Charges, Coulomb s Law, and Electric Fields

Size: px
Start display at page:

Download "Charges, Coulomb s Law, and Electric Fields"

Transcription

1 Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and (). An atom consists of a heavy (+) chaged nucleus suounded by light () electons. nucleus = (+) chaged potons and (0) chaged neutons m poton m neuton >> m electon (m poton 1800 m electon ) q poton = q electon ("q" is symbol fo chage) Calling potons (+) and electons () is a convention. We could just have easily called electons (+) and potons (), but Ben anklin chose the othe, and we e stuck with it. The numbe of potons in the nucleus of an atom is called "Z". Z detemines the element: Z =1 is hydogen, Z = 3 is lithium. act : Unlike chages attact, and like chages epel accoding to Coulomb s Law, which says that the magnitude of the foce between two chages q 1 and q sepaated by a distance is given by k q q 1 whee k = constant = N m /C. + q 1 q + q 1 q + Like-sign chages epel. Unlike-sign chages attact. In SI units, the unit of chage is the coulomb (C). magnitude of chage of electon = e = C chage of electon = e, chage of poton = +e (by convention, the symbol e > 0, always) A coulomb is a huge amount of chage: Numbe N of e s in 1 C =? Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

2 Q&E - 1C 1C N e 1C N e C act 3: Electic chage is conseved. The net chage of an isolated system cannot change. It is impossible to ceate o destoy net chage. Except in nuclea o high-enegy eactions, you can neve ceate o destoy electons, potons, and othe chaged paticles all we can do is move them aound. In high enegy eactions, we can ceate chaged paticles fom enegy (enegy = mc ), but the paticles ae always ceated o destoyed in pais (+1 and 1) so that the net chage is conseved. Aside: As fa as we know, only 4 things in the univese ae conseved: (1) Enegy () Linea momentum (p = mv) (3) Angula momentum (spin = L = I) (4) Chage [Not quite tue: in high enegy physics, thee may be othe quantities, like bayon numbe that ae conseved.] act 4: The chage e is the fundamental unit of chage. You neve find a fee paticle in natue with chage = faction of e. You only find chage = e o intege multiple of e. Statements (1) thu (4) ae expeimental facts. Why ae they tue? Why ae thee kinds of chage, not 3? Why e = C, not C? Why is chage conseved? We don t know! And to some extent, physicists don t cae. It is the pimay goal of physics to descibe how natue behaves; a seconday goal is to explain why it behaves that way. (Many theoists ae looking to explain why, but no luck yet ) Notice that Coulomb s law is simila to Newton s Univesal Law of Gavitation: 18 gav G m m k q q, coul 1 1 Simila, except that thee ae two kinds of chage ( + and ), but only one kind (sign) of mass. Gavity is always attactive, but electical foce can be attactive o epulsive. Recall that foce is a vecto a mathematical object that has a size (magnitude) and a diection. oces add like vectos, not numbes. Example: Net foce on an electon due to two neaby potons, each a distance away, 90 o apat as shown. -e 1 o 90 q 1 = +e Net foce = net 1 In this paticula case, ke 1. q = +e Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

3 Q&E -3 ( not ) net Recall: ke net 1 net = 1 Hee we have used the Supeposition Pinciple: the net foce on a chage due to othe neaby chages is the vecto sum of the individual foces: net , whee 1 net foce due to chage 1, etc. The Electic field (a new concept) Suounding evey chage (o goup of chages) is a thing, called an electic field E (it is a vecto thing) Definition: The electic field E at a point in empty space is a vecto quantity which can be measued by the following pocedue: place a small test chage q at that point, measue the foce on q due to all othe chages. The electic field at that point is given by E on q E-field at a point is the foce pe chage on a test chage placed at that point. q Note! The E-field exists even if thee is no test chage pesent to measue it. Similaly, a gavitational field suounds the eath, even if thee is no test mass neaby to measue the pull of eath s gavity: mg m m, magnitude 1 G M m G M g m m on m gavitational field g (M = eath mass, m = test mass, = distance fom m to Eath s cente) The electic field is not just an mathematical invention; it is eal. We cannot (usually) see it o smell it, but we can feel it. In some situations, you can see an electic field: visible light is a apidly oscillating electic field (moe on that late in the semeste.) What is the E-field aound a point chage Q? (Q = souce chage = souce of E-field, q = test chage o pobe chage ) Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

4 Q&E -4 souce chage Q test chage +q on q 1 k Q q k Q ˆ q q on q E ˆ ( ˆ ponounced"-hat" is the unit vecto pointing away fom the oigin, whee Q is. -hat has no dimensions). Q Magnitude of the Efield due to a point chage Q: E k ˆ If the souce chage Q is positive, then the E-field points away fom Q, in the diection of -hat. If the souce chage Q is negative then the Efield points towad Q in the diection opposite -hat. This follows diectly fom the definition E / q. o instance, if both Q and q ae positive then the foce points away fom Q and so does E. If Q is negative and q is positive, then both and E point towad Q. What if the test chage q is changed fom positive to negative? Then the diection of the foce and the sign of q both flip, which leaves the diection of E unchanged. The size and diection of the E-field is independent of the test chage. The test chage is just an imaginay atifice which we use to measue something which is aleady thee. The E-field aound a positive chage points away fom the chage, and deceases in magnitude with 1 distance as E. We can epesent the E-field at vaious points in space by dawing a little dot at those points and dawing an aow coming out of that dot. The aow epesents the E-field at the dot point. Think of the E-field aow as "packed into the point". The E-field aow is not something "eaching fom beginning to end of aow". The E-field at a point in space exists at that point. Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

5 Q&E -5 Notice that E as 0. The electic field diveges nea a point chage. Again, what if the test chage q in E on q q is negative? E-field still points away fom positive souce chage Q, since both changes diection and q switches sign, which leaves the vecto E unchanged. The E-field points away fom positive chages. It points towad negative chages. We can think of the inteaction between chages in two diffeent ways: Action at a distance vs. ields Action at a distance : Coulomb s Law suggests that two chages exet a foce on each othe though empty space, instantaneously. But Coulomb s law is only valid fo stationay chages. If chage 1 moves, it takes some time fo chage to sense the change. The moe moden field-view is: Chage 1 ceates an E-field aound it. Chage feels that field. If Chage 1 moves, it takes some time fo the suounding E-field to change, so it takes some time fo chage to eact. The total E-field due to a collection of chages is the vecto sum of the E-fields due to the individual chages: Q1 Etotal E1 E E3 Ei, whee E1 E1 k, E =.., etc i Why? Supeposition Pinciple says that if we place a small test chage q nea othe chages Q 1, Q, Q 3,, then the net foce on q is total 1 total 1 Etotal E1 E q q q Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

6 Q&E -6 Example: Electic fields (qualitative) ou point chages, labeled 1 though 4, all with the same magnitude q, ae placed aound the oigin as shown. Chage is negative, the est ae positive. What is the diection of the E-field at the oigin? y 1 E =? 3 4 x The total E-field at oigin is the vecto sum E tot = E 1 + E + E 3 + E 4 (I'll use bold type to indicate vecto.) 1 Notice that E 3 and E 4 cancel since they have equal magnitude, but opposite diections. The total E-field points ight. E 4 E E E 1 E E 1 E tot What would be the diection of the foce on an electon (chage q = e) placed at the oigin? Since E / q, we have on q q E. If q is negative, the diection of the foce on q is opposite the diection of the E-field. So the foce is to the left. e E on q q E In this equation, the E-field is due to all the othe chages, not the field due to the chage q itself. Example Electic fields (quantitative) Two chages Q 1 = +e and Q = 3e ae placed as shown. What the x-component of the electic field at the oigin? y Q = 3e Etot E1 E Etot,x E1x E x Q 1 = +e E x =? x Q e Q 3e E k k, E k k 1 1 (Have used the fact that the distance fom the oigin to Q is ) Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

7 Q&E -7 y Q = 3e E 1x = E 1, since E 1 is along the x-axis. E E cos E cos E o x Q 1 = +e E E 1 x e 3e Etot,x E1x Ex k k e e [ 0.707(3/ )] k 3.06 k E-field due to Continuous distibution of chage Image a continuous distibution of chage with the chage spead out smoothly ove the volume of some object. What is the electic field at some point p due to this volume of chage? A vey small (infinitesimal) volume of the object has an infinitesimal chage dq. "dq" means a "little bit of chage" This little bit of chage dq ceates an infinitesimal electic field de. The total electic field E at p due to all the bits of chage is dq p de E de. Example: A semi-infinite line of chage with chage pe length =, units [] = C/m. What is the E- field at a distance d fom the end of the line, as shown? E =? x dx d x chage dq = dx dx = "little bit of x", dq = "little bit of chage" Coulomb's Law gives us the magnitude of the field de due to the chage dq, a distance x away: de k dq k dq k dx = " little bit of E due to little bit of chage dq" x x Since all diections hee ae along the x-axis, we ae only inteested in de x and can just dop the subscipt x. So instead of woking with the 3D integal E de, we wok with the 1D integal Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

8 Q&E -8 E de d k dx k k k 0. x x d d d chage Check units: [] = chage/length, so [k / d] has units of [k] length = kq. Units check! In D poblems whee the E-field has components along x and y, we can beak the poblem up into x- and y-components. E de E E ˆ ˆ ˆ ˆ xx Eyy dex x dey y Conductos vs. Insulatos Most mateials can be classified as conducto o insulato. A conducto is also called a metal; an insulato also called a dielectic. Metals (Cu, Al, Au, Ag, e ) conduct electicity. In metals, some of the electons (conduction electons) can move feely though the metal. If thee is an E-field, the conduction electons move in esponse to the foce ( = q E), and so thee is a flow of chage, a cuent. The inne coe electons ae bound stongly to thei nuclei, but the oute coe, conduction electons ae unbound and fee to move among the nuclei. Metals usually have 1 o conduction electons pe atom. (In chemist talk: valence = means conduction electons pe atom.) Insulatos (plastic, wood, ceamic, sulfu) do not conduct electicity. In insulatos, all the electons ae stongly attached to thei nuclei, and do not move (much), even if thee is an E-field exeting a foce on them. Metals ae shiny, insulatos ae dull. The appeaance is a consequence of the mobility of the electons. Insulatos can have an induced chage due to induced dipole moments. All atoms and some molecules, have no pemanent dipole moment, but acquie an induced dipole moment when an extenal E-field is applied. neutal atom E = 0 polaized atom in an extenal field E q +q d Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

9 Q&E -9 Recall fom chemisty, that a dipole moment is associated with a pai of equal and opposite chages (+q and q) sepaated by a distance d. The dipole moment p is a vecto quantity defined as p qd, whee the vecto d points fom to +. Some molecules, like H O, have a pemanent dipole moment. In an extenal E-field, the moments align. = H O molecule = dipole moment moments align in E-field Induced Chage A chaged object (+Q, say) bought nea a neutal object induces a chage sepaation in the neutal object. The equal and opposite chages on the two sides of the object ae called induced chage. Anothe way to descibe this situation is to say that the E-field fom the chage Q induces a polaization chage in the object. Notice that an induced chage always esults in a net attaction to the souce of the E-field. The positively-chage +Q attact the negatively-chaged nea side of the object and epelling the positivelychaged fa side. But the attaction to the neaby side is geate than the epulsion fom the moe distant side, so the net foce is attactive. neutal object (coke can o block of wood) +Q bought nea neutal object Q bought nea neutal object Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

10 Q&E -10 Electic ield Line Diagams The electic field can be epesented by a field line diagam. Instead of tying to show the E-field at a whole bunch of individual points (left diagam), we indicate the field eveywhee with a field line diagam (ight diagam) ield line diagam fo (+) point chage. Rules fo field line diagams: 1) ield lines begin on positive chages, end on negative chages, o go off to infinity. Chage q Chage q ) The numbe of field lines coming fom o going to a chage is popotional to the magnitude of the chage: Moe field lines = bigge chage 3) The diection of the E-field at a point is the diection tangent to the field line at that point. 4) The magnitude of the E-field at a point is popotional to the density of field lines at that point. To be pecise, the magnitude of the E-field is popotional to the numbe of field pe aea pependicula to the field diection. Moe densely packed field lines = highe magnitude E-field. Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

11 Q&E -11 Conductos in Electostatic Equilibium "Electostatic equilibium" means that all chages ae stationay; so the net foce on evey chage must be zeo (othewise the chage would be acceleating). 3 inteesting facts about metals (conductos) in electostatic equilibium: The electic field in the inteio of a metal must be zeo. Any net chage on the conducto esides only on the suface of the conducto. The electic field must be pependicula to the suface of the conducto. net chage on suface only E = 0 inside E-field suface A metal in electostatic equilibium The E-field must be zeo in the inteio, othewise the conduction electons in the metal would feel a foce = q E = e E and would move in esponse. Electons in motion would mean that we ae not in electostatic equilibium. Any net chage esides only on the suface because any net chage in the inteio would ceate an E-field in the inteio which would cause the electons to move. The electons would keep moving until all chages have aanged themselves so that both the total E-field and net chage is zeo eveywhee inside the metal. In the next chapte, we will see a igoous poof of this using Gauss's Law. The E-field must be pependicula to the suface (in electostatic equilibium), othewise the component of the E-field along the suface would push electons along the suface causing movement of chages (and we would not be in equilibium). E E x On the suface of metal, if E x was not zeo, thee would be a foce x = q E x = e E x on electons in the metal pushing them along the suface. metal Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

12 Q&E -1 Anothe cuious fact about electic fields: the E-field due to a vey lage plane (sheet) of chage is constant in both diection and magnitude (as long as we ae "close" to the plane). We will pove this late, using Gauss' Law. E = constant E = constant unifom plane of chage (seen edge-on) One last impotant fact about chages and E-fields: The E-field anywhee is always due to all the chages eveywhee. To get the total E-field, must always add up all the E-fields due to all chages eveywhee: E tot = E 1 + E + E 3 + You cannot destoy o "block" the E-field due to a chage, but you can ceate a second E-field which cancels the fist E-field. Phys110 Lectue Notes, Dubson Univesity of Coloado at Boulde

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r>

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r> Electic Field Point chage: E " ˆ Unifomly chaged sphee: E sphee E sphee " Q ˆ fo >R (outside) fo >s : E " s 3,, at z y s + x Dipole moment: p s E E s "#,, 3 s "#,, 3 at

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Physics 202, Lecture 2

Physics 202, Lecture 2 Physics 202, Lectue 2 Todays Topics Electic Foce and Electic Fields Electic Chages and Electic Foces Coulomb's Law Physical Field The Electic Field Electic Field Lines Motion of Chaged Paticle in Electic

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

Electric Field, Potential Energy, & Voltage

Electric Field, Potential Energy, & Voltage Slide 1 / 66 lectic Field, Potential negy, & oltage Wok Slide 2 / 66 Q+ Q+ The foce changes as chages move towads each othe since the foce depends on the distance between the chages. s these two chages

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

PHYSICS 151 Notes for Online Lecture #36

PHYSICS 151 Notes for Online Lecture #36 Electomagnetism PHYSICS 151 Notes fo Online Lectue #36 Thee ae fou fundamental foces in natue: 1) gavity ) weak nuclea 3) electomagnetic 4) stong nuclea The latte two opeate within the nucleus of an atom

More information

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets Electicity Revision KEY CONCEPTS In this session we will focus on the following: Stating and apply Coulomb s Law. Defining electical field stength and applying the deived equations. Dawing electical field

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

PHYS 1441 Section 002. Lecture #3

PHYS 1441 Section 002. Lecture #3 PHYS 1441 Section 00 Chapte 1 Lectue #3 Wednesday, Sept. 6, 017 Coulomb s Law The Electic Field & Field Lines Electic Fields and Conductos Motion of a Chaged Paticle in an Electic Field Electic Dipoles

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux?

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux? om last times MTE1 esults Mean 75% = 90/120 Electic chages and foce Electic ield and was to calculate it Motion of chages in E-field Gauss Law Toda: Moe on Gauss law and conductos in electostatic equilibium

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force 1 18.1 Oigin of lecticity 18. Chaged Objects and lectic Foce Thee ae two kinds of electic chage: positive and negative. The SI unit of electic chage is the coulomb (C). The magnitude of the chage on an

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics CBS Solved Test Papes PHYSICS Class XII Chapte : lectostatics CBS TST PAPR-01 CLASS - XII PHYSICS (Unit lectostatics) 1. Show does the foce between two point chages change if the dielectic constant of

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Sparks. From Last Time. Other electric currents. Time-varying electric current. Eventually transatlantic signals! Electric Charge

Sparks. From Last Time. Other electric currents. Time-varying electric current. Eventually transatlantic signals! Electric Charge Electic Chage Fom Last Time Two types: plus and minus Foces between chages Like chages epel, opposite chages attact Coulomb s law: foce dops invesely w/ squae of distance Electic Cuent Flow of chages fom

More information

PHYSICS 272H Electric & Magnetic Interactions

PHYSICS 272H Electric & Magnetic Interactions PHYSICS 7H Electic & Magnetic Inteactions Physics couse home page: http://www.physics.pudue.edu/academic-pogams/couses/all_couses.php Blackboad Lean: https://mycouses.pudue.edu/webapps/login/ Couse Content

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

AP Physics Electric Potential Energy

AP Physics Electric Potential Energy AP Physics lectic Potential negy Review of some vital peviously coveed mateial. The impotance of the ealie concepts will be made clea as we poceed. Wok takes place when a foce acts ove a distance. W F

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field.

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field. Fom Last Time Electomagnetic waves Chages, cuent and foces: Coulomb s law. Acceleating chages poduce an electomagnetic wave The idea of the electic field. Today Electic fields, magnetic fields, and thei

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

1.1 THE ELECTRIC CHARGE

1.1 THE ELECTRIC CHARGE 1.1 THE ELECTRIC CHARGE - In a dy day, one obseves "light spaks" when a wool pull is taken out o when the finges touch a metallic object. Aound the yea 1600, one classified these effects as electic phenomena.

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Electric Charge and Field

Electric Charge and Field lectic Chage and ield Chapte 6 (Giancoli) All sections ecept 6.0 (Gauss s law) Compaison between the lectic and the Gavitational foces Both have long ange, The electic chage of an object plas the same

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Section 1: Main results of Electrostatics and Magnetostatics. Electrostatics

Section 1: Main results of Electrostatics and Magnetostatics. Electrostatics Chage density ection 1: ain esults of Electostatics and agnetostatics Electostatics The most fundamental quantity of electostatics is electic chage. Chage comes in two vaieties, which ae called positive

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Physics Electrostatics: Coulomb s Law

Physics Electrostatics: Coulomb s Law A C U L T Y O E D U C A T I O N Depatment of Cuiculum and Pedagogy Physics Electostatics: Coulomb s Law Science and Mathematics Education Reseach Goup Suppoted by UBC Teaching and Leaning Enhancement und

More information

The Electric Field. Electric Charge HAPTER Historical Origins

The Electric Field. Electric Charge HAPTER Historical Origins C HAPTER17 The Electic Field Y This electical dischage was poduced at the tun of the 0th centuy by invento Nikola Tesla, shown in the photo. ou can obseve static electicity in vaious ways. Walk acoss a

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics Separation of Electric Charge by Rubbing

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics Separation of Electric Charge by Rubbing I wish to give an account of some investigations which have led to the conclusion that the caies of negative electicity ae bodies, which I have called copuscles, having a mass vey much smalle than that

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Electric Forces: Coulomb s Law

Electric Forces: Coulomb s Law Electic Foces: Coulomb s Law All the matte aound you contains chaged paticles, and it is the electic foces between these chaged paticles that detemine the stength of the mateials and the popeties of the

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Physics 313 Practice Test Page 1. University Physics III Practice Test II

Physics 313 Practice Test Page 1. University Physics III Practice Test II Physics 313 Pactice Test Page 1 Univesity Physics III Pactice Test II This pactice test should give you a ough idea of the fomat and oveall level of the Physics 313 exams. The actual exams will have diffeent

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

Electrostatic Potential

Electrostatic Potential Chapte 23 Electostatic Potential PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Copyight 2008 Peason Education Inc., publishing as Peason

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

General Physics (PHY 2140)

General Physics (PHY 2140) Geneal Physics (PHY 140) Intoduction Syllabus and teaching stategy lecticity and Magnetism Popeties of electic chages Insulatos and conductos oulomb s law Lectue: Office Hous: D. Alan A. Sebastian, Physics

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information