11/1/2010. Goals for Chapter 23

Size: px
Start display at page:

Download "11/1/2010. Goals for Chapter 23"

Transcription

1 //00 Chapter 4 letrmagneti Wae Gal r Chapter 3 T undertand eletrmagneti wae, the peed light, and the eletrmagneti petrum. T haraterize inuidal wae and determine their energy. T undertand Dppler eet. T tudy plarizatin. 0/7/00 0/7/00 Jame Clerk Maxwell 3 79 letriity and magnetim were riginally thught t be unated in 65, Jame Clerk Maxwell prided a mathematial thery that hwed a le atinhip between all eletri and magneti phenmena Heinrih Hertz Firt t generate and detet eletrmagneti wae in a labratry etting Shwed radi wae uld be eted, rerated and dirated The unit Hz i named r him 0/7/00 3 Maxwell Starting Pint letri ield line riginate n pitie harge and terminate n negatie harge Magneti ield line alway rm led lp they d nt begin r end anywhere A arying magneti ield indue an em and hene an eletri ield (Faraday Law) Magneti ield are generated by ming harge r urrent (Ampère Law) Maxwell Preditin Maxwell ued thee tarting pint and a rrepnding mathematial ramewrk t pre that eletri and magneti ield play ymmetri rle in nature He hyptheized that a hanging eletri ield wuld prdue a magneti ield Maxwell alulated the peed light t be 3x0 m/ He nluded that iible light and all ther eletrmagneti wae nit lutuating eletri and magneti ield, with eah arying 0/7/00 ield induing the ther 4 4. The Nature letrmagneti Wae 4. The Nature letrmagneti Wae Tw traight wire nneted t the terminal an AC generatr an reate an eletrmagneti wae. Only the eletri wae traeling t the right i hwn here. The urrent ued t generate the eletri wae reate a magneti ield.

2 //00 4. The Nature letrmagneti Wae Ntie that the magneti ield i perpendiular t the page wherea the eletri ield lie in the plane the page. Cmbine bth eletri ield and magneti ield tgether rm the eletrmagneti wae generated by illating urrent n the linear antenna. Here are dierent way t hw the eletrmagneti wae. 4. The Nature letrmagneti Wae Unlike the Stati eletri ield r tati magneti ield, the eletrmagneti ield generated by an antenna i a prpagating wae. The M wae nit -ield and -ield that i perpendiular t eah ther and al perpendiular t the diretin trael. 4. The Nature letrmagneti Wae 4. The Nature letrmagneti Wae Thi piture hw the wae the radiatin ield ar rm the antenna. It i apprximated a a plane wae. The peed an eletrmagneti wae in a auum i: m A radi wae an be deteted with a reeiing antenna wire that i parallel t the eletri ield. The requenie AM radi lie between 545 khz and 604 khz. The requenie FM radi lie between MHz and 0 MHz. The requenie VHF TV ignal lie between 54 Mhz t MHz. The requenie UHF TV ignal lie between 74 and 6 MHz. 4. The Nature letrmagneti Wae 4. The letrmagneti Spetrum With a reeiing antenna in the rm a lp, the magneti ield a radi wae an be deteted. Like all wae, eletrmagneti wae hae a waelength and requeny, ated by:

3 //00 Waelength and Inrmatin Thee are image the Crab Nebula They are (lkwie rm upper let) taken with x ray iible light radi wae inrared wae 4. The letrmagneti Spetrum xample The Waelength Viible Light Find the range in waelength r iible light in the requeny range between 4.0x0 4 Hz and 7.9x0 4 Hz m m 750 nm Hz m m 30 nm Hz 4. The letrmagneti Spetrum 4.3 The Speed Light Cneptual xample The Diratin AM and FM Radi Wae Diratin i the ability a wae t bend arund an btale r the edge an pening. Wuld yu expet AM r FM radi wae t bend mre readily arund an btale uh a a building? Anwer: Sine AM radi wae hae lnger waelength than the FM radi wae, they will be mre eaily dirated. The nept light a a wae i upprted by experiment and will be diued mre in Chapter 7. ut light al behae like direte partile in me experiment. Wae therie and partile therie light hae been arund r hundred year. It i nw widely aepted that light an exhibit bth wae and partile behair. The peed light in a auum m etween 7 and 93, Miheln ued a rtating eightided mirrr t meaure the peed light. 4.3 The Speed Light Cneptual xample 3 Lking ak in Time A uperna i a ilent explin that ur at the death ertain tar. The igure hw a phtgraph the ky bere and ater the 97 uperna. Thi urred in a galaxy.66 0 meter away. Hw lng it take r the light t reah earth? d.66 0 t , 000 year The Speed Light Maxwell preditin the peed light (r any eletrmagneti wae) C N m 4 0 T m A m 3

4 //00 Prpertie an eletrmagneti wae letrmagneti wae trael at the peed light letrmagneti wae require n medium letrmagneti wae are tranere wae The rati the eletri ield t the magneti ield i equal t the peed light letrmagneti wae arry energy a they trael thrugh pae, and thi energy an be tranerred t bjet plaed in their path 4.4 The nergy Carried by letrmagneti Wae letrmagneti wae, like water wae, arry energy. The energy i arried by the eletri and magneti ield. 0/7/ The nergy Carried by letrmagneti Wae The ttal energy denity arried by an eletrmagneti wae Ttal energy u Vlume In an eletrmagneti wae, the energy arried by eletri ield i the ame a the energy arried by magneti ield. u S the ttal energy denity i : 4.4 The nergy Carried by letrmagneti Wae S pwer area r We deine the intenity M wae a the amunt energy paed thrugh a unit area per unit time, S=/(At), P nergy uta u A t A ta 4.4 The nergy Carried by letrmagneti Wae S the intenity the M radiatin i the peed light time the energy denity. S u ( S ) 4.4 The nergy Carried by letrmagneti Wae xample 5 Pwer and intenity A tiny light ure emitting light unirmly in all diretin a hwn. At a ditane.50 m rm thi ure, the rm eletri ield trength the light i 9.0 N/C. Determine the aerage pwer the light emitted by the ure. The aerage pwer i P S (4r ) The aerage intenity i S S the aerage pwer beme rm P (30 )(.50 )(9.0) 4 (.5) 75. 3W 4

5 //00 Dppler eet (und wae) The Dppler eet i the hange in requeny r pith the und deteted by an berer beaue the und ure and the berer hae dierent elitie with repet t the medium und prpagatin. Dppler eet (und wae) MOVING SOURC T ure ming tward a tatinary berer : berer S: ure T ure ming away rm a tatinary berer xample: The und a paing train A high-peed train i traeling at a peed 44.7 m/ when the engineer und the 45-Hz warning hrn. The peed und i 343 m/. What are the requeny and waelength the und, a pereied by a pern tanding at the ring, when the train i (a) apprahing and (b) leaing the ring? Dppler eet (und wae) MOVING OSRVR Apprahing 45 Hz m 343m Hz Ming away 45 Hz 367 Hz 44.7m 343m apprahing Dppler eet and eletrmagneti wae letrmagneti wae al an exhibit a Dpper eet, but it dier r tw rean: a) Sund wae require a medium, wherea eletrmagneti wae d nt. b) Fr und, it i the mtin atie t the medium that i imprtant. xample: Radar gun and peed trap The radar gun a plie ar emit an eletrmagneti wae with a requeny.0x0 9 Hz. The apprah i eentially head n. The wae rm the gun et rm the peeding ar and return t the plie ar, where n-bard equipment meaure it requeny t be greater than the emitted wae by 00 Hz. Find the peed the ar with repet t the highway. The plie ar i parked. Fr eletrmagneti wae, nly the atie mtin the ure and berer i imprtant. i 5

6 //00 Frequeny and waelength an eletrmagneti wae Frequeny, waelength, and peed prpagatin any wae are ated requeny bered requeny bered by plie ar by peeding ar 00 Hz m.00 Hz 39 m y tempral ariatin t Ain t Ain t wae y patial ariatin x y xin in kx x,t A in kx t S The Inere-Square Dependene S A pint ure light, r any radiatin, pread ut in all diretin: Sure a S P SOURC 4 r Pwer, P, lwing thrugh phere i ame r any radiu. r Sure Area r S r xample: An berer i. m rm a pint light ure whe aerage pwer P = 50 W. Calulate the rm ield in the pitin the berer. A. Intenity light at ditane r i S = P ure / (4r ) I P 4r rm ure I S max rm rm P0 4 r rm 4V / m rm 7 (50W)(40 H / m)(3.0 m / ) 4(.m) 4V / m 0.6T 3.0 m / Plarizatin The diretin plarizatin a wae i the diretin the eletri ield. Mt light i randmly plarized, whih mean it ntain a mixture wae dierent plarizatin. y Plarizatin Linearly plarized wae n a rpe. In plarized light, the eletri ield lutuate alng a ingle diretin. z linearly plarized wae Plarizatin diretin x 6

7 //00 Plarizatin A plarizer let thrugh light nly ne plarizatin: Prdue plarized rm unplarized light xample: Uing Plarizer and Analyzer What alue huld be ued the aerage intenity the plarized light reahing the phtell i ne-tenth the aerage intenity the unplarized light? Tranmitted light ha it in the diretin the plarizer tranmiin axi. hene, intenity ater analyzer S = S 0 S S = 0 intenity bere analyzer - Malu Law S 0 5 S Plarizer and Analyzer When plarizer (r plarizer and anzlyzer) are red, the intenity the tranmitted light i redued t zer. Suppe that a third piee plarizing material i inerted between the plarizer and analyzer. De light nw reah the phtell? Plarizatin Change due t Sattering Light by a Mleule Ye 7

Electromagnetic (EM) waves also can exhibit a Doppler effect:

Electromagnetic (EM) waves also can exhibit a Doppler effect: 4.5 The Dppler ffet and letrmagneti Waves letrmagneti (M) waves als an exhibit a Dppler effet:. Inrease in bserved frequeny fr sure and bserver apprahing ne anther. Derease in bserved frequeny fr sure

More information

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night PHYS 015 Week 13 -M Waves, Interferene Reading Jurnals Tuesday WebAssign due WDNSDAY night Test Friday: Chap 3 (Magneti indutin); Chap 33.1-4 (Indutane, self and mutual, energy, RL iruits). Chap 34 (Waves,

More information

PHYSICS NOTES. SUBJECT: Physics LEVEL: Higher TEACHER: Pat Doyle. The Institute of Education Topics Covered: Sound & Waves

PHYSICS NOTES. SUBJECT: Physics LEVEL: Higher TEACHER: Pat Doyle. The Institute of Education Topics Covered: Sound & Waves PHYSICS NOTES The Institute Eduatin 208 SUBJECT: Physis LEVEL: Higher TEACHER: Pat Dyle Tpis Cvered: Sund & Waves Abut Pat: Pat graduated with a Masters Degree in Physis in 986 and has taught Physis in

More information

PHYS 2020 Spring 2012 Announcements

PHYS 2020 Spring 2012 Announcements PHYS 2020 Spring 2012 Announements Continuing to adjust the shedule to relet the progress o the letures: HW #7 is now due Mon. Apr 9 1 Chapter 24 Eletromagneti Waes Next 3 hapters on the behaior o light

More information

Electromagnetic Waves

Electromagnetic Waves M- letrmagneti Waves Last semester, we studied Classial Mehanis. The fundamental laws (axims) f Classial Mehanis are alled Newtn's Laws. This semester, we are studying a subjet alled Classial letrmagnetism.

More information

The bending of a wave around an obstacle or the edges of an opening is called diffraction.

The bending of a wave around an obstacle or the edges of an opening is called diffraction. 17.3 Diractin The bending a wae arund an btacle r the edge an pening i called diractin. http://www.yutube.cm/watch?ksig_eaifrw 1 17.3 Diractin 2 dimenin: ingle lit irt minimum inθ λ D Linear Meaurement:

More information

The Laws of Electromagnetism Maxwell s Equations Displacement Current Electromagnetic Radiation

The Laws of Electromagnetism Maxwell s Equations Displacement Current Electromagnetic Radiation The letromagneti petrum The Law of letromagnetim Maxwell quation Diplaement Current letromagneti Radiation Maxwell quation of letromagnetim in Vauum (no harge, no mae) lane letromagneti Wave d d z y (x,

More information

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42 Light in ne medium (n =.) enunters a bundary t a send medium (with n =. 8) where part f the light is transmitted int the send media and part is refleted bak int the first media. The inident angle is =

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik S. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

Electromagnetic waves

Electromagnetic waves Eletromagneti waves He predited eletromagneti wave propagation James Clerk Maxwell (1831-1879) Eletromagneti waves He predited eletromagneti wave propagation A singular theoretial ahievement of the 19

More information

On the Origin of the Special Relativity Anomalies

On the Origin of the Special Relativity Anomalies On the Origin f the Speial Relatiity Anmalies Radwan M. Kassir February 2015 radwan.elkassir@dargrup.m ABSTRACT In this paper, the nlusie rigin f the Speial Relatiity (SR) mathematial nflits identified

More information

Chapter 1. Problem Solutions

Chapter 1. Problem Solutions Chapter Prblem Slutins If the speed f light were smaller than it is, wuld relatiisti phenmena be mre r less nspiuus than they are nw? All else being the same, inluding the rates f the hemial reatins that

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

The Theory of Invariance A Perspective of Absolute Space and Time

The Theory of Invariance A Perspective of Absolute Space and Time The Thery Invariane A Perspetive Abslute Spae and Time Thanh G Nuyen Massahusetts, USA thanhn@htmailm Abstrat In this artile, by usin undamental nepts in lassial mehanis, we derive equatins desribin ravitatinal

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Richard s Transformations

Richard s Transformations 4/27/25 Rihard Tranfrmatin.d /7 Rihard Tranfrmatin Reall the put impedane f hrt-iruited and peniruited tranmiin le tub. j tan β, β t β, β Nte that the put impedane are purely reatie jut like lumped element!

More information

On the Test of Time Dilation Using the Relativistic Doppler Shift Equation

On the Test of Time Dilation Using the Relativistic Doppler Shift Equation Internatinal Jurnal Physis, 05, Vl 3, N 3, 00-07 Aailable nline at http://pubssiepubm/ijp/3/3/ Siene and Eduatin Publishing DOI:069/ijp-3-3- On the Test Time Dilatin Using the Relatiisti Dppler Shit Equatin

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

Einstein's Energy Formula Must Be Revised

Einstein's Energy Formula Must Be Revised Eintein' Energy Formula Mut Be Reied Le Van Cuong uong_le_an@yahoo.om Information from a iene journal how that the dilation of time in Eintein peial relatie theory wa proen by the experiment of ientit

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Lecture 15. Physics 1202: Lecture 15 Today s Agenda

Lecture 15. Physics 1202: Lecture 15 Today s Agenda Physics 1202: Lecture 15 Tday s Agenda Annuncements: Team prblems tday Team 7: Cailin Catarina, Matthew Canapetti, Kervin Vincent Team 8: Natalie Kasir, Adam Antunes, Quincy Alexander Team 9: Garrett Schlegel,

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCureWare http://w.mit.edu 6.03/ESD.03J Eletrmagneti and ppliatin, Fall 005 Pleae ue the fllwing itatin frmat: Marku Zahn, Erih Ippen, and David Staelin, 6.03/ESD.03J Eletrmagneti and ppliatin,

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

@(; t) p(;,b t) +; t), (; t)) (( whih lat line follow from denition partial derivative. in relation quoted in leture. Th derive wave equation for ound

@(; t) p(;,b t) +; t), (; t)) (( whih lat line follow from denition partial derivative. in relation quoted in leture. Th derive wave equation for ound 24 Spring 99 Problem Set 5 Optional Problem Phy February 23, 999 Handout Derivation Wave Equation for Sound. one-dimenional wave equation for ound. Make ame ort Derive implifying aumption made in deriving

More information

4) What is the magnitude of the net electric field at the center of the square?

4) What is the magnitude of the net electric field at the center of the square? Fur charges are n the fur crners f a square. Q = +5C, Q = -0C, Q 3 = +5C, Q 4 = -0C. The side length f each side f the square is 3 m. Q Q ) What is the directin f the frce n Q due t ONLY Q 4? (a) up (b)

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

k BZ . Optical absorption due to interband transition therefore involves mostly vertical transitions :

k BZ . Optical absorption due to interband transition therefore involves mostly vertical transitions : Interband transitins (1 Optial Absrptin Spetra a Diret Transitins We had already seen that phtn BZ. Optial absrptin due t interband transitin therefre inles mstly ertial transitins : C V Use first-rder

More information

S Mobile Communications Services and Systems

S Mobile Communications Services and Systems S-7.60 Mobile ommuniation Serie and Sytem Tutorial, Noember 9, 004. One a pyiit obert Wood did not top i ar beind te red trai ligt. He exue imel by uing oppler eet. Beaue o oppler it te red ligt ad turned

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

T T A BA T B 1 5 7

T T A BA T B 1 5 7 Hmewrk 5. Write the fllwing equatins in matrix frm: (a) 3x5z7 4z5 3xz 3 5 4 3 x z 7 5 (b) x3z 4x56z 7x89z3 3 4 5 6 7 8 9 x z 3. The transpse peratin hanges a lumn vetr t a rw vetr and visa-vera. (a) Find

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS EXAMINATION NOVEMBER 2007

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS EXAMINATION NOVEMBER 2007 THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF HYSICS EXAMINATION NOVEMBER 7 HYS 4 INTRODUCTORY BIOHYSICS Time Allwed hurs Ttal Number f Questins 8 Answer ANY FIVE questins The questins are f equal alue lease,

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Homework for Diffraction-MSE 603: Solutions May 2002

Homework for Diffraction-MSE 603: Solutions May 2002 Hmewrk fr Diffratin-MSE 603: Slutins May 00 1. An x-ray beam f 1.5 Å impinges n a Ge single rystal sample with an inient angle θ lse t the ritial angle θ f the Ge surfae. Taking int aunt the absrptin,

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions Chem 116 POGIL Wrksheet - Week 8 Equilibrium Cntinued - Slutins Key Questins 1. Cnsider the fllwing reatin At 425 C, an equilibrium mixture has the fllwing nentratins What is the value f K? -2 [HI] = 1.01

More information

CHAPTER 24: ELECTROMAGNETIC WAVES

CHAPTER 24: ELECTROMAGNETIC WAVES College Phyi Student Manual Chapter 4 CHAPTER 4: ELECTROMAGNETC WAVES 4. MAXWELL S EQUATONS: ELECTROMAGNETC WAVES PREDCTED AND OSERVED. Veriy that the orret value or the peed o light i obtained when nuerial

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

To determine the biasing conditions needed to obtain a specific gain each stage must be considered. PHYSIS 56 Experiment 9: ommon Emitter Amplifier A. Introdution A ommon-emitter oltage amplifier will be tudied in thi experiment. You will inetigate the fator that ontrol the midfrequeny gain and the low-and

More information

ON-LINE PHYSICS 122 EXAM #2 (all online sections)

ON-LINE PHYSICS 122 EXAM #2 (all online sections) ON-LINE PHYSIS EXAM # (all nline setins) ) Bubble in the ID number setin f the santrn. ) This Exam is hurs lng - 34 multiple-hie questins. hse the ne BEST answer fr eah questin. Yu are nt penalized fr

More information

The special theory of relativity

The special theory of relativity The special thery f relatiity The preliminaries f special thery f relatiity The Galilean thery f relatiity states that it is impssible t find the abslute reference system with mechanical eperiments. In

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5 UIUC Physis 46 M Fields & Sures II Fall Semester, 5 Let. Ntes 8.5 Prf. Steen rrede LCTUR NOTS 8.5 The Lrent Transfrmatin f and B Fields: We hae seen that ne bserer s -field is anther s B -field (r a mixture

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Exam 1 Solutions. Prof. Darin Acosta Prof. Selman Hershfield February 6, 2007

Exam 1 Solutions. Prof. Darin Acosta Prof. Selman Hershfield February 6, 2007 PHY049 Spring 008 Prf. Darin Acta Prf. Selman Herhfiel Februar 6, 007 Nte: Mt prblem have mre than ne verin with ifferent anwer. Be careful that u check ur eam againt ur verin f the prblem. 1. Tw charge,

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001 Chemial Engineering 160/260 Plymer Siene and Engineering Leture 15: Mleular Aspets f Plymer Rhelgy February 21, 2001 Objetives! T intrdue the nept f saling analysis t aunt fr the nentratin and mleular

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phyi 15 Leture 18 EM Wave in Matter (H&L Setion 9.7) What We Did Lat Time! Reviewed refletion and refration! Total internal refletion i more ubtle than it look! Imaginary wave extend a few

More information

Being able to connect displacement, speed, and acceleration is fundamental to working

Being able to connect displacement, speed, and acceleration is fundamental to working Chapter The Big Three: Acceleratin, Distance, and Time In This Chapter Thinking abut displacement Checking ut speed Remembering acceleratin Being able t cnnect displacement, speed, and acceleratin is undamental

More information

1) When an object is placed at the center of curvature of a concave mirror, the image is.

1) When an object is placed at the center of curvature of a concave mirror, the image is. ) Whe a bjet is plae at the eter f urature f a ae mirrr, the image is. a) upright a irtual b) ierte a real ) larger a irtual ) Whe a bjet is plae ery far frm the fal pit f a ergig les, the image is. a)

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

Gains in Activation Energy from Quasi Fermi Splitting, In Selectively Doped MQW Solar Cells

Gains in Activation Energy from Quasi Fermi Splitting, In Selectively Doped MQW Solar Cells Gains in Ativatin Energy frm Quasi ermi Splitting, In Seletively Dped MQW Slar Cells ARGYRIOS C. VARONIDES, ROBERT A. SPALLETTA ANDREW W. BERGER Department f Physis and Eletrial Engineering, University

More information

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work.

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work. Chapter 21. Sound wae Content 21.1 Propagation o ound wae 21.2 Source o ound 21.3 Intenity o ound 21.4 Beat 21.5 Doppler eect 1 2 objectie a) explain the propagation o ound wae in air in term o preure

More information

THE SOLAR SYSTEM. We begin with an inertial system and locate the planet and the sun with respect to it. Then. F m. Then

THE SOLAR SYSTEM. We begin with an inertial system and locate the planet and the sun with respect to it. Then. F m. Then THE SOLAR SYSTEM We now want to apply what we have learned to the olar ytem. Hitorially thi wa the great teting ground for mehani and provided ome of it greatet triumph, uh a the diovery of the outer planet.

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system ASTRODYNAMICS Early Space Explratin Niclaus Cpernicus (1473-1543) Placed Sun at center f slar system Shwed Earth rtates n its axis nce a day Thught planets rbit in unifrm circles (wrng!) Jhannes Kepler

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Exam Review Trigonometry

Exam Review Trigonometry Exam Review Trignmetry (Tyler, Chris, Hafsa, Nasim, Paniz,Tng) Similar Triangles Prving Similarity (AA, SSS, SAS) ~ Tyler Garfinkle 3 Types f Similarities: 1. Side Side Side Similarity (SSS) If three pairs

More information

Photgraphic camera. How it works? Take a simple converging lens:

Photgraphic camera. How it works? Take a simple converging lens: Phtgraphic camera. Hw it wrks? Take a simple cnverging lens: Image real, inverted, and much smaller than the bject Lens Object usually at a distance much, much larger rm the lens than its cal length T

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2 Mdiied rm Pedrtti 8-9 a) The schematic the system is given belw b) Using matrix methd rm pint A t B, A B M 2lens D 0 0 d d d 0 d d 2 2 2 2 0 0 5 5 2 0 3 0 0 20 2 Frm the abve matrix, we see that A and

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

1) When an object is placed outside the center of curvature of a convex mirror, the image is.

1) When an object is placed outside the center of curvature of a convex mirror, the image is. ) Whe a bjet is plae utsie the eter f urature f a ex mirrr, the image is. a) upright a irtual b) ierte a smaller ) larger a real ) Whe a bjet is plae isie the fal pit f a ergig les, the image is. a) upright

More information

Special Relativity Electromagnetic and Gravitation combined Into one theory

Special Relativity Electromagnetic and Gravitation combined Into one theory --5 Speial Relatiity Eletromagneti and Graitation ombined Into one theory Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAE, HOON 54-54855 Introdution In this paper, I try to ombine Eletromagneti

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Physic 231 Lecture 12

Physic 231 Lecture 12 Physic 3 Lecture Main pints last lecture: Cnservative rces and the Cnservatin energy: + P + P Varying rces ptential energy a spring P x Main pints tday s lecture: Wr, energy and nncnservative rces: W Pwer

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

XII PHYSICS RBSE FLASHBACK 2017

XII PHYSICS RBSE FLASHBACK 2017 XII PHYSICS BSE FLASHBACK 7 Time: 3.5 Hrs. Max. Marks: 56 General Instrutins:. Candidate must write first her/her ll N. n the questin paper mpulsrily.. All the questins are mpulsry. 3. Write the answer

More information

Potential and Capacitance

Potential and Capacitance Ptential and apacitance Electric Ptential Electric ptential (V) = Electric ptential energy (U e ) per unit charge () Define: ptential energy U e = 0 at infinity (r = ) lim U 0 r e Nte the similarity f

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6 des Waefrm shapng Cruts Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 Tw-prt netwrks as buldng blks Reall: Transfer funtn f a tw-prt netwrk an be fund by slng ths rut ne.

More information

Lecture 10 Adiabatic Processes

Lecture 10 Adiabatic Processes ASME231 Atmsheri hermdynamis NC A& State U Deartment f Physis Dr. Yuh-Lang Lin htt://meslab.rg ylin@nat.edu Leture 10 Adiabati Presses (Se.3.5 f Hess) [Classial equatin editr: 0 dq ] Definitin: If a thermdynami

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response. Due: Mnday Marh 4, 6 at the beginning f la ECE-: Linear Cntrl Sytem Hmewrk ) Fr the fllwing tranfer funtin, determine bth the imule rene and the unit te rene. Srambled Anwer: H ( ) H ( ) ( )( ) ( )( )

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Intrductin: A sund wave (r pressure r cmpressin wave) results when a surface (layer f mlecules) mves back and frth in a medium prducing a sequence f cmpressins C and rarefactins R.

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Diodes Waveform shaping Circuits

Diodes Waveform shaping Circuits des Waefrm shapng Cruts Leture ntes: page 2-2 t 2-31 Sedra & Smth (6 th Ed): Se. 4.5 & 4.6 Sedra & Smth (5 th Ed): Se. 3.5 & 3.6 F. Najmabad, ECE65, Wnter 212 Tw-prt netwrks as buldng blks Reall: Transfer

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTENATIONAL CONGESS ON ACOUSTICS MADID, -7 SEPTEMBE 007 COMPAISON OF AIBONE SOUND INSULATION FIELD MEASUEMENTS WITH THE PEDICTIVE MODEL IN EN 1354-1: 000 PACS: 43.55.g Cramnd, Daniel 1 ; Kang, Jian,

More information

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2011 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2011 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5 LCTUR NOTS 8.5 The Lrentz Transfrmatin f and B Fields: We hae seen that ne bserer s -field is anther s B -field (r a mixture f the tw), as iewed frm different inertial referene frames (IRF s). What are

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physis (Theory) Tie allowed: 3 hours] [Maxiu arks:7 General Instrutions: (i) ll uestions are opulsory. (ii) (iii) (iii) (iv) (v) There are 3 uestions in total. Question Nos. to 8 are very short answer

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

EE 333 Electricity and Magnetism, Fall 2009 Homework #11 solution

EE 333 Electricity and Magnetism, Fall 2009 Homework #11 solution EE 333 Eetriity and Magnetim, Fa 009 Homework #11 oution 4.4. At the interfae between two magneti materia hown in Fig P4.4, a urfae urrent denity J S = 0.1 ŷ i fowing. The magneti fied intenity H in region

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information