OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Size: px
Start display at page:

Download "OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626"

Transcription

1 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

2 Announcements No class Monday, Feb 26 Mid-term exam will be on Feb 28 th (open books/notes)

3 Homework solutions

4 Homework solutions

5 Homework solutions

6 Homework solutions

7 Homework solutions

8 Homework solutions

9 Review Properties of light Wave optics Interference and devices Diffraction and devices Polarization optics Guided-wave optics

10 Properties of light Corpuscular theory of light: light consists of corpuscles or very small particles flying at finite velocity (Isaac Newton). The wave theory of light: At first, the nature of light is wave propagating in a medium called luminiferous aether. But all attempts to detect the aether have failed so far. So the theory based on the aether was more or less abandoned. The electromagnetic theory of light was developed culminating in the Maxwell s equations. The quantum theory of light: In an attempt to explain blackbody radiation, Planck postulated that electromagnetic energy could be emitted only in quantized form, in other words, the energy could only be a multiple of an elementary unit,, where h is Planck's constant.

11 Properties of light Velocity of light Frequency and wavelength Polarization Coherence Other light characteristics

12 Wave optics Maxwell s equations Wave equation Plane wave solution Classical theory of permittivity Sellmeier Equation and Kramers-Kroenig Relations

13 Maxwell s equations Here, E and H are the electric and magnetic field, D the dielectric flux, B the magnetic flux, J f the current density of free charges, ρ f is the free charge density.

14 Maxwell s equations Material equations: P is the polarization, M is the magnetization

15 Uniform optical medium Wave equation

16 Plane-wave solution Simple harmonic plane wave Dispersion relation

17 Plane-wave solution Transverse electromagnetic wave

18 Boundary conditions at the interface Maxwell s equations in integral form The normal component of D and B are continuous across the dielectric interface

19 Boundary conditions at the interface Maxwell s equations in integral form The tangential component of E and H are continuous across the dielectric interface

20 Pointing vector, energy and Intensity

21 Classical theory of permittivity Glass A dipole (Induced polarization)

22 Classical theory of permittivity The electron motion equation: Where: Trial solution: Induced dipole moment:

23 Classical theory of permittivity,for 1 dipole or:,where: (Plasma frequency)

24 Classical theory of permittivity Real part (dashed line) and imaginary part (solid line) of the susceptibility of the classical oscillator model for the dielectric polarizability

25 Sellmeier Equation and Kramers- Kroenig Relations The refractive index and absorption of a medium are not independent

26 Sellmeier Equation and Kramers- Kroenig Relations If the media are used in a frequency range far away from resonances. Then the imaginary part of the susceptibility related to absorption can be approximated by: The Kramers-Kroenig relation results in the Sellmeier Equation for the refractive index: 2

27 Pulse propagation Optical pulses often have relatively small spectral width compared to the center frequency of the pulse ω 0. In such cases it is useful to separate the complex electric field into a carrier frequency ω 0 and an envelope A(t) and represent the absolute frequency as Ω = ω 0 + ω. We can then rewrite: The optical spectrum of a pulse can be calculated through the Fourier transform of the envelop.

28 Pulse propagation Time domain and frequency domain: Spectrum Long pulse time frequency Short pulse time frequency

29 Pulse propagation Pulse shapes, corresponding spectra and time bandwidth products

30 Pulse propagation We can separate an optical pulse into a carrier wave at frequency ω 0 and a complex envelope: By introducing the offset frequency ω, the offset wave-number k(ω) and spectrum of the envelope Ã(ω): We have:

31 Dispersion In general dispersion is a function of frequency:,in the frequency domain,in the time domain

32 Group velocity If we keep only the first term: This is the equation describing a wave-package moving at the speed of v g0

33 Group velocity The pulse travels with the group velocity without changing its shape!

34 Pulse spreading due to second order dispersion This equation does not have an analytical solution, generally. Decomposition of a pulse into wave packets with different center frequencies. In a medium with dispersion the wave-packets move at different relative group velocities.

35 Pulse spreading due to second order dispersion k is the group velocity dispersion (GVD) Fortunately, for a Gaussian pulse, the pulse propagation equation can be solved analytically. The initial pulse is then of the form: (We have this from the Fourier transform)

36 Pulse spreading due to second order dispersion Since: Fourier transform of the Gaussian function is a Gaussian function: Therefore, in the spectral domain the solution at an arbitrary propagation distance z is:

37 Pulse spreading due to second order dispersion Now we go back to the time domain (again using the Fourier transform): After splitting the real and imaginary part we get: Here is the starting point:

38 Pulse spreading due to second order dispersion Initial pulse duration: FWHM pulse duration after propagating distance L:

39 Pulse spreading due to second order dispersion Pulse spreading is proportional to propagation distance Pulse spreading is proportional to the GVD Inversely proportional to the (initial pulse duration) 2

40 Pulse spreading due to second order dispersion Important parameters

41 Dispersion example: Fused silica Sellmeier equation:

42 Dispersion example-fused silica Normal GVD Anomalous GVD

43 Chirped pulses GVD > 0 GVD < 0 In general, we need to use numerical simulation to simulate the propagation of short optical pulses.

44 Other important topics Fresnel reflection Brewster angle Total internal reflection (phase shift, evanescent field) Goos-Haenchen phase shift Frustrated TIR Metamaterials

45 Interference and Devices Interference Interferometers (Michelson, Mach-Zehnder, Fabry- Perot, Sagnac, etc.) Autocorrelator Mach-Zehnder Modulators Sagnac interferometer (Rotation sensor)

46 Interference Two plane waves (solutions of the wave equation) interference: (still a solution of the wave equation) We detect the intensity instead of the amplitude:

47 Interference

48 Interference Since the oscillation is very fast, the time average becomes: Interference pattern generated by two monochromatic plane waves

49 Fabry-Perot Resonator

50 Fabry-Perot Resonator

51 Fabry-Perot Resonator

52 Fabry-Perot Resonator (α = 0, normal incident)

53 Sagnac Interferometer The sagnac sensor has the best sensitivity compared to other type of sensors.

54 Fiber Optics Gyroscope

55 Laser Gyroscope We can easily measure f beat with <1Hz precision. What would be the smallest rotation rate that we can measure using a ring resonator with 1m radius?

56 Diffraction and Devices Diffraction Diffraction gratings Ruled grating Holographic grating Volume grating Applications Tunable laser Spectroscopy Laser stabilization Pulse compression Volume grating

57 Diffraction Diffraction relies on the interference of waves emanating from the same source taking different paths to the same point on a screen Diffraction can be explained by interference Diffraction of a laser beam through a small circular hole (Airy disk) Young's double-slit interferometer (Homework)

58 Diffraction and nature of light Need to be in the near field: Arago spot, Fresnel bright spot, or Poisson spot This experiment confirmed the wave nature of light!

59 Huygens Fresnel principle

60 Diffraction limit How to overcome the diffraction limit?

61 Diffraction Grating A periodic structure that diffracts light into different directions. Grating can be flat, concave, convex and arbitrary shape HeNe laser incident on a diffraction grating showing zero, first and second order beams

62 Basic equations Monochromatic source White light

63 Polarization optics Polarization optics Anisotropic media Index ellipsoid Uniaxial crystal Double refraction Calcite CaCO3 Polarization devices Polarizer Waveplates Isolators Polarization microscope Potassium Niobate

64 Polarization optics The polarization of light is determined by the trajectory of the end of the electric vector in time at a given position.

65 Polarization optics Plane wave propagating in the z direction: Where: (A: complex envelope) describes an ellipse (z = const)

66 Polarization optics Plane wave propagating in the z direction: Where: describes an ellipse (z = const)

67 Polarization optics (Homework)

68 Poincaré sphere

69 Other representations Stokes parameters: Jones vector:

70 Anisotropic media The electric permittivity is a matrix (tensor) D and E may point to different directions By choice of the coordinate system we can simplify the math: (Principle refractive index)

71 Anisotropic media Index ellipsoid (representation of the tensor):

72 Uniaxial crystals Calcite, Rutile TiO2, Yttrium Vanadate

73 Uniaxial crystals The direction of energy flow is not the same as the wave front propagation direction Double refraction

74 Polarization devices Polarizer: Glan-Thompson polarizer Dichroic polarizer (Stretched Polyvinyl Alcohol (PVA) Double refraction polarizer Glan-Thompson polarizer (Polarization extinction ratio: PER)

75 Isolators

76 Polarization microscope

77 Phase matching Second harmonic generation Input IR beam Phase matching concept LBO crystal Angle and Wavelength Dependence of Refractive index of BBO

78 Guided-wave optics Introduction Overview of guided-wave devices Optical fibers Planar waveguides Integrated optical devices Compact lasers Planar mirror waveguides Waveguide modes Dispersion relation

79 Why guided wave optics? Propagate light over long distances without the need for lenses Escape the slavery of diffraction Take advantage of semiconductor manufacturing processes to determine dimensions and designs Enable unique devices impossible to make in other ways (arrayed waveguide grating) Drive the size of photonics down dramatically (compact and silicon photonics)

80 Important trends Integrated optical circuits: combination of multiple optical functions on a single substrate Functions include splitting, filtering, switching, modulating, isolating, coupling (general passive functions), generation (lasers) and detection Monolithic integration a single material is used Hybrid integration multiple materials are used that perform different functions Optoelectronic integrated circuits (OEIC) Includes both integrated optical circuits and conventional electronic circuits on the same substrate Generally limited to semiconductor substrate materials High refractive indices create the potential for ultracompact circuitry Increasing need for optical interconnections between and within computers

81 Planar mirror waveguides / n 0 0 k nk0 c c / n TEM plane wave TE: E polarized in x-direction TM: H polarized in x-direction π phase shift for each reflection (boundary conditions) Amplitude and polarization do not change (perfect mirror). Not practical due to the fact that there is no perfect metal mirror

82 Planar mirror waveguides Self-consistency: The wave reflects twice and reproduces itself Therefore the phase shift in travelling from A to B must be equal to or differ by an integer multiple of 2p from the phase shift from A to C Modes are fields that maintain the same transverse distribution and polarization at all locations along the waveguide axis.

83 Planar mirror waveguides A guided wave consists of the superposition of two plane waves in the y-z plane at angle ± with respect to the z axis. The components of the mode wave vector are k ym = nk 0 sinq m = mp / d b 2 2 m = k zm = k 2 - m 2 p 2 d 2

84 Mode field profile TE modes E x ( y, z) a u ( y)exp( j z) m m or m u m ( y ) 2 d 2 d mpy cos( ), d mpy sin( ), d m 1,3,5... m 2,4,6... Modes are orthogonal and normalized

85 Mode properties TE modes E x ( y, z) a u ( y)exp( j z) m m or m u m ( y ) 2 d 2 d mpy cos( ), d mpy sin( ), d m 1,3,5... m 2,4,6... Modes are orthogonal and normalized Orthogonal condition Normalized condition Any field distribution can be discomposed into a sum of modes

86 Number of modes, Cutoff Number of modes sin m / 2d 1, M 2d / m Reduce to nearest integer Dispersion relation 2 m / c m p / d Cutoff wavelength and frequency c 2d, n c c / 2d For > c or n < n c there is no guided mode

87 Dispersion relation Dispersion relation. 2 m / c m p / d This leads to waveguide dispersion

88 Group velocity Dispersion relation 2 m / c m p / d Cutoff frequency =

89 Group velocity Is this normal or anomalous dispersion?

90 TE versus TM

91 Planar dielectric waveguide y x z Core film sandwiched between two layers of lower refractive index Bottom layer is often a substrate with n = n s Top layer is called the cover layer (n c n s ) Air can also acts as a cover (n c = 1) n c = n s in symmetric waveguides

92 Planar dielectric waveguide Symmetric waveguide Reflection due to TIR (similar to planar mirror waveguide) sinq c = n 2 / n 1 q p 2 -q = p c 2 - æ n ö 2 sin-1 ç è ø = æ n 2 cos-1 ç è n 1 n 1 ö ø Self Consistency 2p 2 d sin 2 r 2 p m 2k d 2 2pm y r

93 Phase shift for TIR TE wave tan j r 2 = sin2 q c sin 2 q -1 TM wave tan j r 2 = -n n 2 sin 2 q c sin 2 q -1 We can now arrive at an equation for the mode angles

94 Transcendental equation for modes 2 pd mp sin c tan sin sin dielectric waveguide mirror waveguide p, or tan( / 2) r r

95 Number of modes,or,where Single mode 2d l 0 NA <1

96 Transcendental equation for modes m nk cos 1 0 m b m = N m eff w /c 0

97 Cut-off frequency Mirror waveguide Dielectric waveguide There is no gap for dielectric waveguide always one guided mode for a symmetric slab (not so for asymmetric)

98 Oscillating field component In the core The electric field in a symmetric dielectric waveguide is harmonic within the slab and exponentially decaying outside the slab. E ( y, z) a u ( y)exp( j z) x m m m ì æ cos 2p l sinq ö ç my, m = 0,2,4,... ï è ø u m (y) µ í æ sinç 2p, - d ï l sinq ö 2 y d 2 my, m =1,3,5,... î ï è ø

99 Evanescent field component u m ( y) exp( m y), y > d / 2 exp( m y), y d / 2 The z dependence must be identical in order to satisfy continuity at ± d/2. Signs are chosen to obtain a decaying field E x ( ( y, z) a 2 n 2 k 2 0 M m 0 ) E x m u m ( y)exp( ( y, z) 0 j z) m Extinction coefficient m m 2 0 m nk nk cos cos m c 1

100 TE field distribution E x M ( y, z) a u ( y)exp( j z) m 0 m m m

101 Dispersion relation Self Consistency 2p 2 d sin 2 r 2 p m 2k d 2 2pm y r TE wave tan j r 2 = sin2 q c sin 2 q -1

102 Dispersion relation Dispersion relation in parametric form: (n: effective refractive index)

103 Dispersion relation n 1, n 2 are constant

104 Dispersion relation Normal or anomalous dispersion?

105 What is the smallest waveguide? Mirror waveguide Dielectric waveguide There is no gap for dielectric waveguide always one guided mode for a symmetric slab (not so for asymmetric) Can we then make an infinitely small dielectric waveguide?

106 Using Maxwell s equations An optical mode is solution of Maxwell's equations satisfying all boundary conditions Its spatial distribution does not change with propagation Modes are obtained by solving the curl equations These six equations are solved in each layer of the waveguide Boundary condition: Tangential component of E and H be continuous across both interfaces Waveguide modes are obtained by imposing the boundary conditions

107 Using Maxwell s equations Assume waveguide is infinitely wide along the x axis E and H are then x-independent For any mode, all components vary with z as exp(i z). Thus,

108 Using Maxwell s equations These equations have two distinct sets of linearly polarized solutions For Transverse-Electric (TE) modes, E z = 0 and E y = 0 TE modes are obtained by solving: Magnetic field components are related to E x as:

109 Using Maxwell s equations G. Agrawal

110 Using Maxwell s equations G. Agrawal

111 Using Maxwell s equations G. Agrawal

112 TE mode for symmetric waveguide G. Agrawal

113 TE mode for symmetric waveguide G. Agrawal

114 Modes of asymmetric waveguide G. Agrawal

115 Modes of asymmetric waveguide G. Agrawal

116 Universal dispersion curve G. Agrawal

117 Rectangular mirror waveguide 2k x d = 2pm x m x =1,2,... 2k y d = 2pm y m y =1,2,... k ym = nk 0 sinq m = mp / d

118 Number of modes Number of modes 2k x d = 2pm x m x =1,2,... 2k y d = 2pm y m y =1,2,... M = Quadrant area Unit cell area = pn 2 k p 2 d 2 æ = 2d ö ç è l ø 2 p 4

119 Rectangular dielectric waveguide k x 2 + k y 2 n 1 2 k 0 2 sin 2 q c æ n q c = cos -1 2 ö ç è ø n 1

120 Rectangular dielectric waveguide Number of TE modes: k 2 x + k 2 y n 2 1 k 2 0 sin 2 q c æ n q c = cos -1 2 ö ç è ø n 1

121 Slab directional coupler phase mismatch per unit length

122 Slab directional coupler ) ( sin (0) ) ( ) ( sin 2 ) ( cos (0) ) ( z C P z P z z P z P C C L p Coupling length 3dB coupler

123 Phase-mismatched vs. phase-matched L 0 P1 P1 P2 Phase mismatched 0 P2 Phase matched = 0

124 Switching with directional coupler B Power transfer ratio Power Transfer Ratio T P2 ( L0 ) P (0) 1 2 p 4 sin( px) sin c( x) px sin c L 1 p Phase Mismatch Phase mismatch can be tuned electrically in directional couplers. In tuning the phase mismatch from 0 to 3p, light is switch from WG 2 to 1. Tuning can be done electro-optically or thermally, for example.

125

126

127

128

129

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Mid-term exam will be on Feb 27 th, 2PM, room 307 (open books/notes)

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Mid-term exam on Monday, March 6 th Review Properties of light

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.66 1 Announceents Hoework # is due today, HW#3 is assigned due Feb. 1 st No

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announceents HW#3 is due next Wednesday, Feb. 21 st No class Monday Feb.

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is due Feb. 12 Mid-term exam Feb 28

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan. 29 Normal class on

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 is due. Homework #2 is assigned, due

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan 24 No class Monday,

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10 Optics and Optical Design Chapter 5: Electromagnetic Optics Lectures 9 & 1 Cord Arnold / Anne L Huillier Electromagnetic waves in dielectric media EM optics compared to simpler theories Electromagnetic

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

EE485 Introduction to Photonics. Introduction

EE485 Introduction to Photonics. Introduction EE485 Introduction to Photonics Introduction Nature of Light They could but make the best of it and went around with woebegone faces, sadly complaining that on Mondays, Wednesdays, and Fridays, they must

More information

Physics of Light and Optics

Physics of Light and Optics Physics of Light and Optics Justin Peatross and Harold Stokes Brigham Young University Department of Physics and Astronomy All Publication Rights Reserved (2001) Revised April 2002 This project is supported

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

OPTI 501, Electromagnetic Waves (3)

OPTI 501, Electromagnetic Waves (3) OPTI 501, Electromagnetic Waves (3) Vector fields, Maxwell s equations, electromagnetic field energy, wave equations, free-space solutions, box modes, Fresnel equations, scalar and vector potentials, gauge

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

IMPRS: Ultrafast Source Technologies

IMPRS: Ultrafast Source Technologies IMPRS: Ultrafast Source Technologies Fran X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 6/3 Email & phone: fran.kaertner@cfel.de, 040 8998 6350 Thorsten.Uphues@cfel.de, 040 8998 706 Lectures: Tuesday

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

PHYSICS 370 OPTICS. Instructor: Dr. Fred Otto Phone:

PHYSICS 370 OPTICS. Instructor: Dr. Fred Otto Phone: PHYSICS 370 OPTICS Instructor: Dr. Fred Otto Phone: 457-5854 Office: Pasteur 144 E-mail: fotto@winona.edu Text: F.L. Pedrotti, L.S. Pedrotti, and L.M. Pedrotti, Introduction to Optics, 3 rd Ed., 2000,

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof. Physics 21900 General Physics II Electricity, Magnetism and Optics Lecture 20 Chapter 23.1-2 Wave Optics Fall 2015 Semester Prof. Matthew Jones Announcement Exam #2 will be on Thursday, November 5 th (tomorrow)

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Left-handed materials: Transfer matrix method studies

Left-handed materials: Transfer matrix method studies Left-handed materials: Transfer matrix method studies Peter Markos and C. M. Soukoulis Outline of Talk What are Metamaterials? An Example: Left-handed Materials Results of the transfer matrix method Negative

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Metamaterials & Plasmonics

Metamaterials & Plasmonics Metamaterials & Plasmonics Exploring the Impact of Rotating Rectangular Plasmonic Nano-hole Arrays on the Transmission Spectra and its Application as a Plasmonic Sensor. Abstract Plasmonic nano-structures

More information

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Grading Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Maximum total = 39 points Pass if total >= 20 points Fail if total

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.5 Fabrication

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Phys 2435: Chap. 35, Pg 1 Geometrical Optics Assumption: the dimensions

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Superposition of Sinusoidal Waves Assume two waves are traveling in the same direction, with the same frequency,

More information

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang Wave Motion and Electromagnetic Radiation Introduction Jan. 18, 2010 Jie Zhang PHYS 306 Spring, 2010 Introduction This class is about the physics of LIGHT. Textbook: Optics by Ghatak (2010) Content What

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Summary of Fourier Optics

Summary of Fourier Optics Summary of Fourier Optics Diffraction of the paraxial wave is described by Fresnel diffraction integral, u(x, y, z) = j λz dx 0 dy 0 u 0 (x 0, y 0 )e j(k/2z)[(x x 0) 2 +(y y 0 ) 2 )], Fraunhofer diffraction

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time Phys 2310 Mon. Dec. 4, 2017 Today s Topics Begin supplementary material: Lasers Reading for Next Time 1 By Wed.: Reading this Week Lasers, Holography 2 Homework this Week No Homework this chapter. Finish

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Oxford Physics: Second Year, Optics Parallel reflecting surfaces t images source Extended source path difference xcos 2t=x Fringes localized at infinity Circular fringe constant

More information

Dr. Tao Li

Dr. Tao Li Tao Li taoli@nju.edu.cn Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Concepts Basic principles Surface Plasmon Metamaterial Summary Light

More information

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses I - Fundamentals Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Non-linear optical glasses

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11 13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x direction y x z Components

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

Course Secretary: Christine Berber O3.095, phone x-6351,

Course Secretary: Christine Berber O3.095, phone x-6351, IMPRS: Ultrafast Source Technologies Franz X. Kärtner (Umit Demirbas) & Thorsten Uphues, Bldg. 99, O3.097 & Room 6/3 Email & phone: franz.kaertner@cfel.de, 040 8998 6350 thorsten.uphues@cfel.de, 040 8998

More information

Nonlinear Optics (NLO)

Nonlinear Optics (NLO) Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Spectroscopic Instruments

Spectroscopic Instruments Spectroscopic Instruments 95 Spectroscopic Instruments by division of amplitude Mach-Zehnder (division of amplitude) Michelson Fringe localisation LIGO Fabry-Perot (FPI) Multi-layer coatings 96 Mach-Zehnder

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

FUNDAMENTALS OF POLARIZED LIGHT

FUNDAMENTALS OF POLARIZED LIGHT FUNDAMENTALS OF POLARIZED LIGHT A STATISTICAL OPTICS APPROACH Christian Brosseau University of Brest, France A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York - Chichester. Weinheim. Brisbane

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information