IR fixed points in SU(3) Gauge Theories

Size: px
Start display at page:

Download "IR fixed points in SU(3) Gauge Theories"

Transcription

1 205/03/03 SCGT5 IR fixed points in SU(3) Gauge Theories Y. Iwasaki U.Tsukuba and KEK

2 In Collaboration with K.-I. Ishikawa(U. Horoshima) Yu Nakayama(Caltech & IPMU) T. Yoshie(U. Tsukuba)

3 Plan of Talk Introduction Phase structure (brief review of our previous works) Scaling relations based on RG Set up Results Interpretation Conclusions

4 Objectives Identify IR fixed points in SU(3) Gauge Theories with Nf fundamental fermions within the conformal window N c f? N c f N f 6 anomalous mass dimension γ? meson propagator on the fixed point in the continuum limit? Strategy Propose a novel RG method based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off

5 Constructive approach Define gauge theories as the continuum limit of lattice gauge theories N x = N y = N z = N take the limit a->0 and N -> infinity with N t = rn L = an and L t = an t (r aspect ratio) r=4 in this work fixed when L and/or Lt finite => IR cutoff Conformal theories: IR cutoff: an indispensable ingredient in contrast with QCD

6 Constructive approach (2) Important steps. Clarify the phase structure 2. Clarify what kind of phase exists 3. Clarify the boundary of the phases 4. Clarify the location of UV or IR fixed points our earlier works: step. ~ 3. The phase diagram for various number of flavors 7 \le Nf \le 300 The phase diagram for Nf \le 6 A new phase conformal region in addition to the confining region and deconfining region Phys. Rev. Lett. 69(992), 2 Phys. Rev. D69(2004), Phys. Rev. D54(996), 700 Phys.Rev. D87 (203) 7, Phys.Rev. D89 (204) 4503 we intend to perform step 4 in this work

7 as in 2004 m = 0 q N f m = 0 q confinement N deconfinement

8 as in 2004 m q m q N f confinement N deconfinement

9 as in 204 m =0 q m =0 q 0 0 m >0 q m =0 q 0 0

10 Conformal region A new concept conformal theories with an IR cutoff m q Λ IR meson propagators show a power-modified Yukawa-type decay Two sets of Conformal window Large Nf and QCD in high temperature Nf=7 ~ T/Tc =.0 ~2.0: unparticle meson model strongly support the conjecture that the conformal window: 7 N f 6

11 Nf=7 confining K=0.400, mq=0.22 loc(t)-loc(0) loc(t)-dsmr(0) loc(t)-dwal(0) Nf=7 conformal K=0.459, mq=0.045 loc(t)-loc(0) loc(t)-dsmr(0) loc(t)-dwal(0)

12 Nf=2 deconfining Beta=0.0, K=0.25, Nf=2, 6 3 x64, PS-channel loc(t)-loc(0) loc(t)-dsmr(0) loc(t)-dwal(0) Nf=2 conformal Beta=0.0, K=0.35, Nf=2, 6 3 x64, PS loc(t)-loc(0) loc(t)-dsmr(0) loc(t)-dwal(0)

13 Scaling relations from RG RG equation for the propagator at vicinity of IRFP ) 3 2γ (N G(t; g, m q,n,µ)= G(t ; g,m q,n,µ). N at the IRFP g = g = g m q = m q =0 γ = γ. B =0 Simplified expression ion as G(τ,N)=G(t, N) with τ = t/n t. N t = N/s = t/s e.g. Del Debbio, Zwicky 200 RG scale change Scaling relation G(τ; N) = (N N ) 3 2γ G(τ; N ).

14 Scaled effective mass m(t, N) = N N 0 ln G(t, N) G(t +,N). N m(τ,n)= N 0 τ ln G(τ,N) Scaling relation 2 m(τ,n)=m(τ,n ) Stringent condition for the IR fixed point

15 Strategy With given Nf, choose \beta, and tune mq ~ 0.0 Calculate the meson propagator on the lattices with size 8^3x32, 2^3x48 and 6^3x64 Plot the scaled effective mass In general, three points and lines do not coincide repeat this process narrow the region of \beta in such a way that the three approach together finally find the \beta at which three pots and lines coincide within the standard error identify the \beta IR fixed point

16 Stage and Tools SU(3) gauge theories with Nf quarks in the fundamental representation Action: the RG gauge action (called the Iwasaki gauge action) Wilson fermion action Nf = 7, 8, 2, 6 Lattice size: 8^3x32, 2^3x48, 6^3 x 64 Boundary conditions: periodic boundary conditions an anti-periodic boundary conditions (t direction) for fermions Algorithm: Blocked HMC for 2N and RHMC for : Nf=2N + Statistics:,000 +,000 ~ 4000 trajectories Computers: U. Tsukuba: CCS HAPACS; KEK: HITAC 6000

17 Measurement Plaquette Polyakov loop quark mass m q = h0 r 4A 4 PSi 2h0 P PSi meson propagator G H (t) = X x h H (x, t) H (0)i effective mass cosh(m H (t)(t N t /2)) cosh(m H (t)(t + N t /2)) = G H(t) G H (t + ) m H (t) =ln G H (t) G H (t + )

18 N f = 6, β = 0.5, K =0.292 N N traj acc plaq m q () () () () () () () () (5) N f = 2, β =3.0, K =0.405 N N traj acc plaq m q () (2) 0.002() () () 0.002() () (2) 0.004() N f = 8, β =2.4, K =0.47 N N traj acc plaq m q () () 0.007() () () 0.006(3) () (2) (5) N f = 7, β =2.3, K = N N traj acc plaq m q () () 0.007(2) () () (3) () (3) (6)

19 Results Nf=6 Perturbation: beta function up to two loops RG scheme independent β =.5 On the other hand, β = β 2 + c 2 and β RG = β MS 0.3 β one plaquette = β MS +3.. higher order contribution will be large for one-plaquette action may expect \beta_rg ~.2

20 Nf=6 Effective mass: Nf=6; beta=0.0, K=0.294 Effective mass: Nf=6; beta=.5, K= M(t) 0.9 M(t) t/n t t/n t Effective mass: Nf=6; beta=0.5, K= Effective mass: Nf=6; beta=0.5, K= M(t) 0.9 M(t) t/n t t/n t

21 Nf=6 Effective mass: Nf=6; beta=0.0, K=0.294 Effective mass: Nf=6; beta=.5, K= M(t) 0.9 M(t) t/n t Effective mass: Nf=6; beta=0.5, K= t/n Effective mass: Nf=6; beta=0.5, t K= M(t) 0.9 M(t) t/n t t/n t

22 Nf=2, 8, 7 Effective mass: Nf=2; beta=3.0, K=0.405 Effective mass: Nf=08; beta=2.4, K= M(t) 0.9 M(t) t/n t t/n t Effective mass: Nf=07; beta=2.3, K= M(t) t/n t

23 The location of IR fixed points N f = 6: β = 0.5 ± 0.5 N f = 2: β =3.0 ± 0. N f =8: β =2.4 ± 0. N f = 7: β =2.3 ± 0.05 The conformal window 7 N f 6

24 Continuum limit of propagators at IRFP continuum limit of scaled effective mass is given by the limit N --> infinity Even up to N=6, the limit is almost realized for \tau \ge 0.. As N becomes larger, it will be realized for \tau \le 0. Note the limit depends on the aspect ratio and boundary conditions, but not on L= N a Note that local-local propagators are not local observables, due to the summation over the space coordinates

25 Scaling relation for propagators G(τ; N) = (N N ) 3 2γ G(τ; N ). G(t) Propagator: Nf=8; beta=2.4, k= t/n t

26 Effective mass for Nf=6, 2, 8, 7 Effective mass:all Nf 0.95 M(t) t/nt

27 Local analysis of propagators G(t) =c(t) exp( m(t) t) t α(t) parametrization using data at three points useful for seeing the characteristics

28 local mass Beta=0.5, K=0.292, Nf=6, 6 3 x64, PS-channel (loc(t)-loc 0.8 win_size=3 0.7 win_size=5 Fit Mass Local Mass Beta=2.4, K=0.47, Nf=8, 6 3 x64, PS-channel (loc(t)-loc(0 0.8 win_size=3 0.7 win_size= t of Fit Range [t,t+win_size-] t of Fit Range [t,t+win_size-] Fit Mass Local Mass Beta=3.0, K=0.405, Nf=2, 6 3 x64, PS-channel (loc(t)-loc( 0.8 win_size=3 0.7 win_size= Beta=2.3, K=0.4877, Nf=7, 6 3 x64, PS-channel (loc(t)-loc( 0.8 win_size=3 0.7 win_size= t of Fit Range [t,t+win_size-] t of Fit Range [t,t+win_size-]

29 local exponent Nf=6, Beta=0.5, K=0.292 win_size=3 win_size= Nf=2, Beta=3.0, K=0.405 win_size=3 win_size=5 Local Exponent 2.5 Local Exponent Nf=8, Beta=2.4, K=0.47 win_size=3 win_size= Nf=7, Beta=2.3, K= win_size=3 win_size=5 Local exponent 2.5 Local exponent

30 Nf= Polyakov loop; Nf=6, beta=0.5, K=0.292 almost free particle in the Z(3) twisted vacuum imaginary part Beta=0.5, K=0.292, Nf=6, 6 3 x64, PS-channel (loc(t)-loc 0.8 win_size=3 0.7 win_size= real part free quark (/3, /3, /3); mass and alpha Fit Mass m PS t of Fit Range [t,t+win_size-] t Nf=6, Beta=0.5, K=0.292 win_size=3 win_size= free quark (/3, /3, /3); mass and alpha Local Exponent Exponent t

31 Nf=7, 8 meson unparticle model*

32 Correspondence between two sets γ =2.0 γ γ ~.3 =0.0 meson unparticle free fermion Z(3) twisted vacuum

33 Conclusions (cont.) two scaling relations are derived scaling of scaled effective masses provides a stringent test of IRFP able to identify the location of IRFP for Nf=7, 8, 2 and 6. established the conformal window continuum limit of propagators at IRFP is derived It depends on the aspect ratio and boundary conditions, not L=N a

34 Conclusions Nf=6 is similar to free fermions in the Z(3) twisted vacuum Nf=7 and 8 are consistent with meson unparticle model there is a nice correspondence between large Nf and high temperature. A lot of things should be done Larger N and high statistics estimate γ by several methods

35 Thank you!

RG scaling at chiral phase transition! in two-flavor QCD

RG scaling at chiral phase transition! in two-flavor QCD Lattice 2016 July 25-30 2016 RG scaling at chiral phase transition in two-flavor QCD K.-I.Ishikawa(Hiroshima U.) Y. Iwasaki(U.Tsukuba) Yu Nakayama(CalTech) T. Yoshie(U. Tsukuba) 1 Objective Clarify the

More information

RG scaling at chiral phase transition in two-flavor QCD

RG scaling at chiral phase transition in two-flavor QCD RG scaling at chiral phase transition in two-flavor QCD Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-826, Japan E-mail: ishikawa@theo.phys.sci.hiroshima-u.ac.jp Yoichi

More information

Confining and conformal models

Confining and conformal models Confining and conformal models Lecture 4 Hasenfratz University of Colorado, Boulder 2011 Schladming Winter School Technicolor models are candidates for dynamical electroweak symmetry breaking gauge coupling

More information

The Conformal Window in SU(3) Yang-Mills

The Conformal Window in SU(3) Yang-Mills The Conformal Window in SU(3) Yang-Mills Ethan T. Neil ethan.neil@yale.edu Department of Physics Yale University Lattice 2008 Williamsburg, VA July 15, 2008 Ethan Neil (Yale) Conformal Window in Yang-Mills

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

A novel scheme for the wave function renormalization of the composite operators

A novel scheme for the wave function renormalization of the composite operators Prog. Theor. Exp. Phys. 2012, 00000 (28 pages) DOI: 10.1093/ptep/0000000000 A novel scheme for the wave function renormalization of the composite operators Etsuko Itou 1 1 High Energy Accelerator Research

More information

(Im)possible emergent symmetry and conformal bootstrap

(Im)possible emergent symmetry and conformal bootstrap (Im)possible emergent symmetry and conformal bootstrap Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki Phys.Rev.Lett. 117 (2016) Symmetries in nature The great lesson from string

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Lattice QCD with Eight Degenerate Quark Flavors

Lattice QCD with Eight Degenerate Quark Flavors Lattice QCD with Eight Degenerate Quark Flavors Xiao-Yong Jin, Robert D. Mawhinney Columbia University Lattice 2008 Outline Introduction Simulations and results Preparations Results Conclusion and outlook

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 KEK-CP-180 RIKEN-TH-77 UTHEP-57 JLQCD s dynamical overlap project arxiv:hep-lat/0610036v1 5 Oct 006 JLQCD Collaboration: a,b, S. Aoki c, H. Fukaya d, S. Hashimoto a,b, K-I. Ishikawa e, K. Kanaya c, H.

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Infrared conformal gauge theory and composite Higgs

Infrared conformal gauge theory and composite Higgs Infrared conformal gauge theory and composite Higgs Kari Rummukainen University of Helsinki and Helsinki Institute of Physics Work done in collaboration with: Ari Hietanen, Tuomas Karavirta, Viljami Leino,

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

arxiv: v1 [hep-lat] 12 Nov 2014

arxiv: v1 [hep-lat] 12 Nov 2014 Exploring the phase structure of 12-flavor SU(3) arxiv:111.336v1 [hep-lat] 12 Nov 21 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA E-mail: zechariah-gelzer@uiowa.edu Yuzhi

More information

condensates and topology fixing action

condensates and topology fixing action condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. hep-lat/0403024 Collaboration with T.Onogi (YITP) 1. Introduction Why topology fixing action? An action proposed by Luscher provide

More information

Running coupling measurements in Technicolor models

Running coupling measurements in Technicolor models measurements in Technicolor models University of the Pacific August 26 2009 Lattice Higgs Collaboration Zoltan Fodor, Julius Kuti, Daniel Nogradi, Chris Schroeder outline context: technicolor running coupling

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Sextet QCD: slow running and the mass anomalous dimension

Sextet QCD: slow running and the mass anomalous dimension Lattice 2010, Sardinia Sextet QCD: slow running and the mass anomalous dimension B. Svetitsky Tel Aviv University with Y. Shamir and T. DeGrand SU(3) gauge theory with N f = 2 fermions in the 6 rep Wilson

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Fermions in higher representations. Some results about SU(2) with adjoint fermions.

Fermions in higher representations. Some results about SU(2) with adjoint fermions. Fermions in higher representations. Some results about SU(2) with adjoint fermions. Agostino Patella Swansea University with L. Del Debbio, C. Pica arxiv:0805.2058 [hep-lat] Lattice08, Williamsburg 18/7/2008

More information

Non-perturbative renormalization of

Non-perturbative renormalization of Non-perturbative renormalization of N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Our ultimate purpose Determine the fundamental parameter of N f = 2 + QCD

More information

Nonperturbative infrared fixed point in sextet QCD

Nonperturbative infrared fixed point in sextet QCD and Yigal Shamir Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: bqs@julian.tau.ac.il, shamir@post.tau.ac.il Thomas DeGrand Department of

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Large-volume results in SU(2) with adjoint fermions

Large-volume results in SU(2) with adjoint fermions Large-volume results in SU(2) with adjoint fermions The Higgs Centre for Theoretical Physics The University of Edinburgh, Edinburgh, UK E-mail: Luigi.Del.Debbio@ed.ac.uk B. Lucini College of Science Swansea

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

The Phases of QCD in the T, N f Plane

The Phases of QCD in the T, N f Plane Extreme QCD 2008 Raleigh, North Carolina State University, July 21 23 2008 The Phases of QCD in the T, N f Plane Maria Paola Lombardo Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

More information

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal Motivation Effective Polyakov loop potential

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm

Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar June

More information

Chiral symmetry breaking, instantons, and monopoles

Chiral symmetry breaking, instantons, and monopoles Chiral symmetry breaking, instantons, and monopoles Adriano Di Giacomo 1 and Masayasu Hasegawa 2 1 University of Pisa, Department of Physics and INFN 2 Joint Institute for Nuclear Research, Bogoliubov

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Light Meson spectrum with Nf=2+1 dynamical overlap fermions

Light Meson spectrum with Nf=2+1 dynamical overlap fermions Light Meson spectrum with Nf=2+1 dynamical overlap fermions Jun Noaki (KEK) for JLQCD-TWQCD Collaborations: S.Aoki, T-W.Chiu, H.Fukaya, S.Hashimoto, T-H.Hsieh, T.Kaneko, H.Matsufuru, T.Onogi, E.Shintani

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Computation of the string tension in three dimensional Yang-Mills theory using large N reduction

Computation of the string tension in three dimensional Yang-Mills theory using large N reduction Computation of the string tension in three dimensional Yang-Mills theory using large N reduction Joe Kiskis UC Davis Rajamani Narayanan Florida International University 1 Outline Quick result Introduction

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Surprises in the Columbia plot

Surprises in the Columbia plot Surprises in the Columbia plot Philippe de Forcrand ETH Zürich & CERN Fire and Ice, Saariselkä, April 7, 2018 Fire and Ice Launch Audio in a New Window BY ROBERT FROST (1874-1963) Some say the world will

More information

Linking U(2) U(2) to O(4) via decoupling

Linking U(2) U(2) to O(4) via decoupling Linking U(2) U(2) to O(4) via decoupling Norikazu Yamada (KEK, GUAS) in collaboration with Tomomi Sato (KEK, GUAS) Based on Linking U(2) U(2) to O(4) model via decoupling, PRD91(2015)034025 [arxiv:1412.8026

More information

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration Determination of running coupling αs for N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Purpose of this project Determine the fundamental parameter of N f =

More information

Catalytic effects of monopole in QCD

Catalytic effects of monopole in QCD Catalytic effects of monopole in QCD Masayasu Hasegawa Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Lattice and Functional Techniques for Exploration of Phase Structure

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

openq*d simulation code for QCD+QED

openq*d simulation code for QCD+QED LATTICE 2017 Granada openq*d simulation code for QCD+QED Agostino Patella CERN & Plymouth University on behalf of the software-development team of the RC collaboration: Isabel Campos (IFCA, IFT), Patrick

More information

SU(2) Lattice Gauge Theory with a Topological Action

SU(2) Lattice Gauge Theory with a Topological Action SU(2) Lattice Gauge Theory with a Topological Action Lorinc Szikszai in collaboration with Zoltan Varga Supervisor Daniel Nogradi November 08, 2017 Outline Gauge Theory Lattice Gauge Theory Universality

More information

STRONG INTERACTIONS WITH MANY FLAVORS

STRONG INTERACTIONS WITH MANY FLAVORS GGI Firenze March 23 2015 Workshop on Holographic methods for strongly coupled systems STRONG INTERACTIONS WITH MANY FLAVORS Lattice results Maria Paola Lombardo INFN Based on M.P.L, K. Miura, T. Nunes

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Heavy quarkonium physics from Euclidean correlators

Heavy quarkonium physics from Euclidean correlators Heavy quarkonium physics from Euclidean correlators Yannis Burnier Albert Einstein Center for Fundamental Physics, Bern University Talk at ECT*, based on [YB, M. Laine, JHEP 1211 (2012) 086] [YB, A.Rothkopf,

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

Strong Interactions for the LHC

Strong Interactions for the LHC Strong Interactions for the LHC George T. Fleming Yale University Lattice 2008 Williamsburg, VA 19 Jul 2008 Outline Dynamical Electroweak Symmetry Breaking (DEWSB) Wasn t technicolor ruled out more than

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Walking step by step on the lattice

Walking step by step on the lattice Walking step by step on the lattice C.-J. David Lin National Chiao-Tung University and National Centre for Theoretical Sciences, Taiwan JLab 15/06/09 Work done in collaboration with Erek Bilgici (University

More information

arxiv: v1 [hep-lat] 10 Nov 2018

arxiv: v1 [hep-lat] 10 Nov 2018 Equation of state near the first order phase transition point of SU(3) gauge theory using gradient flow arxiv:8.4v [hep-lat] Nov 8 Graduate School of Science and Technology, Niigata University, Niigata

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Progress in Gauge-Higgs Unification on the Lattice

Progress in Gauge-Higgs Unification on the Lattice Progress in Gauge-Higgs Unification on the Lattice Kyoko Yoneyama (Wuppertal University) in collaboration with Francesco Knechtli(Wuppertal University) ikos Irges(ational Technical University of Athens)

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Ernst-Michael Ilgenfritz, Michael Müller-Preussker and Andre Sternbeck

Ernst-Michael Ilgenfritz, Michael Müller-Preussker and Andre Sternbeck Twisted mass QCD thermodynamics: first results on apenext Ernst-Michael Ilgenfritz, Michael Müller-Preussker and Andre Sternbeck Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489

More information

Lattice: Field theories beyond QCD

Lattice: Field theories beyond QCD Yale University 4 th Electron-Ion Collider Workshop Hampton University, Hampton, VA 22 May 2008 Outline Dynamical Electroweak Symmetry Breaking (DEWSB) Wasn t technicolor ruled out more than a decade ago?

More information

First results from dynamical chirally improved fermions

First results from dynamical chirally improved fermions First results from dynamical chirally improved fermions arxiv:hep-lat/595v1 1 Sep 25 C. B.Lang Karl-Franzens-Universität Graz, Austria E-mail: christian.lang@uni-graz.at Karl-Franzens-Universität Graz,

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE SLAC-PUB-2572 July 1980 CT) A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE TEMPERATURE* Larry D. McLerran and Benjamin Svetitsky Stanford Linear Accelerator Center Stanford University, Stanford,

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions JLQCD Collaboration: a,b, S. Aoki c,d, H. Fukaya e, S. Hashimoto a,b, K-I. Ishikawa f, K. Kanaya c,

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Thermodynamics for SU(2) gauge theory using gradient flow

Thermodynamics for SU(2) gauge theory using gradient flow theory using Takehiro Hirakida, Etsuko Itou,2, Hiroaki Kouno 3 Kyushu U., RCNP, Kochi U. 2, Saga U. 3 NFQCD28, YITP, 5. June, 28 arxiv:85.76 [hep-lat] / 25 2 / 25 3 / 25 SU(2) gauge theory SU(2) gauge

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

New Frontiers of Lattice Field Theories

New Frontiers of Lattice Field Theories QCD with many flavors at zero and non-zero temperature Maria Paola Lombardo Albert Deuzeman, MPL, Kohtaroh Miura, Tiago Nunes da Silva, Elisabetta Pallante New Frontiers of Lattice Field Theories GGI Firenze

More information

Pseudoscalar Flavor-Singlet Physics with Staggered Fermions p.1/23

Pseudoscalar Flavor-Singlet Physics with Staggered Fermions p.1/23 Pseudoscalar Flavor-Singlet Physics with Staggered Fermions Eric B. Gregory, Alan Irving, Craig McNeile, Steven Miller, Zbyszek Sroczynski egregory@amtp.liv.ac.uk University of Liverpool UK Q C D collaboration

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

A non-perturbative view of the Higgs hierarchy problem

A non-perturbative view of the Higgs hierarchy problem A non-perturbative view of the Higgs hierarchy problem Corfu Workshop on SM and Beyond, 31 Aug. - 11 Sept. 2013 Nikos Irges National Technical University of Athens Based on N.I. and F. Knechtli Nucl. Phys.

More information