Slide 1 Math 1520, Lecture 10

Size: px
Start display at page:

Download "Slide 1 Math 1520, Lecture 10"

Transcription

1 Slide 1 Math 1520, Lecture 10 In this lecture, we study the simplex method which is a powerful method for solving maximization/minimization problems developed in the late 1940 s. It has been implemented on computers and can be used on problems with a large number of variables and constraints. The simplex method is used in some of the management courses at RPI. The simplex method is based on the Gauss-Jordan method we studied in chapter 5. The simplex method is more involved and harder than the methods we have encountered thus far in this course.

2 Slide 2 A description of the simplex method Suppose we want to maximize a linear objective function. When there are many vertexes to the feasible set, it is very time consuming to find all the vertexes and test each one to find the maximum as we did in the method of corners. The simplex method shortens this process by iteratively traversing the feasible set in directions so as to make the objective function bigger. It organizies all this in a matrix called the simplex tableau.

3 Slide 3 Standard Maximization Problem The simplex method we describe first applies to standard maximization problems: The standard maximization problem is one in which 1. The goal is to maximize a linear objective function. 2. All the variables involved are non-negative (e.g. x 0 ) 3. All the other linear constraints may be written so that the expression is less than or equal to a non-negative constant. The following problem is not in standard form: Maximize P = 2x + y Subject to the constraints x 0, y 0, x y 4, x + 3y 6 But we can rewrite it to one that is in standard form as: Maximize P = 2x + y Subject to the constraints x 0, y 0, x + y 4, x + 3y 6

4 Slide 4 Slack Variables Consider this problem: Maximize P = x + 2y Subject to the constraints x 0, y 0, x + y 4, x + 3y 6 To solve it usinig the simplex method we first introduce slack variables called u and v to rewrite the last two inequality constraints as equalities to get x + y + u = 4, x + 3y + v = 6, u 0,, v 0 We then convert the objective function P = x + 2y into the form x 2y + P = 0 and put these into a system of linear equations x + y + u = 4 x + 3y + v = 6 x 2y + P = 0 where we want to maximize P subject to x 0, y 0, u 0, v 0.

5 Slide 5 iclicker Question Introduce slack variables for the standard maximization problem:. Maximize P = 3x + 2y Subject to the constraints x 0, y 0, 2x + 3y 12, 2x + y 8 A. B. C. D. E. None of the above 2x + 3y + u = 12 2x + y + v = 8 3x + 2y P = 0 2x + 3y + u = 8 2x + y + v = 12 3x + 2y P = 0 2x + 3y + u = 12 2x + y + v = 8 3x 2y + P = 0 2x + 3y + u = 8 2x + y + v = 12 3x 2y + P = 0

6 Answer to Question Introduce slack variables for the standard maximization problem:. A. Maximize P = 3x + 2y Subject to the constraints x 0, y 0, 2x + 3y 12, 2x + y 8 B. C. D. is the correct answer. E. None of the above 2x + 3y + u = 12 2x + y + v = 8 3x + 2y P = 0 2x + 3y + u = 8 2x + y + v = 12 3x + 2y P = 0 2x + 3y + u = 12 2x + y + v = 8 3x 2y + P = 0 2x + 3y + u = 8 2x + y + v = 12 3x 2y + P = 0

7 Slide 6 Simplex Tableau Once we introduce slack varibles, we take the resulting equations which were x + y + u = 4 x + 3y + v = 6 x 2y + P = 0 and from this set of equations, we write what is called the simplex tableau as In this tableau, the variables associated with unit columns are called basic variables and those with non-unit columns are called non-basic variables. The goal will be to go through a sequence of pivoting steps to make all the entries to the left of the vertical bar non-negative..

8 Slide 7 iclicker Question Write the simplex tableau for the following problem. Maximize P = 3x + 2y Subject to the constraints x 0, y 0, 2x + 3y 12, 2x + y 8. A. B. C. None of the above D. E

9 Answer to Question Write the simplex tableau for the following problem.. A. Maximize P = 3x + 2y Subject to the constraints B. x 0, y 0, 2x + 3y 12, 2x + y 8 is the correct answer. C. None of the above D. E

10 Slide 8 Pivoting For the tableau We proceed by making some of the columns to the left of the vertical bar into unit columns using Gauss-Jordan elimination. But we have to choose the pivots more carefully than we did with Gauss-Jordan elimination. To choose the pivot column, pick the column with the most negative entry to the left of the vertical bar in the last row. To choose the pivot row, divide each positive entry in the pivot column into the corroseonding entry in the column of constants. The pivot row is the row corresponding to the smallest ratio. We have a solution when all the entries to the left of the vertical bar in the last row are non-negative. This is called a simplex tableau in final form. In the above matrix the pivot entry is in the second column and second row. We pivot on this entry to make the second column into a unit column. 2/ / / / / /3 1 4

11 Slide 9 Pivoting (continued) We now have the matrix: 2/ / / / / /3 1 4 The next pivot entry is the first column and the first row. We pivot on this entry to get the first column to be a unit column /2 1/ /2 1/ /2 1/2 1 5 We can then read off the solution from matching the unit columns with the last column to get x = 3, y = 1 and P = 5 and the other variables are set to 0 so u = 0, v = 0.

12 Slide 10 Practice Try the same thing for the simplex tableau you found in the last iclicker question: We proceed by making some of the columns to the left of the vertical bar into unit columns using Gauss-Jordan elimination. But we have to choose the pivots more carefully than we did with Gauss-Jordan elimination. To choose the pivot column, pick the column with the most negative entry to the left of the vertical bar in the last row. To choose the pivot row, divide each positive entry in the privot column into the corroseonding entry in the column of constants. The pivot row is the row corresponding to the smallest ratio. We have a solution when all the entries to the left of the vertical bar in the last row are non-negative. This is called a simplex tableau in final form. We can read off the solution by matching the unit columns with the last column. All other variables associated with non-unit columns are set to zero in the solution.

13 Slide 11 iclicker Question Which of the following tableaus is in final form? A. B. C. D. E x y z u v P Constant

14 Answer to Question Which of the following tableaus is in final form? A. B. C. D. E. is the correct answer x y z u v P Constant

15 Slide 12 iclicker Question What is the solution for the following tableau? x y z u v P Constant A. x = 0, y = 4, z = 0, u = 6, v = 0 for a maximum of 15 B. x = 4, y = 0, z = 6, u = 0, v = 0 for a maximum of 15 C. x = 0, y = 4, z = 6, u = 0, v = 0 for a maximum of 15 D. x = 6, y = 4, z = 0, u = 0, v = 0 for a maximum of 15 E. None of the above

16 Answer to Question What is the solution for the following tableau? x y z u v P Constant A. x = 0, y = 4, z = 0, u = 6, v = 0 for a maximum of 15 is the correct answer. B. x = 4, y = 0, z = 6, u = 0, v = 0 for a maximum of 15 C. x = 0, y = 4, z = 6, u = 0, v = 0 for a maximum of 15 D. x = 6, y = 4, z = 0, u = 0, v = 0 for a maximum of 15 E. None of the above

Part III: A Simplex pivot

Part III: A Simplex pivot MA 3280 Lecture 31 - More on The Simplex Method Friday, April 25, 2014. Objectives: Analyze Simplex examples. We were working on the Simplex tableau The matrix form of this system of equations is called

More information

Professor Alan H. Stein October 31, 2007

Professor Alan H. Stein October 31, 2007 Mathematics 05 Professor Alan H. Stein October 3, 2007 SOLUTIONS. For most maximum problems, the contraints are in the form l(x) k, where l(x) is a linear polynomial and k is a positive constant. Explain

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

Lecture 5 Simplex Method. September 2, 2009

Lecture 5 Simplex Method. September 2, 2009 Simplex Method September 2, 2009 Outline: Lecture 5 Re-cap blind search Simplex method in steps Simplex tableau Operations Research Methods 1 Determining an optimal solution by exhaustive search Lecture

More information

The augmented form of this LP is the following linear system of equations:

The augmented form of this LP is the following linear system of equations: 1 Consider the following LP given in standard form: max z = 5 x_1 + 2 x_2 Subject to 3 x_1 + 2 x_2 2400 x_2 800 2 x_1 1200 x_1, x_2 >= 0 The augmented form of this LP is the following linear system of

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

4.3 Minimizing & Mixed Constraints

4.3 Minimizing & Mixed Constraints Mathematics : Mattingly, Fall 6 8 4. Minimizing & Mixed Constraints So far, you have seen how to solve one type of problem: Standard Maximum. The objective function is to be maximized.. Constraints use..

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Non-Standard Constraints. Setting up Phase 1 Phase 2

Non-Standard Constraints. Setting up Phase 1 Phase 2 Non-Standard Constraints Setting up Phase 1 Phase 2 Maximizing with Mixed Constraints Some maximization problems contain mixed constraints, like this: maximize 3x 1 + 2x 2 subject to 2x 1 + x 2 50 (standard)

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

Week_4: simplex method II

Week_4: simplex method II Week_4: simplex method II 1 1.introduction LPs in which all the constraints are ( ) with nonnegative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=)

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

Lecture 11 Linear programming : The Revised Simplex Method

Lecture 11 Linear programming : The Revised Simplex Method Lecture 11 Linear programming : The Revised Simplex Method 11.1 The Revised Simplex Method While solving linear programming problem on a digital computer by regular simplex method, it requires storing

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0.

1. Introduce slack variables for each inequaility to make them equations and rewrite the objective function in the form ax by cz... + P = 0. 3.4 Simplex Method If a linear programming problem has more than 2 variables, solving graphically is not the way to go. Instead, we ll use a more methodical, numeric process called the Simplex Method.

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Math 2 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Math 2 Website: http://math.niu.edu/courses/math2.

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information

4.4 The Simplex Method and the Standard Minimization Problem

4.4 The Simplex Method and the Standard Minimization Problem . The Simplex Method and the Standard Minimization Problem Question : What is a standard minimization problem? Question : How is the standard minimization problem related to the dual standard maximization

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math324 - Test Review 2 - Fall 206 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the vertex of the parabola. ) f(x) = x 2-0x + 33 ) (0,

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Linear Programming: Simplex Method CHAPTER The Simplex Tableau; Pivoting

Linear Programming: Simplex Method CHAPTER The Simplex Tableau; Pivoting CHAPTER 5 Linear Programming: 5.1. The Simplex Tableau; Pivoting Simplex Method In this section we will learn how to prepare a linear programming problem in order to solve it by pivoting using a matrix

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

Math Models of OR: Handling Upper Bounds in Simplex

Math Models of OR: Handling Upper Bounds in Simplex Math Models of OR: Handling Upper Bounds in Simplex John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 280 USA September 208 Mitchell Handling Upper Bounds in Simplex / 8 Introduction Outline

More information

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP:

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Dual Basic Solutions Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Observation 5.7. AbasisB yields min c T x max p T b s.t. A x = b s.t. p T A apple c T x 0 aprimalbasicsolutiongivenbyx

More information

1. (7pts) Find the points of intersection, if any, of the following planes. 3x + 9y + 6z = 3 2x 6y 4z = 2 x + 3y + 2z = 1

1. (7pts) Find the points of intersection, if any, of the following planes. 3x + 9y + 6z = 3 2x 6y 4z = 2 x + 3y + 2z = 1 Math 125 Exam 1 Version 1 February 20, 2006 1. (a) (7pts) Find the points of intersection, if any, of the following planes. Solution: augmented R 1 R 3 3x + 9y + 6z = 3 2x 6y 4z = 2 x + 3y + 2z = 1 3 9

More information

MA 162: Finite Mathematics - Section 3.3/4.1

MA 162: Finite Mathematics - Section 3.3/4.1 MA 162: Finite Mathematics - Section 3.3/4.1 Fall 2014 Ray Kremer University of Kentucky October 6, 2014 Announcements: Homework 3.3 due Tuesday at 6pm. Homework 4.1 due Friday at 6pm. Exam scores were

More information

Introduction to the Simplex Algorithm Active Learning Module 3

Introduction to the Simplex Algorithm Active Learning Module 3 Introduction to the Simplex Algorithm Active Learning Module 3 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Background Material Almost any

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

AM 121: Intro to Optimization Models and Methods Fall 2018

AM 121: Intro to Optimization Models and Methods Fall 2018 AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 5: The Simplex Method Yiling Chen Harvard SEAS Lesson Plan This lecture: Moving towards an algorithm for solving LPs Tableau. Adjacent

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1 Math 210 1. Solve the system: x + y + z = 1 2x + 3y + 4z = 5 (a z = 2, y = 1 and x = 0 (b z =any value, y = 3 2z and x = z 2 (c z =any value, y = 3 2z and x = z + 2 (d z =any value, y = 3 + 2z and x =

More information

Exam 3 Review Math 118 Sections 1 and 2

Exam 3 Review Math 118 Sections 1 and 2 Exam 3 Review Math 118 Sections 1 and 2 This exam will cover sections 5.3-5.6, 6.1-6.3 and 7.1-7.3 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There is no time

More information

MATH 210 EXAM 3 FORM A November 24, 2014

MATH 210 EXAM 3 FORM A November 24, 2014 MATH 210 EXAM 3 FORM A November 24, 2014 Name (printed) Name (signature) ZID No. INSTRUCTIONS: (1) Use a No. 2 pencil. (2) Work on this test. No scratch paper is allowed. (3) Write your name and ZID number

More information

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6

Math Homework 3: solutions. 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 Math 7502 Homework 3: solutions 1. Consider the region defined by the following constraints: x 1 + x 2 2 x 1 + 2x 2 6 x 1, x 2 0. (i) Maximize 4x 1 + x 2 subject to the constraints above. (ii) Minimize

More information

Ω R n is called the constraint set or feasible set. x 1

Ω R n is called the constraint set or feasible set. x 1 1 Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize subject to f(x) x Ω Ω R n is called the constraint set or feasible set. any point x Ω is called a feasible point We

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Linear Programming: Chapter 5 Duality Robert J. Vanderbei September 30, 2010 Slides last edited on October 5, 2010 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

AM 121: Intro to Optimization

AM 121: Intro to Optimization AM 121: Intro to Optimization Models and Methods Lecture 6: Phase I, degeneracy, smallest subscript rule. Yiling Chen SEAS Lesson Plan Phase 1 (initialization) Degeneracy and cycling Smallest subscript

More information

Math 354 Summer 2004 Solutions to review problems for Midterm #1

Math 354 Summer 2004 Solutions to review problems for Midterm #1 Solutions to review problems for Midterm #1 First: Midterm #1 covers Chapter 1 and 2. In particular, this means that it does not explicitly cover linear algebra. Also, I promise there will not be any proofs.

More information

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices.

Introduce the idea of a nondegenerate tableau and its analogy with nondenegerate vertices. 2 JORDAN EXCHANGE REVIEW 1 Lecture Outline The following lecture covers Section 3.5 of the textbook [?] Review a labeled Jordan exchange with pivoting. Introduce the idea of a nondegenerate tableau and

More information

Chapter 5 Linear Programming (LP)

Chapter 5 Linear Programming (LP) Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize f(x) subject to x R n is called the constraint set or feasible set. any point x is called a feasible point We consider

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12]

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12] Review Exercise a Chemical A 5x+ y 0 Chemical B x+ y [ x+ y 6] b Chemical C 6 [ ] x+ y x+ y x, y 0 c T = x+ y d ( x, y) = (, ) T = Pearson Education Ltd 08. Copying permitted for purchasing institution

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

The Avis-Kalunzy Algorithm is designed to find a basic feasible solution (BFS) of a given set of constraints. Its input: A R m n and b R m such that

The Avis-Kalunzy Algorithm is designed to find a basic feasible solution (BFS) of a given set of constraints. Its input: A R m n and b R m such that Lecture 4 Avis-Kaluzny and the Simplex Method Last time, we discussed some applications of Linear Programming, such as Max-Flow, Matching, and Vertex-Cover. The broad range of applications to Linear Programming

More information

3. Duality: What is duality? Why does it matter? Sensitivity through duality.

3. Duality: What is duality? Why does it matter? Sensitivity through duality. 1 Overview of lecture (10/5/10) 1. Review Simplex Method 2. Sensitivity Analysis: How does solution change as parameters change? How much is the optimal solution effected by changing A, b, or c? How much

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

c) Place the Coefficients from all Equations into a Simplex Tableau, labeled above with variables indicating their respective columns

c) Place the Coefficients from all Equations into a Simplex Tableau, labeled above with variables indicating their respective columns BUILDING A SIMPLEX TABLEAU AND PROPER PIVOT SELECTION Maximize : 15x + 25y + 18 z s. t. 2x+ 3y+ 4z 60 4x+ 4y+ 2z 100 8x+ 5y 80 x 0, y 0, z 0 a) Build Equations out of each of the constraints above by introducing

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information

Math Models of OR: The Revised Simplex Method

Math Models of OR: The Revised Simplex Method Math Models of OR: The Revised Simplex Method John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell The Revised Simplex Method 1 / 25 Motivation Outline 1

More information

CHAPTER 2. The Simplex Method

CHAPTER 2. The Simplex Method CHAPTER 2 The Simplex Method In this chapter we present the simplex method as it applies to linear programming problems in standard form. 1. An Example We first illustrate how the simplex method works

More information

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b.

The Simplex Method. Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. The Simplex Method Standard form (max) z c T x = 0 such that Ax = b. Build initial tableau. z c T 0 0 A b The Simplex Method Standard

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Homework Assignment 4 Solutions

Homework Assignment 4 Solutions MTAT.03.86: Advanced Methods in Algorithms Homework Assignment 4 Solutions University of Tartu 1 Probabilistic algorithm Let S = {x 1, x,, x n } be a set of binary variables of size n 1, x i {0, 1}. Consider

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

3 The Simplex Method. 3.1 Basic Solutions

3 The Simplex Method. 3.1 Basic Solutions 3 The Simplex Method 3.1 Basic Solutions In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of the feasible set. This was not a coincidence. Consider an LP in general form,

More information

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3)

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3) The Simple Method Gauss-Jordan Elimination for Solving Linear Equations Eample: Gauss-Jordan Elimination Solve the following equations: + + + + = 4 = = () () () - In the first step of the procedure, we

More information

Notes on Simplex Algorithm

Notes on Simplex Algorithm Notes on Simplex Algorithm CS 9 Staff October 8, 7 Until now, we have represented the problems geometrically, and solved by finding a corner and moving around Now we learn an algorithm to solve this without

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

Math Models of OR: Extreme Points and Basic Feasible Solutions

Math Models of OR: Extreme Points and Basic Feasible Solutions Math Models of OR: Extreme Points and Basic Feasible Solutions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 1180 USA September 018 Mitchell Extreme Points and Basic Feasible Solutions

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

OPRE 6201 : 3. Special Cases

OPRE 6201 : 3. Special Cases OPRE 6201 : 3. Special Cases 1 Initialization: The Big-M Formulation Consider the linear program: Minimize 4x 1 +x 2 3x 1 +x 2 = 3 (1) 4x 1 +3x 2 6 (2) x 1 +2x 2 3 (3) x 1, x 2 0. Notice that there are

More information

Lecture Simplex Issues: Number of Pivots. ORIE 6300 Mathematical Programming I October 9, 2014

Lecture Simplex Issues: Number of Pivots. ORIE 6300 Mathematical Programming I October 9, 2014 ORIE 6300 Mathematical Programming I October 9, 2014 Lecturer: David P. Williamson Lecture 14 Scribe: Calvin Wylie 1 Simplex Issues: Number of Pivots Question: How many pivots does the simplex algorithm

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

Optimization 4. GAME THEORY

Optimization 4. GAME THEORY Optimization GAME THEORY DPK Easter Term Saddle points of two-person zero-sum games We consider a game with two players Player I can choose one of m strategies, indexed by i =,, m and Player II can choose

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 3 Simplex Method for Bounded Variables We discuss the simplex algorithm

More information

Week 3: Simplex Method I

Week 3: Simplex Method I Week 3: Simplex Method I 1 1. Introduction The simplex method computations are particularly tedious and repetitive. It attempts to move from one corner point of the solution space to a better corner point

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Supplementary lecture notes on linear programming. We will present an algorithm to solve linear programs of the form. maximize.

Supplementary lecture notes on linear programming. We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2016 Supplementary lecture notes on linear programming CS 6820: Algorithms 26 Sep 28 Sep 1 The Simplex Method We will present an algorithm to solve linear programs of the form

More information

Math 1314 Week #14 Notes

Math 1314 Week #14 Notes Math 3 Week # Notes Section 5.: A system of equations consists of two or more equations. A solution to a system of equations is a point that satisfies all the equations in the system. In this chapter,

More information

Optimum Solution of Linear Programming Problem by Simplex Method

Optimum Solution of Linear Programming Problem by Simplex Method Optimum Solution of Linear Programming Problem by Simplex Method U S Hegde 1, S Uma 2, Aravind P N 3 1 Associate Professor & HOD, Department of Mathematics, Sir M V I T, Bangalore, India 2 Associate Professor,

More information

ECE 307 Techniques for Engineering Decisions

ECE 307 Techniques for Engineering Decisions ECE 7 Techniques for Engineering Decisions Introduction to the Simple Algorithm George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 7 5 9 George

More information

3. THE SIMPLEX ALGORITHM

3. THE SIMPLEX ALGORITHM Optimization. THE SIMPLEX ALGORITHM DPK Easter Term. Introduction We know that, if a linear programming problem has a finite optimal solution, it has an optimal solution at a basic feasible solution (b.f.s.).

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

MATH 445/545 Test 1 Spring 2016

MATH 445/545 Test 1 Spring 2016 MATH 445/545 Test Spring 06 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 545 level. Please read and follow all of these

More information

February 17, Simplex Method Continued

February 17, Simplex Method Continued 15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

CPS 616 ITERATIVE IMPROVEMENTS 10-1

CPS 616 ITERATIVE IMPROVEMENTS 10-1 CPS 66 ITERATIVE IMPROVEMENTS 0 - APPROACH Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change

More information

Finite Mathematics MAT 141: Chapter 4 Notes

Finite Mathematics MAT 141: Chapter 4 Notes Finite Mathematics MAT 141: Chapter 4 Notes The Simplex Method David J. Gisch Slack Variables and the Pivot Simplex Method and Slack Variables We saw in the last chapter that we can use linear programming

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information