Momentum and Energy. Chapter Conservation Principles

Size: px
Start display at page:

Download "Momentum and Energy. Chapter Conservation Principles"

Transcription

1 Chapter 2 Momentum an Energy In this chapter we present some funamental results of continuum mechanics. The formulation is base on the principles of conservation of mass, momentum, angular momentum, an energy. It shoul be note that we use the wor principle to inicate those concepts that are use as primitive (e.g., principle of conservation of mass), whereas we use the wor law to inicate those concepts that are erive from the principles : this is one to emphasize the ifferent roles in the formulation even if sometimes this may soun awkwar (e.g., law of conservation of mechanical energy, or virtual work law ). We will assume as primitive the concepts of time, space, mass, force, internal energy, heat flux, an heat generate per unit volume. We will enote the time with t, the ensity with ρ, the internal energy with e, the force per unit volume with f, the stress vector (or force per unit area) with t, heat flux with h, an the heat generate per unit volume with r. 2.1 Conservation Principles Consier a material volume, i.e., a volume that is compose of the same particles at all times. We enote this volume with, an its bounary with. The principle of conservation of mass states that, for any arbitrary material volume,, within a continuum, the mass of this material volume remains constant in time, i.e., ρ = 0 (2.1) t The principle of conservation of momentum states that, for any arbitrary material volume,, within a continuum, the time erivative of the momentum in is equal to the resultant of all the forces acting of the continuum in, i.e., ρv = t 21 ρf + t (2.2)

2 22 The principle of conservation of angular momentum states that, for any arbitrary material volume,, within a continuum, the time erivative of the angular momentum in is equal to the resultant of all the moments acting on, i.e., ρx v = ρx f + x t (2.3) t The principle of conservation of energy states that, for any arbitrary material volume,, within a continuum, the sum of the time erivatives of the kinetic an internal energies is equal to the work per unit time one by the all the forces acting on, plus the heat generate within the volume, minus the heat flux through the bounary surface, i.e., ( ) v 2 ρ t 2 + e = ρf v + t v + r h (2.4) As we will see, these principles, with the aition of the constitutive relations (which are subject to the constraints erive from the secon principle of thermoynamics) are the basis for all the material covere in this volume. 2.2 Dynamics The results of this section are base on the principles of conservation of mass, momentum, an angular momentum tress Tensor In Eqs. 2.2, 2.3, an 2.4 we introuce the stress vector (or force per unit area), t, acting on the surface,. ince is the surface of an arbitrary control volume,, the stress vector at a given point is, in general, a function of the normal to the surface at that point. In this ection we want to show that the stress vector t, at a given point, is a homogeneous linear function of the components of the normal to at that point. In other wors, the components of t are relate to those of n, through a matrix multiplication. The matrix of the coefficients form a tensor calle the stress tensor. In orer to accomplish this consier the principle of conservation of momentum, an apply the secon Reynols transport theorem to obtain ρ Dv Dt = Next note that, as 0, ρ Dv Dt = O(l3 ) ρf + t (2.5) ρf = O(l 3 ) (2.6)

3 23 where l 3 is a characteristic length of. Therefore, Eq. 2.5 implies t = O(l 3 ) (2.7) Note that in general the integral is of the orer of l 2. Then Eq. 2.7 implies that the terms of orer l 2 are equal to zero. This may be exploite in orer to obtain the esire relationship between t an n. In orer to o this consier the Cauchy tetraheron, i.e., a tetraheron with three faces normal to the coorinates axes, x i. Figure 2.1: Cauchy Tetraheron If A i is the area of the surface normal to the x i -axis, an A is the area of the fourth surface (Fig. 2.1), Eq. 2.7 yiels, applying the mean value theorem, t 1 A 1 + t 2 A 2 + t 3 A 3 + ta = O(l 3 ) (2.8) or, iviing by A, an noting that A i = An i (i = 1, 2, 3), where n i are the components of n, t + t 1 n 1 + t 2 n 2 + t 3 n 3 = O(l) (2.9) By taking the limit as l goes to zero, one obtains t i = τ ji n j (2.10)

4 24 where τ ji = (t j ) i (2.11) The matrix of the coefficients τ ji form a tensor calle the stress tensor. In vector notations, Eq may be written as t = Tn (2.12) where T = e i e j τ ji (2.13) is the stress tensor Cauchy Equations of Motion Using 2.10, the principle of conservation of momentum, Eq. 2.5, may be written as ρ Dv Dt = ρf + Tn = ρf + iv T (2.14) where iv T = τ ji x j e i (2.15) Therefore, taking into account the arbitrariness of, we obtain the Cauchy equations of motion ρ Dv Dt ymmetry of tress Tensor = ρf + iv T (2.16) In this ection we will show that the principle of conservation of angular momentum is equivalent to the symmetry of the stress tensor, T. Combining Eq. 2.3 with the secon Reynols transport theorem, Eq. 1.38, one obtains (noting that v v = 0) ρ D Dt (v x) = ρ Dv Dt x = ρf x + t x (2.17) In inicial notations, expressing t i in terms of the stress tensor τ ji, an using Gauss theorem, Dv j ρe ijk Dt x k = ρe ijk f j x k + e ijk t j x k = ρe ijk f j x k + (e ijk τ lj x k ) (2.18) x l

5 25 where e ijk is the permutation symbol e ijk = 1 if i, j, k = cyclic permutation Noting the arbitrariness of the volume, we have or = 1 if i, j, k = anticyclic permutation = 0 otherwise (2.19) Dv j ρe ijk Dt x k = ρe ijk f j x k + (e ijk τ lj x k ) (2.20) x l ρe ijk Dv j Dt x k = ρe ijk f j x k + e ijk τ lj x l x k + e ijk τ kj (2.21) This is the the law of conservation of angular momentum, in ifferential form. Next, note that, taking the cross prouct of Cauchy equations of motion, Eq times x, we have Finally, subtracting 2.22 from 2.21 yiels which implies i.e., the stress tensor is symmetric: ρe ijk Dv j Dt x k = ρe ijk f j x k + e ijk τ lj x l x k (2.22) e ijk τ kj = 0 (2.23) τ jk = τ kj (2.24) T = T T (2.25) Conservation of Mechanical Energy Taking the ot prouct of Eq with v an integrating one obtains ρ Dv Dt v = ρf v + v iv T (2.26) Noting that Dv Dt v = 1 Dv 2 2 Dt (2.27)

6 26 an one obtains t ρ v2 2 = v iv T = iv (Tv) T : gra v (2.28) ρf v + n Tv T : gra v (2.29) Equation 2.30 represents the law of conservation of mechanical energy. Because of the symmetry of the stress tensor, it may be rewritten as ρ v2 t 2 = ρf v + n Tv T : D (2.30) where D = 1 2 (v i,j + v j,i )e i e j (2.31) 2.3 Energy The results of this section are base on the principles of conservation of mass, momentum, angular momentum, an energy Conservation of Thermoynamic Energy ubtracting the law of conservation of mechanical energy, Eq from the principle of conservation of energy, Eq. 2.4 one obtains ρe = t It shoul be note that the term T : D + r h (2.32) T : D (2.33) provies the link between the laws of conservation of mechanical an the thermoynamic energy. As we will see in Chapter 3 (on the secon principle of thermoynamics), the work one by the internal stresses may broken into two parts, one reversible an one irreversible Heat Flux ector Next, following a process similar to that use to emonstrate the existence of a stress tensor, we want to show that the heat flux, h, is a linear function of the normal, n, to the surface.

7 27 In orer to show this, consier the Cauchy tetraheron (Fig. 2.2) introuce above, an note that, by the same reasoning, Eq yiels h = O(l 3 ) (2.34) Figure 2.2: Cauchy Tetraheron Applying the mean value theorem, we have h A + h 1 A 1 + h 2 A 2 + h 3 A 3 = O(l 3 ) (2.35) Diviing by A, an noting that A i = An i (i = 1, 2, 3), where n i are the components of n, we have h + h 1 n 1 + h 2 n 2 + h 3 n 3 = O(l) (2.36) or, taking the limit as l goes to zero, h = q n (2.37) where q k = h k. The coefficients q k form a vector, calle the heat-flux vector.

8 Conservation of Thermoynamic Energy Differential Form Using Eq. 2.37, an Gauss theorem, Eq yiels ρ De Dt = T : D + or, in the limit, consiering the arbitrariness of, ρ De Dt r iv q (2.38) = T : D + r iv q (2.39) 2.4 Alternative Axioms Galilean Relativity In this ection we will show that the axioms at the beginning of this ection, i.e., the classical conservation laws of continuum mechanics (consevation of mass, momentum, angular momentum, an energy) may be replace with the following assumptions: the principle of conservation of energy, its invariance to uniform rigi-boy translations (Galilean relativity), an symmetry of the stress tensor. The principle of Galilean relativity of the energy equation states that Eq. 2.4 is the same in all the frames of reference in uniform translation with respect to each other. In orer to enforce this principle, substitute, in Eq. 2.4, v with v 0 + v, with v 0 constant. This yiels ( ) v 2 ρ 0 t 2 + v 0 v + v2 2 + e = ρf v 0 + ρf v + t v 0 + t v + r h (2.40) ince the energy expression must be the same in all frames of reference, we have, comparing with Eq. 2.4, [ ] [ v 2 ρ 0 t 2 + ρv t ] ρf t v 0 = 0 (2.41) Finally, noting that v 2 0 an v 0 are linearly inepenent, we obtain the law of conservation of mass, Eq. 2.1, an the law of conservation of momentum, Eq The law of conservation of angular momentum may be obtaine from the symmetry of the stress tensor, by following, in reverse, the same proceure use to prove the symmetry of the stress tensor.

9 29 References Green, A. E., an Naghy, P. M., A General Theory of an Elastic Plastic Continuum, Archives of Rational Mechanics, ol. 18, pp , Green an Rivlin, Archives of Rational Mechanics, ol. 17, errin, J., Mathematical Principles of Classical Flui Mechanics, in E.:. Fluegge, Encyclopeia of Physics, ol. III/1, pp , 1959.

10 30

Other state variables include the temperature, θ, and the entropy, S, which are defined below.

Other state variables include the temperature, θ, and the entropy, S, which are defined below. Chapter 3 Thermodynamics In order to complete the formulation we need to express the stress tensor T and the heat-flux vector q in terms of other variables. These expressions are known as constitutive

More information

2.20 Marine Hydrodynamics Lecture 3

2.20 Marine Hydrodynamics Lecture 3 2.20 Marine Hyroynamics, Fall 2018 Lecture 3 Copyright c 2018 MIT - Department of Mechanical Engineering, All rights reserve. 1.7 Stress Tensor 2.20 Marine Hyroynamics Lecture 3 1.7.1 Stress Tensor τ ij

More information

ME338A CONTINUUM MECHANICS

ME338A CONTINUUM MECHANICS global vs local balance equations ME338A CONTINUUM MECHANICS lecture notes 11 tuesay, may 06, 2008 The balance equations of continuum mechanics serve as a basic set of equations require to solve an initial

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

Basic Thermoelasticity

Basic Thermoelasticity Basic hermoelasticity Biswajit Banerjee November 15, 2006 Contents 1 Governing Equations 1 1.1 Balance Laws.............................................. 2 1.2 he Clausius-Duhem Inequality....................................

More information

1.2 - Stress Tensor Marine Hydrodynamics Lecture 3

1.2 - Stress Tensor Marine Hydrodynamics Lecture 3 13.021 Marine Hyroynamics, Fall 2004 Lecture 3 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserve. 1.2 - Stress Tensor 13.021 Marine Hyroynamics Lecture 3 Stress Tensor τ ij:. The

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

Continuum Mechanics Lecture 4 Fluid dynamics

Continuum Mechanics Lecture 4 Fluid dynamics Continuum Mechanics Lecture 4 Flui ynamics Prof. http://www.itp.uzh.ch/~teyssier Outline - Flui kinematics - Mass an momentum conservation laws - The energy equation - Real fluis - Ieal fluis - Incompressible

More information

Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI)

Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI) Derivation of angular momentum balance law using the cauchy stress tensor measure. (HW#4, MAE 295. UCI) by Nasser Abbasi February 28, 2006 Problem Derive the angular momentum balance (AMB) equation for

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1 Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 PHYS 500 - Southern Illinois University September 8, 2016 PHYS 500 - Southern Illinois University Tensors, Fiels Pt. 1 an the Lie Bracket Pt. 1 September 8,

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Fundamental Laws of Motion for Particles, Material Volumes, and Control Volumes

Fundamental Laws of Motion for Particles, Material Volumes, and Control Volumes Funamental Laws of Motion for Particles, Material Volumes, an Control Volumes Ain A. Sonin Department of Mechanical Engineering Massachusetts Institute of Technology Cambrige, MA 02139, USA August 2001

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

Fundamental Laws of Motion for Particles, Material Volumes, and Control Volumes

Fundamental Laws of Motion for Particles, Material Volumes, and Control Volumes 1 Funamental Laws of Motion for Particles, Material Volumes, an Control Volumes Ain A. Sonin Department of Mechanical Engineering Massachusetts Institute of Technology Cambrige, MA 02139, USA March 2003

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Conservation and Balance Equations

Conservation and Balance Equations Chapter 2 Conservation an Balance Equations In this chapter we consier some applications of Reynol s transport theorem, Theorem 1.1. For a balance equation of the general type u(t,y)y f(t,y)y (2.1) t we

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

TOWARDS THERMOELASTICITY OF FRACTAL MEDIA

TOWARDS THERMOELASTICITY OF FRACTAL MEDIA ownloae By: [University of Illinois] At: 21:04 17 August 2007 Journal of Thermal Stresses, 30: 889 896, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online OI: 10.1080/01495730701495618

More information

Noether s theorem applied to classical electrodynamics

Noether s theorem applied to classical electrodynamics Noether s theorem applie to classical electroynamics Thomas B. Mieling Faculty of Physics, University of ienna Boltzmanngasse 5, 090 ienna, Austria (Date: November 8, 207) The consequences of gauge invariance

More information

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i, 1. Tensor of Rank 2 If Φ ij (x, y satisfies: (a having four components (9 for 3-D. Φ i j (x 1, x 2 = β i iβ j jφ ij (x 1, x 2. Example 1: ( 1 0 0 1 Φ i j = ( 1 0 0 1 To prove whether this is a tensor or

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Fluid Mechanics EBS 189a. Winter quarter, 4 units, CRN Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 Veihmeyer Hall.

Fluid Mechanics EBS 189a. Winter quarter, 4 units, CRN Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 Veihmeyer Hall. Flui Mechanics EBS 189a. Winter quarter, 4 units, CRN 52984. Lecture TWRF 12:10-1:00, Chemistry 166; Office hours TH 2-3, WF 4-5; 221 eihmeyer Hall. Course Description: xioms of flui mechanics, flui statics,

More information

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate Freun Publishing House Lt., International Journal of Nonlinear Sciences & Numerical Simulation, (9), -, 9 Application of the homotopy perturbation metho to a magneto-elastico-viscous flui along a semi-infinite

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter 2 Governing Equations In the present an the subsequent chapters, we shall, either irectly or inirectly, be concerne with the bounary-layer flow of an incompressible viscous flui without any involvement

More information

Mathematical Basics. Chapter Introduction and Definitions

Mathematical Basics. Chapter Introduction and Definitions Chapter 2 Mathematical Basics 2.1 Introuction an Definitions Flui mechanics eals with transport processes, especially with the flow- an molecule-epenent momentum transports in fluis. Their thermoynamic

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Angles-Only Orbit Determination Copyright 2006 Michel Santos Page 1

Angles-Only Orbit Determination Copyright 2006 Michel Santos Page 1 Angles-Only Orbit Determination Copyright 6 Michel Santos Page 1 Abstract This ocument presents a re-erivation of the Gauss an Laplace Angles-Only Methos for Initial Orbit Determination. It keeps close

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

Energy Splitting Theorems for Materials with Memory

Energy Splitting Theorems for Materials with Memory J Elast 2010 101: 59 67 DOI 10.1007/s10659-010-9244-y Energy Splitting Theorems for Materials with Memory Antonino Favata Paolo Poio-Guiugli Giuseppe Tomassetti Receive: 29 July 2009 / Publishe online:

More information

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods Hyperbolic Moment Equations Using Quarature-Base Projection Methos J. Koellermeier an M. Torrilhon Department of Mathematics, RWTH Aachen University, Aachen, Germany Abstract. Kinetic equations like the

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

x 2 2x 8 (x 4)(x + 2)

x 2 2x 8 (x 4)(x + 2) Problems With Notation Mathematical notation is very precise. This contrasts with both oral communication an some written English. Correct mathematical notation: x 2 2x 8 (x 4)(x + 2) lim x 4 = lim x 4

More information

A simple model for the small-strain behaviour of soils

A simple model for the small-strain behaviour of soils A simple moel for the small-strain behaviour of soils José Jorge Naer Department of Structural an Geotechnical ngineering, Polytechnic School, University of São Paulo 05508-900, São Paulo, Brazil, e-mail:

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

Control Volume Derivations for Thermodynamics

Control Volume Derivations for Thermodynamics Control olume Derivations for Thermoynamics J. M. Powers University of Notre Dame AME 327 Fall 2003 This ocument will give a summary of the necessary mathematical operations necessary to cast the conservation

More information

ME338A CONTINUUM MECHANICS

ME338A CONTINUUM MECHANICS ME338A CONTINUUM MECHANICS lecture notes 10 thursday, february 4th, 2010 Classical continuum mechanics of closed systems in classical closed system continuum mechanics (here), r = 0 and R = 0, such that

More information

A note on the Mooney-Rivlin material model

A note on the Mooney-Rivlin material model A note on the Mooney-Rivlin material moel I-Shih Liu Instituto e Matemática Universiae Feeral o Rio e Janeiro 2945-97, Rio e Janeiro, Brasil Abstract In finite elasticity, the Mooney-Rivlin material moel

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Partial Differential Equations

Partial Differential Equations Chapter Partial Differential Equations. Introuction Have solve orinary ifferential equations, i.e. ones where there is one inepenent an one epenent variable. Only orinary ifferentiation is therefore involve.

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B HE DISPLACEMEN GRADIEN AND HE LAGRANGIAN SRAIN ENSOR Revision B By om Irvine Email: tom@irvinemail.org Febrary, 05 Displacement Graient Sppose a boy having a particlar configration at some reference time

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann Gravitation as the result of the reintegration of migrate electrons an positrons to their atomic nuclei. Osvalo Domann oomann@yahoo.com (This paper is an extract of [6] liste in section Bibliography.)

More information

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles Chapter 3 Stress, Strain, irtual Power and Conservation Principles 1 Introduction Stress and strain are key concepts in the analytical characterization of the mechanical state of a solid body. While stress

More information

Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics Lagrangian an Hamiltonian Dynamics Volker Perlick (Lancaster University) Lecture 1 The Passage from Newtonian to Lagrangian Dynamics (Cockcroft Institute, 22 February 2010) Subjects covere Lecture 2: Discussion

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx Math 53 Notes on turm-liouville equations Many problems in physics, engineering, an chemistry fall in a general class of equations of the form w(x)p(x) u ] + (q(x) λ) u = w(x) on an interval a, b], plus

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

Completely passive natural convection

Completely passive natural convection Early View publication on wileyonlinelibrary.com (issue an page numbers not yet assigne; citable using Digital Object Ientifier DOI) ZAMM Z. Angew. Math. Mech., 1 6 (2011) / DOI 10.1002/zamm.201000030

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

MATH 1300 Lecture Notes Wednesday, September 25, 2013

MATH 1300 Lecture Notes Wednesday, September 25, 2013 MATH 300 Lecture Notes Wenesay, September 25, 203. Section 3. of HH - Powers an Polynomials In this section 3., you are given several ifferentiation rules that, taken altogether, allow you to quickly an

More information

Energy-preserving affine connections

Energy-preserving affine connections 2 A. D. Lewis Enery-preservin affine connections Anrew D. Lewis 28/07/1997 Abstract A Riemannian affine connection on a Riemannian manifol has the property that is preserves the kinetic enery associate

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China.

Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China. Balance University of Osnabrück, Germany Lecture presented at APS, Nankai University, China http://www.home.uni-osnabrueck.de/phertel Spring 2012 Linear and angular momentum and First and Second Law point

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK AIAA Guiance, Navigation, an Control Conference an Exhibit 5-8 August, Monterey, California AIAA -9 VIRTUAL STRUCTURE BASED SPACECRAT ORMATION CONTROL WITH ORMATION EEDBACK Wei Ren Ranal W. Bear Department

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Survival Facts from Quantum Mechanics

Survival Facts from Quantum Mechanics Survival Facts from Quantum Mechanics Operators, Eigenvalues an Eigenfunctions An operator O may be thought as something that operates on a function to prouce another function. We enote operators with

More information

6 Wave equation in spherical polar coordinates

6 Wave equation in spherical polar coordinates 6 Wave equation in spherical polar coorinates We now look at solving problems involving the Laplacian in spherical polar coorinates. The angular epenence of the solutions will be escribe by spherical harmonics.

More information

Quantum mechanical approaches to the virial

Quantum mechanical approaches to the virial Quantum mechanical approaches to the virial S.LeBohec Department of Physics an Astronomy, University of Utah, Salt Lae City, UT 84112, USA Date: June 30 th 2015 In this note, we approach the virial from

More information

Two formulas for the Euler ϕ-function

Two formulas for the Euler ϕ-function Two formulas for the Euler ϕ-function Robert Frieman A multiplication formula for ϕ(n) The first formula we want to prove is the following: Theorem 1. If n 1 an n 2 are relatively prime positive integers,

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere Objective: To introuce the equations of motion an escribe the forces that act upon the Atmosphere Reaing: Rea pp 18 6 in Chapter 1 of Houghton & Hakim Problems: Work 1.1, 1.8, an 1.9 on pp. 6 & 7 at the

More information

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5 Strauss PDEs 2e: Section 4.3 - Exercise 6 Page 1 of 5 Exercise 6 If a 0 = a l = a in the Robin problem, show that: (a) There are no negative eigenvalues if a 0, there is one if 2/l < a < 0, an there are

More information

ECE 6310 Spring 2012 Exam 1 Solutions. Balanis The electric fields are given by. E r = ˆxe jβ 0 z

ECE 6310 Spring 2012 Exam 1 Solutions. Balanis The electric fields are given by. E r = ˆxe jβ 0 z ECE 6310 Spring 2012 Exam 1 Solutions Balanis 1.30 The electric fiels are given by E i ˆxe jβ 0 z E r ˆxe jβ 0 z The curl of the electric fiels are the usual cross prouct E i jβ 0 ẑ ˆxe jβ 0 z jβ 0 ŷe

More information

Lecture 2 - First order linear PDEs and PDEs from physics

Lecture 2 - First order linear PDEs and PDEs from physics 18.15 - Introuction to PEs, Fall 004 Prof. Gigliola Staffilani Lecture - First orer linear PEs an PEs from physics I mentione in the first class some basic PEs of first an secon orer. Toay we illustrate

More information

water adding dye partial mixing homogenization time

water adding dye partial mixing homogenization time iffusion iffusion is a process of mass transport that involves the movement of one atomic species into another. It occurs by ranom atomic jumps from one position to another an takes place in the gaseous,

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Mechanics of solids and fluids -Introduction to continuum mechanics

Mechanics of solids and fluids -Introduction to continuum mechanics Mechanics of solids and fluids -Introduction to continuum mechanics by Magnus Ekh August 12, 2016 Introduction to continuum mechanics 1 Tensors............................. 3 1.1 Index notation 1.2 Vectors

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

q = F If we integrate this equation over all the mass in a star, we have q dm = F (M) F (0)

q = F If we integrate this equation over all the mass in a star, we have q dm = F (M) F (0) Astronomy 112: The Physics of Stars Class 4 Notes: Energy an Chemical Balance in Stars In the last class we introuce the iea of hyrostatic balance in stars, an showe that we coul use this concept to erive

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

Lecture XVI: Symmetrical spacetimes

Lecture XVI: Symmetrical spacetimes Lecture XVI: Symmetrical spacetimes Christopher M. Hirata Caltech M/C 350-17, Pasaena CA 91125, USA (Date: January 4, 2012) I. OVERVIEW Our principal concern this term will be symmetrical solutions of

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

A Note on Modular Partitions and Necklaces

A Note on Modular Partitions and Necklaces A Note on Moular Partitions an Neclaces N. J. A. Sloane, Rutgers University an The OEIS Founation Inc. South Aelaie Avenue, Highlan Par, NJ 08904, USA. Email: njasloane@gmail.com May 6, 204 Abstract Following

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 3 Continuous Systems an Fiels (Chapter 13) Where Are We Now? We ve finishe all the essentials Final will cover Lectures 1 through Last two lectures: Classical Fiel Theory

More information