Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Size: px
Start display at page:

Download "Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References"

Transcription

1 Khmelnik S. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit the mre general Law f Mmentum Cnservatin, as the eletrmagneti field has a mmentum. Frm this it fllws that the Lrentz and Ampere fres must be balaned by the flw f eletrmagneti mmentum. Hwever, as far as the authr knws, there is n rrespnding quantitative mparisn and therefre it is disussed belw. In partiular, it is shwn that sme f the rllaries f the Mmentum Cnservatin Law an be fund. Cntent 1. Intrdutin. The Field s Cnfiguratin 3. The Lrentz Fre 4. The Ampere Fre 5. Disussin Referenes 1. Intrdutin It is knwn that Ampere fre ntradits the Third Newtn Law, but it des nt ntradit the mre general Law f Mmentum Cnservatin, as the eletrmagneti field has a mmentum. It is imprtant t nte that a statinary eletrmagneti field an als have a mmentum and therefre the Ampere fre des nt ntradit law f nservatin f mmentum, als in the ase when it urs in njuntin with a permanent magneti field. Frm this it fllws that the Ampere fre must be balaned by the flw f eletrmagneti mmentum. Hwever, as far as the authr knws, a quantitative mparisn f the Ampere fre with the flw f eletrmagneti 1

2 mmentum des nt exist. Therefre this mparisn will be disussed belw. Here we shall als define sme parameters, and taking them int aunt we shall shw that the Lrentz fre and Ampere fre an be regarded as rllaries f the existene f eletrmagneti mmentum and the law f mmentum nservatin.. The Field s Cnfiguratin Fr an eletrmagneti field let us dente: W - the energy density (salar), kg m -1 s, S - the energy flw density (vetr), kg s 3, p - the mmentum density (salar), kg m s 1, f - the mmentum flw density (vetr), kg m -1 s - the eletrmagneti field vlume (salar), m 3, The fig. 1 shws ndutr arrying urrent I and length f L that is lated in a magneti field with indutin B and is mving at the speed v under the atin f the Ampere fre F. etrs f the intensity E f the urrent-reating eletri field, and f the indutin B - are mutually perpendiular. Therefre there appears a flw f eletrmagneti energy with a density S, shwn in the fig. 1 by irles. It may be presented in the frm f tw spheres, united in the bdy f ndutr and penetrating the ndutr in the vertial diretin. This flw is equivalent t the flw f an eletrmagneti mmentum f. F B I S L Fig. 1.

3 It is knwn [1, ], that f W. (1) S W, () p W, p S, (3) f p, f S. (4) The integral f the density by vlume will be dented as A A d. (4а) The energy flw S may exist als in a statinary eletrmagneti field [3]. Therefre the mmentum flw f exists als in a statinary eletrmagneti field reated by diret urrent and permanent magneti field. The law f mmentum nservatin fr a devie interating with eletrmagneti field an be written in a fllwing frm [3]: J p f, (5) t t where J mehanial mmentum f the devie, - the vlume f devie; vlume in whih the eletrmagneti mmentum interats with the devie (the summary mmentum flw in all vlume f the field is equal t zer). It is knwn that the fre ating n the devie is F J. (6) t Cnsequently, F p f. (7) t Cmbining (7) and (3, 4), we get: S S F. (8) t Thus, if the devie is in the flw f eletrmagneti energy S, then it is influened by a fre (8), depending nly n the flw f eletrmagneti energy S. This fre exists als fr a permanent flw S, and then S F. (9) 3

4 In this ase, if the flw f eletrmagneti energy eletrmagneti energy flux is distributed in the material with relative permittivity and permeability, then in the frmulas (8, 9) the light speed in vauum shuld be replaed by the light speed in material s (10) Let us nsider the ase (shwn n the fig. 1), when vetr f permittivity E and permeability H are perpendiular. Then S EH (11) Let als the field in the devie is unifrm and is nentrated in the vlume. Then frm (8, 10, 11) we get EH EH F. (1) t If, besides that, the field is permanent, then 4 EH F. (13) 3. The Lrentz Fre Let us nsider the magneti Lrentz fre, ating n a bdy with harge q, mving with speed v perpendiularly t the vetr f magneti indutivity B : F L qvb. (14) We shall neglet the intrinsi magneti indutin field f a mving harge (mpared with the indutin f an external magneti field) and its wn eletrmagneti mmentum mving harge. Then we have t aept that the fre (14) is aused by the flw mmentum f eletrmagneti field that penetrates the bdy f the harge. Thus frm (13, 14), we btain: EH F L. (15) where is the bdy vlume. Frm this we get: EH qvb (16) r, fr B H, E / qv. (17)

5 Cnsequently, inside the bdy there shuld be eletri field intensity direted alng the velity, and equal t qv E. (18) / Let us nte that and 377 (19) qv q E 377 v. (0) Cnsequently, inside a harged bdy, mving in a magneti field and being under the influene f Lrentz fre, there exists an intensity f eletri field prprtinal t the mvement speed. The example with an Eletrn 19 It has a harge q , lassial radius r vlume rrespnding t this radius, r , a. Als 6 E 7 10 v. One may als say that n the diameter f the eletrn alng the speed diretin, there exists a ptentials 1 differene a vltage U Er 4 10 v. Cnsidering the arguments f Feynman [3] n the internal fres f the eletrn, restraining the eletrn harges n the surfae f the sphere, we an see that this vltage is the fre whih "pulls" lagging harges t their plae n the sphere when they mve under the atin f the Lrentz fre 4. The Ampere Fre Let us nsider the Ampere fre ating n a ndutr with urrent I, дmving with speed v perpendiularly t the vetr f magneti indutin B : F A IBL. (1) If this fre is aused by the flw f the mmentum f eletrmagneti field permeating the ndutr, then 5

6 EH F A, () where is the ndutr s vlume. Frm this we find: EH IBL (3) r, fr B H, EH IHL. (4) Therefre, the intensity f eletri field in this ase will be IL E. (4а) / If s is the setin area, L - the ndutr length, then sl. (5) If the vltage n the ndutr is permanent and equal tu, then E U / L. (6) If the speifi resistane f the ndutr is equal t, then U IL s jl (7) and E j. (8) Then js j (9) s / r. (30) Thus, the permittivity f the ndutr with urrent depends nly n and. Fr example, fr 6 1, 10 (m*m) we find 16 that 710. Fr verifiatin let us substitute (30) int () r int (13), we shall get EB FA EH. (31) and further, taking int aunt (8), we get (1). Similarly, substituting (30, 8) int (1), we get 6

7 F r A t EH EH EH EH t L FA IB IBL. (3) t Hene, the Ampere fre must depend als n the speed f urrent hange r n magneti indutin. These hanges may be aused by urrent hange f by the hange f urrent psitin relative t the field. Pratially suh dependene an be deteted nly fr very high frequeny (due t the effiient ). 5. Disussin Frm the abve said it fllws that the Ampere fre may be nsidered as a rllary f the existene f eletrmagneti mmentum flw and f the mmentum nservatin law. But in this ase it shuld als be assumed that the permittivity f the urrent-arrying ndutr depends n and arding t (30). In this ase the dependene f the Ampere fre n the speed f urrent hange and/r magneti indutin an be revealed. Cmbining (0) and (30), we find qv E. (33) r qv E. (34) Qualitatively, this effet an be explained by the fat that the free eletrns "lag" frm the bdy and aumulate in the "tail" f aelerating bdy - a phenmenn nsidered by Feynman fr aelerating eletrn [3]. Eletrial resistane f the material slws unifrm harge distributin. Fr this nsumes energy. Cnsequently, the mtin f the harged bdy at a nstant speed urs with the expenditure f energy fr thermal lsses. This ensures nstany f the energy f the eletri field inside a harged bdy. Thus, the the Lrentz fre an be regarded as a rllary f the existene f eletrmagneti mmentum flw and f the mmentum nservatin law. But in this ase it shuld als be assumed that inside 7

8 the harged mving bdy exists the intensity f eletri field f the frm (34), prprtinal t the mvement speed. Referenes 1. Landau L.D., Lifshitz E.M. Field thery.. Ivanv.K. General physis urse (in Russian), ntent/1/pt_1_03.pdf 3. R.P. Feynman, R.B. Leightn, M. Sands. The Feynman Letures n Physis, vlume,

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

On the Origin of the Special Relativity Anomalies

On the Origin of the Special Relativity Anomalies On the Origin f the Speial Relatiity Anmalies Radwan M. Kassir February 2015 radwan.elkassir@dargrup.m ABSTRACT In this paper, the nlusie rigin f the Speial Relatiity (SR) mathematial nflits identified

More information

Electromagnetic Waves

Electromagnetic Waves M- letrmagneti Waves Last semester, we studied Classial Mehanis. The fundamental laws (axims) f Classial Mehanis are alled Newtn's Laws. This semester, we are studying a subjet alled Classial letrmagnetism.

More information

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night PHYS 015 Week 13 -M Waves, Interferene Reading Jurnals Tuesday WebAssign due WDNSDAY night Test Friday: Chap 3 (Magneti indutin); Chap 33.1-4 (Indutane, self and mutual, energy, RL iruits). Chap 34 (Waves,

More information

Physics I Keystone Institute of Technology & Management, Surajgarh Unit V. Postulates of Einstein s special theory of relativity

Physics I Keystone Institute of Technology & Management, Surajgarh Unit V. Postulates of Einstein s special theory of relativity Physis I Keystne Institte f Tehnlgy & Manageent, Srajgarh Unit V Pstlates f Einstein s speial thery f relativity. Priniple f Physial Eqivalene The laws f physis, (bth ehanis and eletrdynais) epressed in

More information

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS Musa D. Abdullahi, U.M.Y. Uniersity P.M.B. 18, Katsina, Katsina State, Nigeria E-mail: musadab@utlk.m

More information

Surface and Contact Stress

Surface and Contact Stress Surface and Cntact Stress The cncept f the frce is fundamental t mechanics and many imprtant prblems can be cast in terms f frces nly, fr example the prblems cnsidered in Chapter. Hwever, mre sphisticated

More information

Gains in Activation Energy from Quasi Fermi Splitting, In Selectively Doped MQW Solar Cells

Gains in Activation Energy from Quasi Fermi Splitting, In Selectively Doped MQW Solar Cells Gains in Ativatin Energy frm Quasi ermi Splitting, In Seletively Dped MQW Slar Cells ARGYRIOS C. VARONIDES, ROBERT A. SPALLETTA ANDREW W. BERGER Department f Physis and Eletrial Engineering, University

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

The Theory of Invariance A Perspective of Absolute Space and Time

The Theory of Invariance A Perspective of Absolute Space and Time The Thery Invariane A Perspetive Abslute Spae and Time Thanh G Nuyen Massahusetts, USA thanhn@htmailm Abstrat In this artile, by usin undamental nepts in lassial mehanis, we derive equatins desribin ravitatinal

More information

T T A BA T B 1 5 7

T T A BA T B 1 5 7 Hmewrk 5. Write the fllwing equatins in matrix frm: (a) 3x5z7 4z5 3xz 3 5 4 3 x z 7 5 (b) x3z 4x56z 7x89z3 3 4 5 6 7 8 9 x z 3. The transpse peratin hanges a lumn vetr t a rw vetr and visa-vera. (a) Find

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001 Chemial Engineering 160/260 Plymer Siene and Engineering Leture 15: Mleular Aspets f Plymer Rhelgy February 21, 2001 Objetives! T intrdue the nept f saling analysis t aunt fr the nentratin and mleular

More information

XII PHYSICS RBSE FLASHBACK 2017

XII PHYSICS RBSE FLASHBACK 2017 XII PHYSICS BSE FLASHBACK 7 Time: 3.5 Hrs. Max. Marks: 56 General Instrutins:. Candidate must write first her/her ll N. n the questin paper mpulsrily.. All the questins are mpulsry. 3. Write the answer

More information

The Thomas Precession Factor in Spin-Orbit Interaction

The Thomas Precession Factor in Spin-Orbit Interaction p. The Thomas Preession Fator in Spin-Orbit Interation Herbert Kroemer * Department of Eletrial and Computer Engineering, Uniersity of California, Santa Barbara, CA 9306 The origin of the Thomas fator

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

k BZ . Optical absorption due to interband transition therefore involves mostly vertical transitions :

k BZ . Optical absorption due to interband transition therefore involves mostly vertical transitions : Interband transitins (1 Optial Absrptin Spetra a Diret Transitins We had already seen that phtn BZ. Optial absrptin due t interband transitin therefre inles mstly ertial transitins : C V Use first-rder

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

ON-LINE PHYSICS 122 EXAM #2 (all online sections)

ON-LINE PHYSICS 122 EXAM #2 (all online sections) ON-LINE PHYSIS EXAM # (all nline setins) ) Bubble in the ID number setin f the santrn. ) This Exam is hurs lng - 34 multiple-hie questins. hse the ne BEST answer fr eah questin. Yu are nt penalized fr

More information

LECTURE NOTES The Relativistic Version of Maxwell s Stress Tensor

LECTURE NOTES The Relativistic Version of Maxwell s Stress Tensor UIUC Phsis 36 M ields & Sures II all Semester, 5 Let. Ntes 8.75 Prf. Steen rrede LCUR NOS 8.75 he Relatiisti Versin f Mawell s Stress ensr Despite the fat that we knw that the M energ densit um B and Pnting

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

2/5/13. y H. Assume propagation in the positive z-direction: β β x

2/5/13. y H. Assume propagation in the positive z-direction: β β x /5/3 Retangular Waveguides Mawell s Equatins: = t jω assumed E = jωµ H E E = jωµ H E E = jωµ H E E = jωµ H H = jωε E H H = jωε E H H = jωε E H H = jωε E /5/3 Assume prpagatin in the psitive -diretin: e

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

LORENTZ TRANSFORMATIONS ARE UNABLE TO DESCRIBE THE RELATIVISTIC DOPPLER EFFECT

LORENTZ TRANSFORMATIONS ARE UNABLE TO DESCRIBE THE RELATIVISTIC DOPPLER EFFECT 39 Pr. Pakistan Aad. Si. 43(: 39-45. N. Hamdan 6 LORENTZ TRANSFORMATIONS ARE UNABLE TO DESCRIBE THE RELATIVISTIC DOPPLER EFFECT N. Hamdan Department Physis, University Alepp, Alepp, Syria Reeived Janary

More information

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions Chem 116 POGIL Wrksheet - Week 8 Equilibrium Cntinued - Slutins Key Questins 1. Cnsider the fllwing reatin At 425 C, an equilibrium mixture has the fllwing nentratins What is the value f K? -2 [HI] = 1.01

More information

Heat Transfer and Friction Characteristics of Heat Exchanger Under Lignite Fly-Ash

Heat Transfer and Friction Characteristics of Heat Exchanger Under Lignite Fly-Ash The 20th Cnferene f Mehanial Engineering Netwrk f Thailand 18-20 Otber 2006, Nakhn Rathasima, Thailand Heat Transfer and Fritin Charateristis f Heat Exhanger Under ignite Fly-Ash Pipat Juangjandee 1*,

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Chapter 1. Problem Solutions

Chapter 1. Problem Solutions Chapter Prblem Slutins If the speed f light were smaller than it is, wuld relatiisti phenmena be mre r less nspiuus than they are nw? All else being the same, inluding the rates f the hemial reatins that

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 3 - STATIC AND DYNAMIC FLUID SYSTEMS TUTORIAL 3 - VISCOSITY

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 3 - STATIC AND DYNAMIC FLUID SYSTEMS TUTORIAL 3 - VISCOSITY Unit 43: Plant and Prcess Principles Unit cde: H/601 44 QCF level: 5 Credit value: 15 OUTCOME 3 - STATIC AND DYNAMIC FLUID SYSTEMS TUTORIAL 3 - VISCOSITY 3 Understand static and namic fluid systems with

More information

Relativistic Pendulum and the Weak Equivalence Principle

Relativistic Pendulum and the Weak Equivalence Principle Relativistic Pendulum and the Weak Equivalence Principle Jarslav Hynecek * Isete, Inc. ABSTRACT This paper derives equatins fr the relativistic prper perid f scillatins f a pendulum driven by the electrical

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

I N T R O D U C T I O N

I N T R O D U C T I O N A. La Rsa Letre Ntes PSU-Physis PH 45 ECE 598 I N T R O D U C T I O N Q U A N T U M T O M E C H A N I C S CHAPTER CLASSICAL PHYSICS. ELECTROMAGNETISM ELECTROMAGNETISM and RELATIITY REIEW,..A Mawell s Eqatins

More information

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects Pressure And Entrpy Variatins Acrss The Weak Shck Wave Due T Viscsity Effects OSTAFA A. A. AHOUD Department f athematics Faculty f Science Benha University 13518 Benha EGYPT Abstract:-The nnlinear differential

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

What About Momentum? p F. Newton says: We also have: Conservation of momentum. Conservation of energy. As p, classically v.

What About Momentum? p F. Newton says: We also have: Conservation of momentum. Conservation of energy. As p, classically v. What Abt Ment? Newtn says: We als hae: p F dp dt a Cnseratin f ent Cnseratin f energy As p, lassially This is nt allwed in speial relatiity. Therefre: p rel f In fat: prel Where is the RST MASS. () A -

More information

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001.

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001. #! Greedy Algrithms Kye Halsted Edited by Chuk Cusak These ntes are based n hapter 17 f [1] and letures frm CCE423/823, pring 2001. Greedy algrithms slve prblems by making the hie that seems best at the

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Electromagnetic waves

Electromagnetic waves Eletromagneti waves He predited eletromagneti wave propagation James Clerk Maxwell (1831-1879) Eletromagneti waves He predited eletromagneti wave propagation A singular theoretial ahievement of the 19

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42 Light in ne medium (n =.) enunters a bundary t a send medium (with n =. 8) where part f the light is transmitted int the send media and part is refleted bak int the first media. The inident angle is =

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f 1.0 Review f Electrmagnetic Field Thery Selected aspects f electrmagnetic thery are reviewed in this sectin, with emphasis n cncepts which are useful in understanding magnet design. Detailed, rigrus treatments

More information

INTENSITY MODULATIONS IN SYNTHETIC APERTURE RADAR IMAGES OF OCEAN SURFACE CURRENTS AND THE WAVE/CURRENT INTERACTION PROCESS

INTENSITY MODULATIONS IN SYNTHETIC APERTURE RADAR IMAGES OF OCEAN SURFACE CURRENTS AND THE WAVE/CURRENT INTERACTION PROCESS DONALD R. THOMPSON INTENSITY MODULATIONS IN SYNTHETIC APERTURE RADAR IMAGES OF OCEAN SURFACE CURRENTS AND THE WAVE/CURRENT INTERACTION PROCESS The physis that determines the perturbatin f the ean surfae-wave

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay 18 1 Reapitulate We disussed how light an be thought of onsisting of partiles known as photons. Compton Effet demonstrated that they an be treated as a partile with zero rest mass having nonzero energy

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

Lecture 10 Adiabatic Processes

Lecture 10 Adiabatic Processes ASME231 Atmsheri hermdynamis NC A& State U Deartment f Physis Dr. Yuh-Lang Lin htt://meslab.rg ylin@nat.edu Leture 10 Adiabati Presses (Se.3.5 f Hess) [Classial equatin editr: 0 dq ] Definitin: If a thermdynami

More information

Electromagnetic (EM) waves also can exhibit a Doppler effect:

Electromagnetic (EM) waves also can exhibit a Doppler effect: 4.5 The Dppler ffet and letrmagneti Waves letrmagneti (M) waves als an exhibit a Dppler effet:. Inrease in bserved frequeny fr sure and bserver apprahing ne anther. Derease in bserved frequeny fr sure

More information

Study Guide Physics Pre-Comp 2013

Study Guide Physics Pre-Comp 2013 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund (lb.) Time Secnds (s) Secnds (s) Vlume Liter (L) Galln (gal)

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5 UIUC Physis 46 M Fields & Sures II Fall Semester, 5 Let. Ntes 8.5 Prf. Steen rrede LCTUR NOTS 8.5 The Lrent Transfrmatin f and B Fields: We hae seen that ne bserer s -field is anther s B -field (r a mixture

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

The University of Iowa Dept. of Civil & Environmental Engineering 53:030 SOIL MECHANICS Midterm Exam #2, Fall Semester 2005

The University of Iowa Dept. of Civil & Environmental Engineering 53:030 SOIL MECHANICS Midterm Exam #2, Fall Semester 2005 5:00 Sil Mehanis Midterm Exam # Fall 005 Semester The Uniersity f Iwa Dept. f Ciil & Enirnmental Engineering 5:00 SOIL MECHANICS Midterm Exam #, Fall Semester 005 Questin #: (0 pints) A sand with a minimum

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem A Generalized apprach fr cmputing the trajectries assciated with the Newtnian N Bdy Prblem AbuBar Mehmd, Syed Umer Abbas Shah and Ghulam Shabbir Faculty f Engineering Sciences, GIK Institute f Engineering

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Hamiltonian with z as the Independent Variable

Hamiltonian with z as the Independent Variable Hamiltonian with z as the Independent Variable 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 Marh 19, 2011; updated June 19, 2015) Dedue the form of the Hamiltonian

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Subject: KINEMATICS OF MACHINES Topic: VELOCITY AND ACCELERATION Session I

Subject: KINEMATICS OF MACHINES Topic: VELOCITY AND ACCELERATION Session I Subject: KINEMTIS OF MHINES Tpic: VELOITY ND ELERTION Sessin I Intrductin Kinematics deals with study f relative mtin between the varius parts f the machines. Kinematics des nt invlve study f frces. Thus

More information

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d: Slutins--Ch. 6 (Energy) CHAPTER 6 -- ENERGY 6.) The f.b.d. shwn t the right has been prvided t identify all the frces acting n the bdy as it mves up the incline. a.) T determine the wrk dne by gravity

More information

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2011 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2011 Lect. Notes 18.5 Prof. Steven Errede LECTURE NOTES 18.5 LCTUR NOTS 8.5 The Lrentz Transfrmatin f and B Fields: We hae seen that ne bserer s -field is anther s B -field (r a mixture f the tw), as iewed frm different inertial referene frames (IRF s). What are

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Supporting information for: Large Protonation-Gated Photochromism of an OPE-Embedded Difurylperfluorocyclopentene

Supporting information for: Large Protonation-Gated Photochromism of an OPE-Embedded Difurylperfluorocyclopentene Eletrni Supplementary Material (ESI) fr Physial Chemistry Chemial Physis. This jurnal is the Owner Sieties 015 1/9 Supprting infrmatin fr: Large Prtnatin-Gated Phthrmism f an OPE-Embedded Difurylperflurylpentene

More information

Response of a biologically inspired MEMS differential microphone diaphragm

Response of a biologically inspired MEMS differential microphone diaphragm Su, Q., R. N. Miles, M. G. Weinstein, R. A. Miller, L. Tan, W. Cui, Respnse f a bilgially inspired MEMS differential mirphne diaphragm, Preedings f the SPIE AerSense 00, Orland Fl. Paper number [4743-15].

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

Classical Diamagnetism and the Satellite Paradox

Classical Diamagnetism and the Satellite Paradox Classial Diamagnetism and the Satellite Paradox 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 (November 1, 008) In typial models of lassial diamagnetism (see,

More information

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

A new Type of Fuzzy Functions in Fuzzy Topological Spaces IOSR Jurnal f Mathematics (IOSR-JM e-issn: 78-578, p-issn: 39-765X Vlume, Issue 5 Ver I (Sep - Oct06, PP 8-4 wwwisrjurnalsrg A new Type f Fuzzy Functins in Fuzzy Tplgical Spaces Assist Prf Dr Munir Abdul

More information

ELEVENTH YEAR MATHEMATICS

ELEVENTH YEAR MATHEMATICS The University f the State f New Yrk REGENTS HIGH SHOOL EXAMINATION ELEVENTH YEAR MATHEMATIS Mnday, June 8, 973- :5 t 4 :5 p.m., nly The last page f the bklet is the answer sheet. Fld the last page alng

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

Comparison of Thermoelectric and Stirling Type Cryocoolers Using Control Thermodynamic Model

Comparison of Thermoelectric and Stirling Type Cryocoolers Using Control Thermodynamic Model Cmparisn f Thermeletri and Stirling Type Crylers Using Cntrl Thermdynami Mdel A Razani 1,, C Ddsn 3, and T Rberts 3 1 The University f New Mexi Albuquerque, NM 87131 Applied Tehnlgy Assiates Albuquerque,

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

lon Acceleration in Laser Wakefield

lon Acceleration in Laser Wakefield J. Plasma Fusin Res. SERES, Vl.4 (2001) 335-339 ln Aeleratin in Laser Wakefield TO Hiraki*, BAKHTAR Mhammad, MA Masashi, YUGAM Nbru and NSHDA Yasushi Energy and Envirnmental Siene, Graduate Shl f Engineering,

More information

Potential and Capacitance

Potential and Capacitance Ptential and apacitance Electric Ptential Electric ptential (V) = Electric ptential energy (U e ) per unit charge () Define: ptential energy U e = 0 at infinity (r = ) lim U 0 r e Nte the similarity f

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

VALIDATION OF ONE-YEAR LAMI MODEL RE-ANALYSIS ON THE PO- VALLEY, NORTHERN ITALY. COMPARISON TO CALMET MODEL OUTPUT ON THE SUB-AREA OF VENETO REGION

VALIDATION OF ONE-YEAR LAMI MODEL RE-ANALYSIS ON THE PO- VALLEY, NORTHERN ITALY. COMPARISON TO CALMET MODEL OUTPUT ON THE SUB-AREA OF VENETO REGION VALIDATION OF ONE-YEAR LAMI MODEL RE-ANALYSIS ON THE PO- VALLEY, NORTHERN ITALY. COMPARISON TO CALMET MODEL OUTPUT ON THE SUB-AREA OF VENETO REGION Denise Pernigtti, Maria Sansne and Massim Ferrari Institute

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Topic 3 Specific Energy and Control Section

Topic 3 Specific Energy and Control Section Tpi Speifi nerg and Cntrl Setin Prepared b: Tan Lai Wai et al. laiwai@uth.edu. Learning Outes At the end f this tpi, students shuld be able t: i. Appl speifi energ nept in deterining ritial flw nditins

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

SCHMIDT THEORY FOR STIRLING ENGINES

SCHMIDT THEORY FOR STIRLING ENGINES SHMIDT THOY FO STILING NGINS KOIHI HIATA Musashin-jjutaku 6-10, Gakuen -6-1, Musashimurayama, Tky 08, Japan Phne & Fax: +81-45-67-0086 e-mail: khirata@gem.bekkame.ne.jp url: http://www.bekkame.ne.jp/~khirata

More information