Assignment 1: Optimization and mathematical modeling

Size: px
Start display at page:

Download "Assignment 1: Optimization and mathematical modeling"

Transcription

1 Math 360 Winter 2017 Section 101 Assignment 1: Optimization and mathematical modeling 0.1 (Due Thursday Sept 28, 2017) Let P = (, y) be any point on the straight line y = 4 3. (a) Show that the distance between P and the origin is epressed as d() = 2 + (4 3) 2. (b) Find the point on the line that is closest to the origin. (c) Actually, the distance squared is given by Solution: s() = 2 + (4 3) 2. Find the absolute minimum of this function and show that the result is identical to that found in (b). Write one sentence eplaining why you think the two results are identical. (a) d = 2 + y 2 But for each point on the straight line, y = 4 3. Substitute into the equation above d() = 2 + (4 3) 2. (b) (c) d () = 1 2d() (2 6(4 3)) = 0 = 6 5 and y = 4 3 = 2 5. Since d() is defined on the open interval (, ) and that d as ±. So, the only etremum at = 6/5 must be both the local and absolute minimum of the function. s () = 2 6(4 3) = 0 = 6 5. When d() is at min, s() = d 2 () must also be at min. It was a little bit simpler just to minimize s() in this case. 1

2 0.2 Optimal age of reproduction. (Roff, D.A The Evolution of Life Histories ) Semelparous organisms breed once during their lifetime. Eample of this type of organisms are pacific salmon and bamboo. The per capita rate of increase, r, is considered as a measure of their fitness. Larger r represents more offsprings an average individual reproduces. r is typically a function of the age,, at which breeding happens, i.e. r = r(). Models of age-structured population predict that this function can be epressed as r() = ln[l()m()], where l() is the probability of surviving to age and m() is the average number of female offsprings produced by each individuals at age. (a) Find the optimal age,, at which the fitness measure r() is maimized provided that where a, b, c are positive constants. l() = e a, and m() = b c (b) For a = 0.1, b = 4, c = 0.9, calculate the optimal age. (c) Using the same values of a, b, c given in (b), plot the graph of r() using a graphic calculator or an online graph plotter (e.g. a pretty good one can be found here at: graphs/) to plot the graph of r() and compare it to the results you obtained. Make a one sentence comment on the comparison. Solution: (a) Substitue l() = e a and m() = b c into r(), Now, r() = ln[e a b c ] = a + ln b + c ln. r () = ( a + c ) ( a + ln b + c ln ) 2 = c ln b c ln 2 = 0 1 ln b1/c = e. It is easy to check that r () > 0 for < and r () < 0 for >. Thus, this is indeed a local ma. r() is defined on the interval (0, ). As 0, r ; as, r a < 0. Thus, the unique CP is both the local and absolute ma. It is independent of a value. (b) For a = 0.1, b = 4, c = 0.9, = e 1 ln 41/

3 (c) It shows that there is one single CP which is both a local and absolute ma and it happens at a value of bit larger than 0.5 consistent with the result found in (b). 0.3 Optimal age at first reproduction (Lloyd, D.C.1978 Selection of offspring size at independence and other size-versus-number-strategies, American Naturalist, 129:800.) Iteroparous organisms breed more than once during their lifetime. We consider a model where the intrinsic rate of increase (or fitness), r, depends on the age of the first reproduction, denoted by, and satisfies e (r()+l) (1 e k ) 3 c 1 e (r()+l) = 1 where k, L, c are positive constants (parameters) describing the life history of the organism. Our goal is to find the optimal age of first reproduction,, that maimizes the fitness, r(). Since r() is implicitly defined as a function of, implicit differentiation is needed to find the critical points (CPs). (a) Calculate r () = dr. (Hint: Taking logarithms on both sides of the equation before differentiation can facilitate the d calculation.) (b) Show that r () = 0 leads to the following equation that determines the CPs r() = 3ke k L. 1 e k 3

4 (c) Substitute the result in (b) back into the original equation and show that the optimal age is independent of L. Also for c = k = 1, show that the equation that determine the optimal value of is determine by the equation (1 e ) 3 = 1 3 (e 1) ln This is a transcendental equation that we cannot solve in closed forms. However, one can always plot the graphs of the functions on the two sides and try to locate the nonzero point of intersection between the two. Do the graph plotting and estimate the optimal value of based on the graph (with an accuracy up to 1 digit after decimal point.) (d) (Not required! It is a challenge only for bonus marks!) Think if you can find any method to solve the equation obtained in (c) numerically using a programmable calculator to determine the optimal value of with an accuracy up to 6 digits after the decimal point. If you can, you get 10% bonus mark over the whole assignment mark. Solution:. (a) [ ] r 1 e (r()+l) 3ke k () = (r() + L). + (1 )e (r()+l) 1 e k (b) Let r () = 0, since 1 e (r()+l) cannot be zero because both r() and L are positive, one finds 3ke k 3ke k (r() + L) = 0 r() = L. 1 e k 1 e k (c) Substitute the epression for r() in (b) back into the original equation and notice that parameter L only occurs in as r() + L which always cancels the L term, L will never show up in the final equation for optimal value of. Making k = c = 1, one obtains Take logarithms on both sides: e 3e (1 e ) 3 =. 3e 1 e + ln[(1 e ) 3 ] = ln[1 e 3e ] Put on the left-hand-side and the other terms on the other side, one yields = 1 (1 e ) 3 3 (e 1) ln. Below is the graph of the two functions. 4

5 Based on the graph, optimal value of is approimately 2.2. (d) When we try to solve the equation found in (c) using iteration directly, the nonzero fied point turns out to be unstable and cannot be solved. One can use Newton s method learned in calculus to solve the equation numerically, but the derivative of a complicated function must be calculated (a good chance to test your calculus skills). Let (1 e ) 3 F () = 1 3 (e 1) ln be the equation that we want to solve using Newton s method. [ F () = 1 1 (1 e ) 3 3 e ln ] 13 (e 1) 3(1 e )e [(1 e 3e )(1 e ) + e 3e ] (1 e ) 3 2 = 0 = 1 1 (1 e ) 3 3 e ln (1 e )( ) + e 3e (1 e )( = Now, we obtain Newton s iteration e 3e (1 e )( ) n+1 = n F ( n) F ( n ) 5 ) 1 (1 e ) 3 3 e ln

6 This map is either too complicated for the online iteration equation solver to handle or when one of the solvers does solve it but only allows an accuracy of up to 5 digits after the decimal point. If one wants to avoid using computer programs or softwares such as MatLab, Ecel spreadsheet is one widely-owned tool that one can use to handle this. Here are the results: The result above is accurate up to 9 digits after the decimal point. required accuracy, the optimal value should be = So, if 6 digits is the 6

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections.6 and.) 8. Equivalent Inequalities Definition 8. Two inequalities are equivalent

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

Summary sheet: Exponentials and logarithms

Summary sheet: Exponentials and logarithms F Know and use the function a and its graph, where a is positive Know and use the function e and its graph F2 Know that the gradient of e k is equal to ke k and hence understand why the eponential model

More information

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x)

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x) Math 20-0-RE - Calculus I Eponential & Logarithmic Functions Page of 9 Eponential Function The general form of the eponential function equation is = f) = a where a is a real number called the base of the

More information

SYSTEMS OF THREE EQUATIONS

SYSTEMS OF THREE EQUATIONS SYSTEMS OF THREE EQUATIONS 11.2.1 11.2.4 This section begins with students using technology to eplore graphing in three dimensions. By using strategies that they used for graphing in two dimensions, students

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will produce various graphs of Taylor polynomials. Students will discover how the accuracy of a Taylor polynomial is associated with the degree of the Taylor polynomial. Students

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

4.3 Rational Inequalities and Applications

4.3 Rational Inequalities and Applications 342 Rational Functions 4.3 Rational Inequalities and Applications In this section, we solve equations and inequalities involving rational functions and eplore associated application problems. Our first

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

9.4 Power Series II: Geometric Series

9.4 Power Series II: Geometric Series 9.4 Power Series II: Geometric Series A particularly important skill to develop for the AP eam, other than checking that you re in RADIAN mode, is to represent certain types of rational functions as a

More information

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min A Assignment zeta Cover Sheet Name: Question Done Backpack Ready? Topic Comment Drill Consolidation M1 Prac Ch all Aa Ab Ac Ad Ae Af Ag Ah Ba C3 Modulus function Bb C3 Modulus function Bc C3 Modulus function

More information

AP CALCULUS AB - SUMMER ASSIGNMENT 2018

AP CALCULUS AB - SUMMER ASSIGNMENT 2018 Name AP CALCULUS AB - SUMMER ASSIGNMENT 08 This packet is designed to help you review and build upon some of the important mathematical concepts and skills that you have learned in your previous mathematics

More information

MATHEMATICS FOR ENGINEERING

MATHEMATICS FOR ENGINEERING MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL FURTHER INTEGRATION This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning

More information

Problem 1 Oh Snap... Look at the Denominator on that Rational

Problem 1 Oh Snap... Look at the Denominator on that Rational Problem Oh Snap... Look at the Denominator on that Rational Previously, you learned that dividing polynomials was just like dividing integers. Well, performing operations on rational epressions involving

More information

STARTING WITH CONFIDENCE

STARTING WITH CONFIDENCE STARTING WITH CONFIDENCE A- Level Maths at Budmouth Name: This booklet has been designed to help you to bridge the gap between GCSE Maths and AS Maths. Good mathematics is not about how many answers you

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Mr. Castle

Mr. Castle AP CALCULUS SUMMER ASSIGNMENT Dear Prospective AP Calculus Student, Welcome to AP Calculus! This is a rigorous yet rewarding math course that will challenge you and develop your critical thinking and problem

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 3 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

If a function has an inverse then we can determine the input if we know the output. For example if the function

If a function has an inverse then we can determine the input if we know the output. For example if the function 1 Inverse Functions We know what it means for a relation to be a function. Every input maps to only one output, it passes the vertical line test. But not every function has an inverse. A function has no

More information

WORKING WITH EXPRESSIONS

WORKING WITH EXPRESSIONS MATH HIGH SCHOOL WORKING WITH EXPRESSIONS Copyright 015 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright,

More information

Functions and Logarithms

Functions and Logarithms 36 Chapter Prerequisites for Calculus.5 Inverse You will be able to find inverses of one-to-one functions and will be able to analyze logarithmic functions algebraically, graphically, and numerically as

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

3.4 Solving Exponential and Logarithmic Equations

3.4 Solving Exponential and Logarithmic Equations 214 Chapter 3 Exponential and Logarithmic Functions 3.4 Solving Exponential and Logarithmic Equations Introduction So far in this chapter, you have studied the definitions, graphs, and properties of exponential

More information

7.1 One-to-One Functions

7.1 One-to-One Functions 514 transcendental functions 7.1 One-to-One Functions You ve seen that some equations have only one solution (for eample, 5 2 = 3 and 3 = 8), while some have two solutions ( 2 + 3 = 7) and some even have

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Reporting Measurement and Uncertainty

Reporting Measurement and Uncertainty Introduction Reporting Measurement and Uncertainty One aspect of Physics is to describe the physical world. In this class, we are concerned primarily with describing objects in motion and objects acted

More information

Introduction to Determining Power Law Relationships

Introduction to Determining Power Law Relationships 1 Goal Introduction to Determining Power Law Relationships Content Discussion and Activities PHYS 104L The goal of this week s activities is to expand on a foundational understanding and comfort in modeling

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

3.2 Logarithmic Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs 96 Chapter 3 Eponential and Logarithmic Functions 3.2 Logarithmic Functions and Their Graphs Logarithmic Functions In Section.6, you studied the concept of an inverse function. There, you learned that

More information

Linear And Exponential Algebra Lesson #1

Linear And Exponential Algebra Lesson #1 Introduction Linear And Eponential Algebra Lesson # Algebra is a very powerful tool which is used to make problem solving easier. Algebra involves using pronumerals (letters) to represent unknown values

More information

Definition: Quadratic equation: A quadratic equation is an equation that could be written in the form ax 2 + bx + c = 0 where a is not zero.

Definition: Quadratic equation: A quadratic equation is an equation that could be written in the form ax 2 + bx + c = 0 where a is not zero. We will see many ways to solve these familiar equations. College algebra Class notes Solving Quadratic Equations: Factoring, Square Root Method, Completing the Square, and the Quadratic Formula (section

More information

degree -6x 3 + 5x 3 Coefficients:

degree -6x 3 + 5x 3 Coefficients: Date P3 Polynomials and Factoring leading coefficient degree -6 3 + 5 3 constant term coefficients Degree: the largest sum of eponents in a term Polynomial: a n n + a n-1 n-1 + + a 1 + a 0 where a n 0

More information

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1 9-75 SECTION 9.8.. Applications of Taylor Series 677 and f 0) miles/min 3. Predict the location of the plane at time t min. 5. Suppose that an astronaut is at 0, 0) and the moon is represented by a circle

More information

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work.

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Fall 7 Test # In #-5, find the indicated limits. For each one, if it does not eist, tell why not. Show all necessary work. lim sin.) lim.) 3.) lim 3 3-5 4 cos 4.) lim 5.) lim sin 6.)

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Lesson 4b More on LOGARITHMS

Lesson 4b More on LOGARITHMS Lesson 4b More on LOGARITHMS Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found

More information

Suggested Problems for Math 122

Suggested Problems for Math 122 Suggested Problems for Math 22 Note: This file will grow as the semester evolves and more sections are added. CCA = Contemporary College Algebra, SIA = Shaum s Intermediate Algebra SIA(.) Rational Epressions

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

10 Non-routine Problems To Sharpen Your Mathematical Thinking

10 Non-routine Problems To Sharpen Your Mathematical Thinking Have you thought about it differently? 0 Non-routine Problems To Sharpen Your Mathematical Thinking Wee Wen Shih PGDE (Credit), MSc (Research) Page Introduction This electronic book presents the second

More information

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE:

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: You decide to open a small business making gluten-free cakes. Your start-up costs were $, 000. In addition, it costs $ 0 to produce each cake. What is the

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY 4. Newton s Method 99 4. Newton s Method HISTORICAL BIOGRAPHY Niels Henrik Abel (18 189) One of the basic problems of mathematics is solving equations. Using the quadratic root formula, we know how to

More information

Chapter 5: Limits, Continuity, and Differentiability

Chapter 5: Limits, Continuity, and Differentiability Chapter 5: Limits, Continuity, and Differentiability 63 Chapter 5 Overview: Limits, Continuity and Differentiability Derivatives and Integrals are the core practical aspects of Calculus. They were the

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

Practice Problems for Test II

Practice Problems for Test II Math 117 Practice Problems for Test II 1. Let f() = 1/( + 1) 2, and let g() = 1 + 4 3. (a) Calculate (b) Calculate f ( h) f ( ) h g ( z k) g( z) k. Simplify your answer as much as possible. Simplify your

More information

2.6 Solving Inequalities Algebraically and Graphically

2.6 Solving Inequalities Algebraically and Graphically 7_006.qp //07 8:0 AM Page 9 Section.6 Solving Inequalities Algebraically and Graphically 9.6 Solving Inequalities Algebraically and Graphically Properties of Inequalities Simple inequalities were reviewed

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet.

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet. Maclaurin Series Learning Outcomes After reading this theory sheet, you should recognise the difference between a function and its polynomial epansion (if it eists!) understand what is meant by a series

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Nonlinear Equations. Chapter The Bisection Method

Nonlinear Equations. Chapter The Bisection Method Chapter 6 Nonlinear Equations Given a nonlinear function f(), a value r such that f(r) = 0, is called a root or a zero of f() For eample, for f() = e 016064, Fig?? gives the set of points satisfying y

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter : Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of its.

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

Assignment #9: Orthogonal Projections, Gram-Schmidt, and Least Squares. Name:

Assignment #9: Orthogonal Projections, Gram-Schmidt, and Least Squares. Name: Assignment 9: Orthogonal Projections, Gram-Schmidt, and Least Squares Due date: Friday, April 0, 08 (:pm) Name: Section Number Assignment 9: Orthogonal Projections, Gram-Schmidt, and Least Squares Due

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

MATH 108 REVIEW TOPIC 6 Radicals

MATH 108 REVIEW TOPIC 6 Radicals Math 08 T6-Radicals Page MATH 08 REVIEW TOPIC 6 Radicals I. Computations with Radicals II. III. IV. Radicals Containing Variables Rationalizing Radicals and Rational Eponents V. Logarithms Answers to Eercises

More information

Solutions to Math 41 Exam 2 November 10, 2011

Solutions to Math 41 Exam 2 November 10, 2011 Solutions to Math 41 Eam November 10, 011 1. (1 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it is or.

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope.

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope. LESSON Relating Slope and -intercept to Linear Equations UNDERSTAND The slope of a line is the ratio of the line s vertical change, called the rise, to its horizontal change, called the run. You can find

More information

MATHS WORKSHOPS Algebra, Linear Functions and Series. Business School

MATHS WORKSHOPS Algebra, Linear Functions and Series. Business School MATHS WORKSHOPS Algebra, Linear Functions and Series Business School Outline Algebra and Equations Linear Functions Sequences, Series and Limits Summary and Conclusion Outline Algebra and Equations Linear

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

Table of Contents. Unit 3: Rational and Radical Relationships. Answer Key...AK-1. Introduction... v

Table of Contents. Unit 3: Rational and Radical Relationships. Answer Key...AK-1. Introduction... v These materials may not be reproduced for any purpose. The reproduction of any part for an entire school or school system is strictly prohibited. No part of this publication may be transmitted, stored,

More information

AP Calculus Summer Homework Worksheet Instructions

AP Calculus Summer Homework Worksheet Instructions Honors AP Calculus BC Thrill-a-Minute Summer Opportunity 018 Name Favorite Pre-Calculus Topic Your summer assignment is to have the review packet (a review of Algebra / Trig. and Pre-Calculus), Chapter

More information

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Show all of your work on the test paper. All of the problems must be solved symbolically using Calculus. You may use your calculator to confirm

More information

Calculus B Exam III (Page 1) May 11, 2012

Calculus B Exam III (Page 1) May 11, 2012 Calculus B Eam III (Page ) May, 0 Name: Instructions: Provide all steps necessary to solve the problem. Unless otherwise stated, your answer must be eact and reasonably simplified. Additionally, clearly

More information

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1 Math 171 Calculus I Spring, 2019 Practice Questions for Eam II 1 You can check your answers in WebWork. Full solutions in WW available Sunday evening. Problem 1. Find the average rate of change of the

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B}

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B} Functions Functions play an important role in mathematics as well as computer science. A function is a special type of relation. So what s a relation? A relation, R, from set A to set B is defined as arb

More information

( x 12) 1 ( x 12) ( x 12) ( x 12) step 2: For what interval will the series converge? The series will converge iff r 1, so...

( x 12) 1 ( x 12) ( x 12) ( x 12) step 2: For what interval will the series converge? The series will converge iff r 1, so... Math 253 Lab #7 Power Series, an Intro. Names: Work in groups of 2-4 for full credit and 5% bonus if turned in by Wed. of week 0. Make sure everyone in your group understands the question and its answer.

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 9 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Math 171 Calculus I Spring, 2019 Practice Questions for Exam IV 1

Math 171 Calculus I Spring, 2019 Practice Questions for Exam IV 1 Math 171 Calculus I Spring, 019 Practice Questions for Eam IV 1 Problem 1. a. Find the linear approimation to f() = cos() at a = π. b. Use your approimation to estimate (π + 1/100) cos(π + 1/100) Problem.

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Conceptual Explanations: Radicals

Conceptual Explanations: Radicals Conceptual Eplanations: Radicals The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual eplanation of logarithms in the previous chapter. In this chapter, we are going

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

6.2 Properties of Logarithms

6.2 Properties of Logarithms 6. Properties of Logarithms 437 6. Properties of Logarithms In Section 6.1, we introduced the logarithmic functions as inverses of eponential functions and discussed a few of their functional properties

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Experiment #1. Math Review

Experiment #1. Math Review A. Scientific notation and Significant Figures Experiment #1. Math Review While entering a number in scientific notation in your calculator, look for the EE or the exp key on your calculator. For example

More information

CALCULUS AB/BC SUMMER REVIEW PACKET

CALCULUS AB/BC SUMMER REVIEW PACKET Name CALCULUS AB/BC SUMMER REVIEW PACKET Welcome to AP Calculus! Calculus is a branch of advanced mathematics that deals with problems that cannot be solved with ordinary algebra such as rate problems

More information

Systems of Linear Inequalities

Systems of Linear Inequalities . Sstems of Linear Inequalities sstem of linear inequalities? How can ou sketch the graph of a ACTIVITY: Graphing Linear Inequalities Work with a partner. Match the linear inequalit with its graph. + Inequalit

More information

The AP exams will ask you to find derivatives using the various techniques and rules including

The AP exams will ask you to find derivatives using the various techniques and rules including Student Notes Prep Session Topic: Computing Derivatives It goes without saying that derivatives are an important part of the calculus and you need to be able to compute them. You should know the derivatives

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions 6.3 Multiplying and Dividing Rational Epressions Essential Question How can you determine the ecluded values in a product or quotient of two rational epressions? You can multiply and divide rational epressions

More information