: [] P. Tichavský, Z. Koldovský, E. Doron, A. Yeredor, G. Gómez-Herrero, Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI, European Signal Processing Conference (EUSIPCO), September 26, Florence, Italy. [2] Z. Koldovský, P. Tichavský, E. Oja, Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the Cramér-Rao Lower Bound, IEEE Transactions on Neural Networks, vol. 7, no. 5, pp , September 26. [3] L. Zhang, A. Cichocki, S. Amari, Natural Gradient Algorithm to Blind Separation of Overdetermined Mixture with Additive Noises, IEEE Signal Processing Letters, Vol.6, No., pp , 999. [4] A. Cichocki, S. Osowski, K. Siwek, Prewhitening Algorithms of Signals in the Presence of White Noise, 6 th International Workshop Computational Problems of Electrical Engineering, p.p 25-28, Zakopane, Poland, September st-4th, 24. [5] S. Cruces, A. Cichocki, Combining blind source extraction with joint approximate diagonalization: Thin Algorithms for ICA, Proc. of the Fourth Symposium on Independent Component Analysis and Blind Signal Separation, Japan, pp , 23. Received: February 5, 24

Blind Source Separation of HPGe Output Signals: A New Pulse Pile-up Correction Method

Blind Source Separation of HPGe Output Signals: A New Pulse Pile-up Correction Method Adv. Studies Theor. Phys., Vol. 8, 214, no. 16, 681-688 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/astp.214.4563 Blind Source Separation of HPGe Output Signals: A New Pulse Pile-up Correction

More information

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s Blind Separation of Nonstationary Sources in Noisy Mixtures Seungjin CHOI x1 and Andrzej CICHOCKI y x Department of Electrical Engineering Chungbuk National University 48 Kaeshin-dong, Cheongju Chungbuk

More information

A FAST ALGORITHM FOR BLIND SEPARATION OF NON-GAUSSIAN AND TIME-CORRELATED SIGNALS

A FAST ALGORITHM FOR BLIND SEPARATION OF NON-GAUSSIAN AND TIME-CORRELATED SIGNALS A FAST ALGORITHM FOR BLIND SEPARATION OF NON-GAUSSIAN AND TIME-CORRELATED SIGNALS Germán Gómez-Herrero 1, Zbynˇek Koldovský, Petr Tichavský, Karen Egiazarian 1 1 Institute of Signal Processing, Tampere

More information

Robust extraction of specific signals with temporal structure

Robust extraction of specific signals with temporal structure Robust extraction of specific signals with temporal structure Zhi-Lin Zhang, Zhang Yi Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science

More information

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ BLIND SEPARATION OF NONSTATIONARY AND TEMPORALLY CORRELATED SOURCES FROM NOISY MIXTURES Seungjin CHOI x and Andrzej CICHOCKI y x Department of Electrical Engineering Chungbuk National University, KOREA

More information

Wavelet de-noising for blind source separation in noisy mixtures.

Wavelet de-noising for blind source separation in noisy mixtures. Wavelet for blind source separation in noisy mixtures. Bertrand Rivet 1, Vincent Vigneron 1, Anisoara Paraschiv-Ionescu 2 and Christian Jutten 1 1 Institut National Polytechnique de Grenoble. Laboratoire

More information

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Blind Source Separation (BSS) and Independent Componen Analysis (ICA) Massoud BABAIE-ZADEH Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Outline Part I Part II Introduction

More information

ORIENTED PCA AND BLIND SIGNAL SEPARATION

ORIENTED PCA AND BLIND SIGNAL SEPARATION ORIENTED PCA AND BLIND SIGNAL SEPARATION K. I. Diamantaras Department of Informatics TEI of Thessaloniki Sindos 54101, Greece kdiamant@it.teithe.gr Th. Papadimitriou Department of Int. Economic Relat.

More information

Application of Block Matrix Theory to Obtain the Inverse Transform of the Vector-Valued DFT

Application of Block Matrix Theory to Obtain the Inverse Transform of the Vector-Valued DFT Applied Mathematical Sciences, Vol. 9, 2015, no. 52, 2567-2577 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52125 Application of Block Matrix Theory to Obtain the Inverse Transform

More information

Blind Instantaneous Noisy Mixture Separation with Best Interference-plus-noise Rejection

Blind Instantaneous Noisy Mixture Separation with Best Interference-plus-noise Rejection Blind Instantaneous Noisy Mixture Separation with Best Interference-plus-noise Rejection Zbyněk Koldovský 1,2 and Petr Tichavský 1 1 Institute of Information Theory and Automation, Pod vodárenskou věží

More information

Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications

Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications Zhi-Lin Zhang 1,2 and Liqing Zhang 1 1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

More information

Semi-Blind approaches to source separation: introduction to the special session

Semi-Blind approaches to source separation: introduction to the special session Semi-Blind approaches to source separation: introduction to the special session Massoud BABAIE-ZADEH 1 Christian JUTTEN 2 1- Sharif University of Technology, Tehran, IRAN 2- Laboratory of Images and Signals

More information

FAST AND ACCURATE METHODS OF INDEPENDENT COMPONENT ANALYSIS: A SURVEY

FAST AND ACCURATE METHODS OF INDEPENDENT COMPONENT ANALYSIS: A SURVEY K Y B E R N E T I K A V O L U M E 4 7 ( 2 0 1 1 ), N U M B E R 3, P A G E S 4 2 6 4 3 8 FAST AND ACCURATE METHODS OF INDEPENDENT COMPONENT ANALYSIS: A SURVEY Petr Tichavský and Zbyněk Koldovský This paper

More information

Explicit Expressions for Free Components of. Sums of the Same Powers

Explicit Expressions for Free Components of. Sums of the Same Powers Applied Mathematical Sciences, Vol., 27, no. 53, 2639-2645 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.79276 Explicit Expressions for Free Components of Sums of the Same Powers Alexander

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions

Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions Petr Tichavský 1, Zbyněk Koldovský 1,2, and Erkki Oja 3 1 Institute of Information Theory and Automation, Pod

More information

Fundamentals of Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Independent Vector Analysis (IVA)

Fundamentals of Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Independent Vector Analysis (IVA) Fundamentals of Principal Component Analysis (PCA),, and Independent Vector Analysis (IVA) Dr Mohsen Naqvi Lecturer in Signal and Information Processing, School of Electrical and Electronic Engineering,

More information

BLIND SOURCES SEPARATION BY SIMULTANEOUS GENERALIZED REFERENCED CONTRASTS DIAGONALIZATION

BLIND SOURCES SEPARATION BY SIMULTANEOUS GENERALIZED REFERENCED CONTRASTS DIAGONALIZATION BLIND SOURCES SEPARATION BY SIMULTANEOUS GENERALIZED REFERENCED CONTRASTS DIAGONALIZATION Abdellah ADIB, Eric MOREAU and Driss ABOUTAJDINE Institut Scientifique, av. Ibn Battouta, BP. 73, Rabat, Maroc.

More information

Blind Source Separation Using Artificial immune system

Blind Source Separation Using Artificial immune system American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-02, pp-240-247 www.ajer.org Research Paper Open Access Blind Source Separation Using Artificial immune

More information

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM Pando Georgiev a, Andrzej Cichocki b and Shun-ichi Amari c Brain Science Institute, RIKEN, Wako-shi, Saitama 351-01, Japan a On leave from the Sofia

More information

Tutorial on Blind Source Separation and Independent Component Analysis

Tutorial on Blind Source Separation and Independent Component Analysis Tutorial on Blind Source Separation and Independent Component Analysis Lucas Parra Adaptive Image & Signal Processing Group Sarnoff Corporation February 09, 2002 Linear Mixtures... problem statement...

More information

POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS

POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS Russell H. Lambert RF and Advanced Mixed Signal Unit Broadcom Pasadena, CA USA russ@broadcom.com Marcel

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

A Hybrid Technique for Blind Separation of

A Hybrid Technique for Blind Separation of A Hybrid Technique for Blind Separation of 1 Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach Petr Tichavský 1, Zbyněk Koldovský 1, Arie Yeredor 2, Germán Gómez-Herrero 3, and Eran

More information

BLIND SEPARATION USING ABSOLUTE MOMENTS BASED ADAPTIVE ESTIMATING FUNCTION. Juha Karvanen and Visa Koivunen

BLIND SEPARATION USING ABSOLUTE MOMENTS BASED ADAPTIVE ESTIMATING FUNCTION. Juha Karvanen and Visa Koivunen BLIND SEPARATION USING ABSOLUTE MOMENTS BASED ADAPTIVE ESTIMATING UNCTION Juha Karvanen and Visa Koivunen Signal Processing Laboratory Helsinki University of Technology P.O. Box 3, IN-215 HUT, inland Tel.

More information

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Yugoslav Journal of Operations Research 5 (25), Number, 79-95 ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Slavica TODOROVIĆ-ZARKULA EI Professional Electronics, Niš, bssmtod@eunet.yu Branimir TODOROVIĆ,

More information

Recursive Generalized Eigendecomposition for Independent Component Analysis

Recursive Generalized Eigendecomposition for Independent Component Analysis Recursive Generalized Eigendecomposition for Independent Component Analysis Umut Ozertem 1, Deniz Erdogmus 1,, ian Lan 1 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA. {ozertemu,deniz}@csee.ogi.edu

More information

An Improved Cumulant Based Method for Independent Component Analysis

An Improved Cumulant Based Method for Independent Component Analysis An Improved Cumulant Based Method for Independent Component Analysis Tobias Blaschke and Laurenz Wiskott Institute for Theoretical Biology Humboldt University Berlin Invalidenstraße 43 D - 0 5 Berlin Germany

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 2, FEBRUARY

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 2, FEBRUARY IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 54, NO 2, FEBRUARY 2006 423 Underdetermined Blind Source Separation Based on Sparse Representation Yuanqing Li, Shun-Ichi Amari, Fellow, IEEE, Andrzej Cichocki,

More information

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers International Mathematical Forum, Vol 12, 2017, no 16, 747-753 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf20177652 Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

More information

Second-order statistics based blind source separation using a bank of subband filters

Second-order statistics based blind source separation using a bank of subband filters Digital Signal Processing 13 (2003) 252 274 www.elsevier.com/locate/dsp Second-order statistics based blind source separation using a bank of subband filters R.R. Gharieb a,b, and A. Cichocki a,c a Laboratory

More information

Independent Component Analysis and Its Application on Accelerator Physics

Independent Component Analysis and Its Application on Accelerator Physics Independent Component Analysis and Its Application on Accelerator Physics Xiaoying Pang LA-UR-12-20069 ICA and PCA Similarities: Blind source separation method (BSS) no model Observed signals are linear

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

BLIND SEPARATION OF INSTANTANEOUS MIXTURES OF NON STATIONARY SOURCES

BLIND SEPARATION OF INSTANTANEOUS MIXTURES OF NON STATIONARY SOURCES BLIND SEPARATION OF INSTANTANEOUS MIXTURES OF NON STATIONARY SOURCES Dinh-Tuan Pham Laboratoire de Modélisation et Calcul URA 397, CNRS/UJF/INPG BP 53X, 38041 Grenoble cédex, France Dinh-Tuan.Pham@imag.fr

More information

The Law of Luminous Intensity Variation and Technical Vision

The Law of Luminous Intensity Variation and Technical Vision Adv. Studies Theor. Phys. Vol. 7 2013 no. 8 349-354 HIKARI Ltd www.m-hikari.com The Law of Luminous Intensity Variation and Technical Vision Anna Gorbenko Department of Intelligent Systems and Robotics

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

Efficient Algorithms for Pulse Parameter Estimation, Pulse Peak Localization And Pileup Reduction in Gamma Ray Spectroscopy M.W.Raad 1, L.

Efficient Algorithms for Pulse Parameter Estimation, Pulse Peak Localization And Pileup Reduction in Gamma Ray Spectroscopy M.W.Raad 1, L. Efficient Algorithms for Pulse Parameter Estimation, Pulse Peak Localization And Pileup Reduction in Gamma Ray Spectroscopy M.W.Raad 1, L. Cheded 2 1 Computer Engineering Department, 2 Systems Engineering

More information

IN THIS PAPER, we address the classical real-valued square

IN THIS PAPER, we address the classical real-valued square IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 3, MARCH 2008 421 A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach Petr Tichavský,

More information

Principal Component Analysis vs. Independent Component Analysis for Damage Detection

Principal Component Analysis vs. Independent Component Analysis for Damage Detection 6th European Workshop on Structural Health Monitoring - Fr..D.4 Principal Component Analysis vs. Independent Component Analysis for Damage Detection D. A. TIBADUIZA, L. E. MUJICA, M. ANAYA, J. RODELLAR

More information

Blind Machine Separation Te-Won Lee

Blind Machine Separation Te-Won Lee Blind Machine Separation Te-Won Lee University of California, San Diego Institute for Neural Computation Blind Machine Separation Problem we want to solve: Single microphone blind source separation & deconvolution

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis James V. Stone November 4, 24 Sheffield University, Sheffield, UK Keywords: independent component analysis, independence, blind source separation, projection pursuit, complexity

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor World Journal of Nuclear Science and Technology, 2014, 4, 96-102 Published Online April 2014 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2014.42015 Characteristics of

More information

Non-orthogonal Support-Width ICA

Non-orthogonal Support-Width ICA ESANN'6 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 6-8 April 6, d-side publi., ISBN -9337-6-4. Non-orthogonal Support-Width ICA John A. Lee, Frédéric Vrins and Michel

More information

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Antti Honkela 1, Stefan Harmeling 2, Leo Lundqvist 1, and Harri Valpola 1 1 Helsinki University of Technology,

More information

Blind Source Separation with a Time-Varying Mixing Matrix

Blind Source Separation with a Time-Varying Mixing Matrix Blind Source Separation with a Time-Varying Mixing Matrix Marcus R DeYoung and Brian L Evans Department of Electrical and Computer Engineering The University of Texas at Austin 1 University Station, Austin,

More information

Self-shrinking Bit Generation Algorithm Based on Feedback with Carry Shift Register

Self-shrinking Bit Generation Algorithm Based on Feedback with Carry Shift Register Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 24, 1057-1061 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.49132 Self-shrinking Bit Generation Algorithm Based on Feedback

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis with Some Recent Advances Aapo Hyvärinen Dept of Computer Science Dept of Mathematics and Statistics University of Helsinki Problem of blind source

More information

A Flexible ICA-Based Method for AEC Without Requiring Double-Talk Detection

A Flexible ICA-Based Method for AEC Without Requiring Double-Talk Detection APSIPA ASC 2011 Xi an A Flexible ICA-Based Method for AEC Without Requiring Double-Talk Detection Marko Kanadi, Muhammad Tahir Akhtar, Wataru Mitsuhashi Department of Information and Communication Engineering,

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

TRINICON: A Versatile Framework for Multichannel Blind Signal Processing

TRINICON: A Versatile Framework for Multichannel Blind Signal Processing TRINICON: A Versatile Framework for Multichannel Blind Signal Processing Herbert Buchner, Robert Aichner, Walter Kellermann {buchner,aichner,wk}@lnt.de Telecommunications Laboratory University of Erlangen-Nuremberg

More information

Analytical solution of the blind source separation problem using derivatives

Analytical solution of the blind source separation problem using derivatives Analytical solution of the blind source separation problem using derivatives Sebastien Lagrange 1,2, Luc Jaulin 2, Vincent Vigneron 1, and Christian Jutten 1 1 Laboratoire Images et Signaux, Institut National

More information

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis Aapo Hyvarinen Helsinki University of Technology Laboratory of Computer and Information Science P.O.Box 5400,

More information

BLIND SEPARATION OF TEMPORALLY CORRELATED SOURCES USING A QUASI MAXIMUM LIKELIHOOD APPROACH

BLIND SEPARATION OF TEMPORALLY CORRELATED SOURCES USING A QUASI MAXIMUM LIKELIHOOD APPROACH BLID SEPARATIO OF TEMPORALLY CORRELATED SOURCES USIG A QUASI MAXIMUM LIKELIHOOD APPROACH Shahram HOSSEII, Christian JUTTE Laboratoire des Images et des Signaux (LIS, Avenue Félix Viallet Grenoble, France.

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

Independent Component Analysis on the Basis of Helmholtz Machine

Independent Component Analysis on the Basis of Helmholtz Machine Independent Component Analysis on the Basis of Helmholtz Machine Masashi OHATA *1 ohatama@bmc.riken.go.jp Toshiharu MUKAI *1 tosh@bmc.riken.go.jp Kiyotoshi MATSUOKA *2 matsuoka@brain.kyutech.ac.jp *1 Biologically

More information

FCOMBI Algorithm for Fetal ECG Extraction

FCOMBI Algorithm for Fetal ECG Extraction I J C A, 8(5), 05, pp. 997-003 International Science Press FCOMBI Algorithm for Fetal ECG Extraction Breesha S.R.*, X. Felix Joseph** and L. Padma Suresh*** Abstract: Fetal ECG extraction has an important

More information

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Mingyang Chen 1,LuGan and Wenwu Wang 1 1 Department of Electrical and Electronic Engineering, University of Surrey, U.K.

More information

ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS. Maria Funaro, Erkki Oja, and Harri Valpola

ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS. Maria Funaro, Erkki Oja, and Harri Valpola ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS Maria Funaro, Erkki Oja, and Harri Valpola Neural Networks Research Centre, Helsinki University of Technology P.O.Box

More information

Links Failure Analysis of Averaging Executed by. Protocol Push sum

Links Failure Analysis of Averaging Executed by. Protocol Push sum Contemporary Engineering Sciences, Vol. 9, 1, no., 7-3 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.19/ces.1.113 Links Failure Analysis of Averaging Executed by Protocol Push sum Martin Kenyeres Dept.

More information

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello Artificial Intelligence Module 2 Feature Selection Andrea Torsello We have seen that high dimensional data is hard to classify (curse of dimensionality) Often however, the data does not fill all the space

More information

Metric Analysis Approach for Interpolation and Forecasting of Time Processes

Metric Analysis Approach for Interpolation and Forecasting of Time Processes Applied Mathematical Sciences, Vol. 8, 2014, no. 22, 1053-1060 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.312727 Metric Analysis Approach for Interpolation and Forecasting of Time

More information

ICA. Independent Component Analysis. Zakariás Mátyás

ICA. Independent Component Analysis. Zakariás Mátyás ICA Independent Component Analysis Zakariás Mátyás Contents Definitions Introduction History Algorithms Code Uses of ICA Definitions ICA Miture Separation Signals typical signals Multivariate statistics

More information

A GEOMETRIC APPROACH TO BLIND SEPARATION OF NONNEGATIVE AND DEPENDENT SOURCE SIGNALS

A GEOMETRIC APPROACH TO BLIND SEPARATION OF NONNEGATIVE AND DEPENDENT SOURCE SIGNALS 18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010 A GEOMETRIC APPROACH TO BLIND SEPARATION OF NONNEGATIVE AND DEPENDENT SOURCE SIGNALS Wady Naanaa Faculty of

More information

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) Independent Component Analysis (ICA) Université catholique de Louvain (Belgium) Machine Learning Group http://www.dice.ucl ucl.ac.be/.ac.be/mlg/ 1 Overview Uncorrelation vs Independence Blind source separation

More information

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 12, DECEMBER 2008 2009 Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation Yuanqing Li, Member, IEEE, Andrzej Cichocki,

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services. Internal

More information

A Comparative Study of Friction Laws Used in. Spur Gear Power Losses Estimation

A Comparative Study of Friction Laws Used in. Spur Gear Power Losses Estimation Contemporary Engineering Sciences, Vol. 9, 216, no. 6, 279-288 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ces.216.512329 A Comparative Study of Friction Laws Used in Spur Gear Power Losses

More information

Blind separation of instantaneous mixtures of dependent sources

Blind separation of instantaneous mixtures of dependent sources Blind separation of instantaneous mixtures of dependent sources Marc Castella and Pierre Comon GET/INT, UMR-CNRS 7, 9 rue Charles Fourier, 9 Évry Cedex, France marc.castella@int-evry.fr, CNRS, I3S, UMR

More information

Remarks on the Maximum Principle for Parabolic-Type PDEs

Remarks on the Maximum Principle for Parabolic-Type PDEs International Mathematical Forum, Vol. 11, 2016, no. 24, 1185-1190 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2016.69125 Remarks on the Maximum Principle for Parabolic-Type PDEs Humberto

More information

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems International Journal of Mathematical Analysis Vol. 9, 2015, no. 9, 429-436 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.47193 A General Control Method for Inverse Hybrid Function

More information

Feature Extraction with Weighted Samples Based on Independent Component Analysis

Feature Extraction with Weighted Samples Based on Independent Component Analysis Feature Extraction with Weighted Samples Based on Independent Component Analysis Nojun Kwak Samsung Electronics, Suwon P.O. Box 105, Suwon-Si, Gyeonggi-Do, KOREA 442-742, nojunk@ieee.org, WWW home page:

More information

Independent Component Analysis and Its Applications. By Qing Xue, 10/15/2004

Independent Component Analysis and Its Applications. By Qing Xue, 10/15/2004 Independent Component Analysis and Its Applications By Qing Xue, 10/15/2004 Outline Motivation of ICA Applications of ICA Principles of ICA estimation Algorithms for ICA Extensions of basic ICA framework

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis Aapo Hyvärinen Helsinki Institute for Information Technology and Depts of Computer Science and Psychology University of Helsinki Problem of blind

More information

Solution of the Maxwell s Equations of the Electromagnetic Field in Two Dimensions by Means of the Finite Difference Method in the Time Domain (FDTD)

Solution of the Maxwell s Equations of the Electromagnetic Field in Two Dimensions by Means of the Finite Difference Method in the Time Domain (FDTD) Contemporary Engineering Sciences, Vol. 11, 2018, no. 27, 1331-1338 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.83114 Solution of the Maxwell s Equations of the Electromagnetic Field

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

Acoustic Source Separation with Microphone Arrays CCNY

Acoustic Source Separation with Microphone Arrays CCNY Acoustic Source Separation with Microphone Arrays Lucas C. Parra Biomedical Engineering Department City College of New York CCNY Craig Fancourt Clay Spence Chris Alvino Montreal Workshop, Nov 6, 2004 Blind

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Introduction Consider a zero mean random vector R n with autocorrelation matri R = E( T ). R has eigenvectors q(1),,q(n) and associated eigenvalues λ(1) λ(n). Let Q = [ q(1)

More information

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA 16 1 (Independent Component Analysis: ICA) 198 9 ICA ICA ICA 1 ICA 198 Jutten Herault Comon[3], Amari & Cardoso[4] ICA Comon (PCA) projection persuit projection persuit ICA ICA ICA 1 [1] [] ICA ICA EEG

More information

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The To appear in Proceedings of the ICA'99, Aussois, France, 1999 1 NATURAL GRADIENT APPROACH TO BLIND SEPARATION OF OVER- AND UNDER-COMPLETE MIXTURES L.-Q. Zhang, S. Amari and A. Cichocki Brain-style Information

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains Applied Mathematical Sciences, Vol. 8, 2014, no. 103, 5133-5143 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46507 The Linear Chain as an Extremal Value of VDB Topological Indices of

More information

Multi-user FSO Communication Link

Multi-user FSO Communication Link Multi-user FSO Communication Link Federica Aveta, Hazem Refai University of Oklahoma Peter LoPresti University of Tulsa Outline q MOTIVATION q BLIND SOURCE SEPARATION q INDEPENDENT COMPONENT ANALYSIS Ø

More information

Comparative Analysis of ICA Based Features

Comparative Analysis of ICA Based Features International Journal of Emerging Engineering Research and Technology Volume 2, Issue 7, October 2014, PP 267-273 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Comparative Analysis of ICA Based Features

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

Short-Time ICA for Blind Separation of Noisy Speech

Short-Time ICA for Blind Separation of Noisy Speech Short-Time ICA for Blind Separation of Noisy Speech Jing Zhang, P.C. Ching Department of Electronic Engineering The Chinese University of Hong Kong, Hong Kong jzhang@ee.cuhk.edu.hk, pcching@ee.cuhk.edu.hk

More information

Networks of Queues Models with Several. Classes of Customers and Exponential. Service Times

Networks of Queues Models with Several. Classes of Customers and Exponential. Service Times Applied Mathematical Sciences, Vol. 9, 2015, no. 76, 3789-3796 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53287 Networks of Queues Models with Several Classes of Customers and Exponential

More information

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

Two-Stage Temporally Correlated Source Extraction Algorithm with Its Application in Extraction of Event-Related Potentials

Two-Stage Temporally Correlated Source Extraction Algorithm with Its Application in Extraction of Event-Related Potentials Two-Stage Temporally Correlated Source Extraction Algorithm with Its Application in Extraction of Event-Related Potentials Zhi-Lin Zhang,2, Liqing Zhang, Xiu-Ling Wu,JieLi, and Qibin Zhao Department of

More information

Parametric independent component analysis for stable distributions

Parametric independent component analysis for stable distributions ORIGIAL RESEARCH Parametric independent component analysis for stable distributions ohammad Reza Ameri, 2, ona Shokripour 3, Adel ohammadpour 2, Vahid assiri 2, 4. Department of Computer Science and Software

More information

approach to underdetermined blind source separation with application to temporomandibular disorders Loughborough University Institutional Repository

approach to underdetermined blind source separation with application to temporomandibular disorders Loughborough University Institutional Repository Loughborough University Institutional Repository A ltering approach to underdetermined blind source separation with application to temporomandibular disorders This item was submitted to Loughborough University's

More information

Non-Euclidean Independent Component Analysis and Oja's Learning

Non-Euclidean Independent Component Analysis and Oja's Learning Non-Euclidean Independent Component Analysis and Oja's Learning M. Lange 1, M. Biehl 2, and T. Villmann 1 1- University of Appl. Sciences Mittweida - Dept. of Mathematics Mittweida, Saxonia - Germany 2-

More information

On Information Maximization and Blind Signal Deconvolution

On Information Maximization and Blind Signal Deconvolution On Information Maximization and Blind Signal Deconvolution A Röbel Technical University of Berlin, Institute of Communication Sciences email: roebel@kgwtu-berlinde Abstract: In the following paper we investigate

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Blind Source Separation in Nonlinear Mixture for Colored Sources Using Signal Derivatives

Blind Source Separation in Nonlinear Mixture for Colored Sources Using Signal Derivatives Blind Source Separation in Nonlinear Mixture for Colored Sources Using Signal Derivatives Bahram Ehsandoust, Masoud Babaie-Zadeh, Christian Jutten To cite this version: Bahram Ehsandoust, Masoud Babaie-Zadeh,

More information