Lecture 8: Coordinate Frames. CITS3003 Graphics & Animation

Size: px
Start display at page:

Download "Lecture 8: Coordinate Frames. CITS3003 Graphics & Animation"

Transcription

1 Lecture 8: Coordinate Frames CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

2 Objectives Learn how to define and change coordinate frames Introduce standard transformations Rotation, Translation, Scaling, Shear Derive homogeneous coordinate transformation matrices Learn to build arbitrary transformation matrices from simple transformations 2

3 Coordinate Frame Basis vectors alone cannot represent a points We can add a single point, the origin, to the basis vectors to form a coordinate frame Recall the affine space v 2 P 0 v 1 v 3 3

4 Representation in a Coordinate Frame A coordinate system (or coordinate frame) is determined by P 0, v 1, v 2, v 3 Within this coordinate frame, every vector v can be written as v = α 1 v 1 + α 2 v 2 + α 3 v 3 Every point can be written as P = P 0 + β 1 v 1 + β 2 v 2 + β 3 v 3 for some α 1, α 2, α 3, and β 1, β 2, β 3 4

5 Homogeneous Coordinates Consider the point P and the vector v, where P = P 0 + β 1 v 1 + β 2 v 2 + β 3 v 3 v = α 1 v 1 + α 2 v 2 + α 3 v 3 They appear to have similar representations: P = [β 1, β 2, β 3 ] T, v =[α 1, α 2, α 3 ] T which confuses the point with the vector A vector has no position v v p Vector can be placed anywhere point: fixed 5

6 A Single Representation Since 0 P = 0 and 1 P = P then we can write v = α 1 v 1 + α 2 v 2 + α 3 v 3 = α 1 v 1 + α 2 v 2 + α 3 v P 0 P = β 1 v 1 + β 2 v 2 + β 3 v 3 + P 0 = β 1 v 1 + β 2 v 2 + β 3 v P 0 Thus we obtain the four-dimensional homogeneous coordinate representation v = α 1 α 2 α 3 0 T v = 0 P = β 1 β 2 β 3 1 T v 6

7 Homogeneous Coordinates The homogeneous coordinate form for a three dimensional point x y z T is given as p = x y z 1 T = wx wy wz w T = x y z w T We return to a three dimensional point (for w 0) by x x /w y y /w z z /w If w = 0, the representation is that of a vector Note that homogeneous coordinates replace points in three dimensions by lines through the origin in four dimensions For w = 1, the representation of a point is x y z 1 T 7

8 Homogeneous Coordinates and Computer Graphics Homogeneous coordinates are key to all computer graphics systems All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices Hardware pipeline works with 4 dimensional representations For orthographic viewing, we can maintain w = 0 for vectors and w = 1 for points For perspective we need a perspective division 8

9 Representing the Second Basis in Terms of the First How can we relate a with b? Each of the basis vectors u 1, u 2, and u 3 are vectors that can be represented in terms of the first set of basis vectors, i.e., u 1 = γ 11 v 1 + γ 12 v 2 +γ 13 v 3 u 2 = γ 21 v 1 + γ 22 v 2 +γ 23 v 3 u 3 = γ 31 v 1 + γ 32 v 2 +γ 33 v 3 v for some γ 11,, γ 33 9

10 Representing the Second Basis in Terms of the First (cont.) u 1 = γ 11 v 1 + γ 12 v 2 +γ 13 v 3 can be written as: γ 11 γ 11 u 1 = v 1 v 2 v 3 γ 12 = V γ 12 γ 13 γ 13 Similarly, u 2 = γ 21 v 1 + γ 22 v 2 +γ 23 v 3 and u 3 = γ 31 v 1 + γ 32 v 2 +γ 33 v 3 can be written as: u 2 = V u 3 = V γ 21 γ 22 γ 23 γ 31 γ 32 γ 33 10

11 Representing the Second Basis in Terms of the First (cont.) We can put the terms γ 11,, γ 33 into a 3 3 matrix: γ 11 γ 12 γ 13 M = γ 21 γ 22 γ 23 γ 31 γ 32 γ 33 then we have: u 1 u 2 u 3 = V M T That is, U = V M T The superscript T denotes matrix transpose 11

12 The same vector w represented in two coordinate systems We can write w = α 1 v 1 + α 2 v 2 + α 3 v 3 w = β 1 u 1 + β 2 u 2 + β 3 u 3 Each v i is a column vector of 3 components as follows: w = v 1 v 2 v 3 w = u 1 u 2 u 3 α 1 α 2 α 3 β 1 β 2 β 3 = V a = U b Let s call this 3 3 matrix V 12

13 Representing the Second Basis in Terms of the First (cont.) In this example, we have w = V a and w = U b. So V a = U b With U = V M T, we have V a = V M T b a = M T b Thus, a and b are related by M T 13

14 Change of Coordinate Frames We can apply a similar process in homogeneous coordinates to the representations of both points and vectors Consider two coordinate frames: (P 0, v 1, v 2, v 3 ) (Q 0, u 1, u 2, u 3 ) v 3 P 0 v 1 Any point or vector can be represented in either coordinate frame. We can represent (Q 0, u 1, u 2, u 3 ) in terms of (P 0, v 1, v 2, v 3 ) v 2 u 1 u 2 Q 0 u 3 14

15 Representing One Coordinate Frame in Terms of the Other We can extend what we did with the change of basis vectors: u 1 = γ 11 v 1 + γ 12 v 2 +γ 13 v 3 u 2 = γ 21 v 1 + γ 22 v 2 +γ 23 v 3 u 3 = γ 31 v 1 + γ 32 v 2 +γ 33 v 3 Q 0 = γ 41 v 1 + γ 42 v 2 +γ 43 v 3 + P 0 by replacing the 3 3 matrix M by a 4 4 matrix as follows: M = γ 11 γ 12 γ 13 0 γ 21 γ 22 γ 23 0 γ 31 γ 32 γ 33 0 γ 41 γ 42 γ

16 Working with Representations Within the two coordinate frames any point or vector has a representation of the same form: a = α 1 α 2 α 3 α 4 in the first frame b = β 1 β 2 β 3 β 4 in the second frame where a 4 = b 4 = 1 for points and a 4 = b 4 = 0 for vectors and a = M T b The matrix M T is 4 4 and specifies an affine transformation in homogeneous coordinates 16

17 A Few Common Transformations Rigid transformation: The 4 4 matrix has the form: R t 0 T 1 where R is a 3 3 rotation matrix and t R 3 is a translation vector. Rigid transformation preserves everything (angle (this means the shape), length, area, etc) Similarity transformation: The matrix has the form: sr t 0 T 1 or R t 0 T s Large (or small) s values enlarge (or diminish) the object Small (or large) s values enlarge (or diminish) the object where s, s 1. Similarity transformation preserves angle, ratios of lengths and of areas. 17

18 A Few Common Transformations (cont.) Affine transformation: The 4 4 matrix has the form: A 0 T 1 where A can be any 3 3 non-singular matrix and t R 3 is a translation vector. Affine transformation preserves parallelism, ratios of lengths. Perspective transformation: The matrix can be any nonsingular 4 4 matrix. Perspective transformation matrix preserves cross ratios (i.e., ratio of ratios of lengths). t 18

19 A Few Common Transformations (cont.) Rigid transformation is equivalent to a change in coordinate frames. It has 6 degrees of freedom (dof) i.e. 3 rotations + 3 translations (along each of the three axes) Similarity transformation has 7 dof (an additional scaling) Affine transformation has 12 dof because the 4 elements on the last row of the matrix are fixed 3 rotations + 3 translations + 3 scaling + 3 shear 19

20 The World and Camera Coordinate Frames When we work with representations, we work with n-tuples or arrays of scalars Changes in coordinate frame are then defined by 4 4 matrices In OpenGL, the base frame that we start with is the world frame Eventually we represent entities in the camera frame by changing the world representation using the modelview matrix Initially these frames are the same (i.e, M=I) 20

21 Moving the Camera If objects are on both sides of z = 0, we must move the camera coordinate frame, e.g., M = d 1 21

22 General Transformations A transformation maps points to other points and/or vectors to other vectors v = T(u) Q=T(P) 22

23 Affine Transformations Preserving parallel lines Characteristic of many physically important transformations Rigid body transformations: rotation, translation Scaling, shear Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints 23

24 Pipeline Implementation T (from application program) u v transformation T(u) T(v) rasterizer frame buffer v T(v) T(v) u vertices (before transformation) T(u) vertices (after transformation) T(u) pixels 24

25 Notation We will be working with both coordinate-free representations of transformations and representations within a particular frame P, Q, R: points in an affine space p, q, r: representations of points - array of 4 scalars in homogeneous coordinates u, v, w: representations of vectors in an affine space - array of 4 scalars in homogeneous coordinates α, β, γ: scalars 25

26 Translation Move (translate, displace) a point to a new location P P Displacement determined by a vector d Three degrees of freedom d P = P + d 26

27 How many ways? Although we can move a point to a new location in an infinite number of ways, when we move many points (of a rigid object) there is usually only one way object translation: every point displaced by same vector 27

28 Translation using Representations Using the homogeneous coordinate representation in some frame p = [x y z 1] T p = [x y z 1] T d = [d x d y d z 0] T Hence p = p + d or x = x + d x y = y + d y z = z + d z note that this expression is in four dimensions and expresses point = vector + point 28

29 Translation Matrix We can also express translation using a 4 4 matrix T in homogeneous coordinates p = Tp where d x d T = T(d x, d y, d z ) = y d z This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together 29

30 Further Reading Interactive Computer Graphics A Top-Down Approach with Shader-Based OpenGL by Edward Angel and Dave Shreiner, 6 th Ed, 2012 Sec 3.7 to 3.9

CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Week 5 Living in a 3 dimensional world II Geometric coordinate in 3D How to move your cubes in 3D Objectives Introduce concepts

More information

Linear Independence. , v 2. is linearly independent if. =0 iff 1

Linear Independence. , v 2. is linearly independent if. =0 iff 1 Representation Objectives Introduce concepts such as dimension and basis Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces Discuss change of frames

More information

CG Basics 1 of 10. Mathematical Foundations: Vectors, Matrices, & Parametric Equations

CG Basics 1 of 10. Mathematical Foundations: Vectors, Matrices, & Parametric Equations CG Basics 1 of 10 ematical Foundations: Vectors, Matrices, & Parametric Equations William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://bit.ly/hgvxlh Course web

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSEP 557 Fall 2016 Angel 3.1, 3.7-3.11 Further reading: Angel, the rest of Chapter 3 Fole, et al, Chapter 5.1-5.5. David F. Rogers and J. Alan Adams,

More information

Reading. Affine transformations. Vector representation. Geometric transformations. x y z. x y. Required: Angel 4.1, Further reading:

Reading. Affine transformations. Vector representation. Geometric transformations. x y z. x y. Required: Angel 4.1, Further reading: Reading Required: Angel 4.1, 4.6-4.10 Further reading: Affine transformations Angel, the rest of Chapter 4 Fole, et al, Chapter 5.1-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

The Affine Group of Transformations

The Affine Group of Transformations The Affine Group of Transformations Kenneth H. Carpenter Department of Electrical and Computer Engineering Kansas State University February 26, 1997 (revised September 20, 2001) 1 Introduction The affine

More information

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2 CSC 47 Introduction to Computer Graphics Mathematical Foundations Part 2 Vector Magnitude and Unit Vectors The magnitude (length, size) of n-vector w is written w 2 2 2 w = w + w2 + + w n Example: the

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSE 557 Fall 2009 Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan

More information

Affine transformations. Brian Curless CSE 557 Fall 2014

Affine transformations. Brian Curless CSE 557 Fall 2014 Affine transformations Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.1-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.1-5.5. David F. Rogers and J.

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Monday October 3: Discussion Assignment

More information

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1 Lecture 04: Transform COMP 75: Computer Graphics February 9, 206 /59 Admin Sign up via email/piazza for your in-person grading Anderson@cs.tufts.edu 2/59 Geometric Transform Apply transforms to a hierarchy

More information

2018 Fall 2210Q Section 013 Midterm Exam I Solution

2018 Fall 2210Q Section 013 Midterm Exam I Solution 8 Fall Q Section 3 Midterm Exam I Solution True or False questions ( points = points) () An example of a linear combination of vectors v, v is the vector v. True. We can write v as v + v. () If two matrices

More information

Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu.

Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu. Fundamentals of Computer Graphics Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu liuyongjin@tsinghua.edu.cn Material by S.M.Lea (UNC) Introduction In computer graphics, we work with

More information

Introduction. Introduction (2) Easy Problems for Vectors 7/13/2011. Chapter 4. Vector Tools for Graphics

Introduction. Introduction (2) Easy Problems for Vectors 7/13/2011. Chapter 4. Vector Tools for Graphics Introduction Chapter 4. Vector Tools for Graphics In computer graphics, we work with objects defined in a three dimensional world (with 2D objects and worlds being just special cases). All objects to be

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 1 due next Friday at

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

3D SOLAR SYSTEM VISUALIZATION WITH OpenGL

3D SOLAR SYSTEM VISUALIZATION WITH OpenGL 3D SOLAR SYSTEM VISUALIZATION WITH OpenGL Feby Fitria 1, Riri Safitri 2 Informatics Engineering, Al Azhar Indonesia University, Jakarta, Indonesia febyfitria@yahoo.com 1, riri@uai.ac.id 2 ABSTRACT Computer

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

A geometric interpretation of the homogeneous coordinates is given in the following Figure.

A geometric interpretation of the homogeneous coordinates is given in the following Figure. Introduction Homogeneous coordinates are an augmented representation of points and lines in R n spaces, embedding them in R n+1, hence using n + 1 parameters. This representation is useful in dealing with

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

03 - Basic Linear Algebra and 2D Transformations

03 - Basic Linear Algebra and 2D Transformations 03 - Basic Linear Algebra and 2D Transformations (invited lecture by Dr. Marcel Campen) Overview In this box, you will find references to Eigen We will briefly overview the basic linear algebra concepts

More information

Vector and Affine Math

Vector and Affine Math Vector and Affine Math Computer Science Department The Universit of Teas at Austin Vectors A vector is a direction and a magnitude Does NOT include a point of reference Usuall thought of as an arrow in

More information

Homogeneous Coordinates

Homogeneous Coordinates Homogeneous Coordinates Basilio Bona DAUIN-Politecnico di Torino October 2013 Basilio Bona (DAUIN-Politecnico di Torino) Homogeneous Coordinates October 2013 1 / 32 Introduction Homogeneous coordinates

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

I&C 6N. Computational Linear Algebra

I&C 6N. Computational Linear Algebra I&C 6N Computational Linear Algebra 1 Lecture 1: Scalars and Vectors What is a scalar? Computer representation of a scalar Scalar Equality Scalar Operations Addition and Multiplication What is a vector?

More information

Transformations. Chapter D Transformations Translation

Transformations. Chapter D Transformations Translation Chapter 4 Transformations Transformations between arbitrary vector spaces, especially linear transformations, are usually studied in a linear algebra class. Here, we focus our attention to transformation

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011 October 8, 2011 College of Computer and Information Science, Northeastern Universit 1 Toda s Topics Linear Algebra Review

More information

Geometric Image Manipulation

Geometric Image Manipulation Bruce A. Draper J. Ross Beveridge, January 24, 204 Geometric Image Manipulation Lecture (part a) January 24, 204 Bruce A. Draper J. Ross Beveridge, January 24, 204 Status Update Programming assignment

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading:

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading: Reading Required: Watt, Section.. Further reading: 4. Affine transformations Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd Ed., McGraw-Hill,

More information

Linear Algebra Review Part I: Geometry

Linear Algebra Review Part I: Geometry Linear Algebra Review Part I: Geometry Edwin Olson University of Michigan The Three-Day Plan Geometry of Linear Algebra Vectors, matrices, basic operations, lines, planes, homogeneous coordinates, transformations

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Mathematical Fundamentals

Mathematical Fundamentals Mathematical Fundamentals Ming-Hwa Wang, Ph.D. COEN 148/290 Computer Graphics COEN 166/366 Artificial Intelligence COEN 396 Interactive Multimedia and Game Programming Department of Computer Engineering

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Homogeneous Transformations

Homogeneous Transformations Purpose: Homogeneous Transformations The purpose of this chapter is to introduce you to the Homogeneous Transformation. This simple 4 x 4 transformation is used in the geometry engines of CAD systems and

More information

Section 2.2: The Inverse of a Matrix

Section 2.2: The Inverse of a Matrix Section 22: The Inverse of a Matrix Recall that a linear equation ax b, where a and b are scalars and a 0, has the unique solution x a 1 b, where a 1 is the reciprocal of a From this result, it is natural

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Chapter 8. Rigid transformations

Chapter 8. Rigid transformations Chapter 8. Rigid transformations We are about to start drawing figures in 3D. There are no built-in routines for this purpose in PostScript, and we shall have to start more or less from scratch in extending

More information

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n.

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n. 0 Subspaces (Now, we are ready to start the course....) Definitions: A linear combination of the vectors v, v,..., v m is any vector of the form c v + c v +... + c m v m, where c,..., c m R. A subset V

More information

CS 112 Transformations II. Aditi Majumder, CS 112 Slide 1

CS 112 Transformations II. Aditi Majumder, CS 112 Slide 1 CS 112 Transformations II Aditi Majumder, CS 112 Slide 1 Composition of Transformations Example: A point P is first translated and then rotated. Translation matrix T, Rotation Matrix R. After Translation:

More information

Math 220: Summer Midterm 1 Questions

Math 220: Summer Midterm 1 Questions Math 220: Summer 2015 Midterm 1 Questions MOST questions will either look a lot like a Homework questions This lists draws your attention to some important types of HW questions. SOME questions will have

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS

AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS On-Line Geometric Modeling Notes AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University

More information

Matrix-Vector Products and the Matrix Equation Ax = b

Matrix-Vector Products and the Matrix Equation Ax = b Matrix-Vector Products and the Matrix Equation Ax = b A. Havens Department of Mathematics University of Massachusetts, Amherst January 31, 2018 Outline 1 Matrices Acting on Vectors Linear Combinations

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 2: Rigid Motions and Homogeneous Transformations

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 2: Rigid Motions and Homogeneous Transformations MCE/EEC 647/747: Robot Dynamics and Control Lecture 2: Rigid Motions and Homogeneous Transformations Reading: SHV Chapter 2 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/22 Representing Points, Vectors

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

Lecture 02: 2D Geometry. August 24, 2017

Lecture 02: 2D Geometry. August 24, 2017 Lecture 02: 2D Geometry August 24, 207 This Came Up Tuesday Know what radiosity computation does. Do not expect to implement nor see underlying equations this semester. 8/24/7 CSU CS40 Fall 207, Ross Beveridge

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

2. Preliminaries. x 2 + y 2 + z 2 = a 2 ( 1 )

2. Preliminaries. x 2 + y 2 + z 2 = a 2 ( 1 ) x 2 + y 2 + z 2 = a 2 ( 1 ) V. Kumar 2. Preliminaries 2.1 Homogeneous coordinates When writing algebraic equations for such geometric objects as planes and circles, we are used to writing equations that

More information

Vectors and Matrices

Vectors and Matrices Vectors and Matrices Scalars We often employ a single number to represent quantities that we use in our daily lives such as weight, height etc. The magnitude of this number depends on our age and whether

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 8: Inverse of a Matrix Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Announcements We will not make it to section. tonight,

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

6.837 LECTURE 8. Lecture 8 Outline Fall '01. Lecture Fall '01

6.837 LECTURE 8. Lecture 8 Outline Fall '01. Lecture Fall '01 6.837 LECTURE 8 1. 3D Transforms; Part I - Priciples 2. Geometric Data Types 3. Vector Spaces 4. Basis Vectors 5. Linear Transformations 6. Use of Matrix Operators 7. How to Read a Matrix Expression 8.

More information

Determinant: 3.3 Properties of Determinants

Determinant: 3.3 Properties of Determinants Determinant: 3.3 Properties of Determinants Summer 2017 The most incomprehensible thing about the world is that it is comprehensible. - Albert Einstein Goals Learn some basic properties of determinant.

More information

Basic Linear Algebra. Florida State University. Acknowledgements: Daniele Panozzo. CAP Computer Graphics - Fall 18 Xifeng Gao

Basic Linear Algebra. Florida State University. Acknowledgements: Daniele Panozzo. CAP Computer Graphics - Fall 18 Xifeng Gao Basic Linear Algebra Acknowledgements: Daniele Panozzo Overview We will briefly overview the basic linear algebra concepts that we will need in the class You will not be able to follow the next lectures

More information

Linear Algebra (wi1403lr) Lecture no.4

Linear Algebra (wi1403lr) Lecture no.4 Linear Algebra (wi1403lr) Lecture no.4 EWI / DIAM / Numerical Analysis group Matthias Möller 29/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 29/04/2014 1 / 28 Review of lecture no.3 1.5 Solution Sets

More information

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008 Robotics & Automation Lecture 06 Serial Kinematic Chain, Forward Kinematics John T. Wen September 11, 2008 So Far... We have covered rigid body rotational kinematics: representations of SO(3), change of

More information

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns L. Vandenberghe ECE133A (Winter 2018) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

More information

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 Original Lecture #1: 1 October 1992 Topics: Affine vs. Projective Geometries Scribe:

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technolog 3D Engines and Scene Graphs Spring 202 Universit of Teas at Austin CS 378 Game Technolog Don Fussell Representation! We can represent a point, p =,), in the plane! as a

More information

Minimal representations of orientation

Minimal representations of orientation Robotics 1 Minimal representations of orientation (Euler and roll-pitch-yaw angles) Homogeneous transformations Prof. lessandro De Luca Robotics 1 1 Minimal representations rotation matrices: 9 elements

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

Ridig Body Motion Homogeneous Transformations

Ridig Body Motion Homogeneous Transformations Ridig Body Motion Homogeneous Transformations Claudio Melchiorri Dipartimento di Elettronica, Informatica e Sistemistica (DEIS) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri (DEIS)

More information

Linear transformations

Linear transformations Linear Algebra with Computer Science Application February 5, 208 Review. Review: linear combinations Given vectors v, v 2,..., v p in R n and scalars c, c 2,..., c p, the vector w defined by w = c v +

More information

Lecture 10: Determinants and Cramer s Rule

Lecture 10: Determinants and Cramer s Rule Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. -by-

More information

Matrix Algebra. Learning Objectives. Size of Matrix

Matrix Algebra. Learning Objectives. Size of Matrix Matrix Algebra 1 Learning Objectives 1. Find the sum and difference of two matrices 2. Find scalar multiples of a matrix 3. Find the product of two matrices 4. Find the inverse of a matrix 5. Solve a system

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Lecture 7: Introduction to linear systems

Lecture 7: Introduction to linear systems Lecture 7: Introduction to linear systems Two pictures of linear systems Consider the following system of linear algebraic equations { x 2y =, 2x+y = 7. (.) Note that it is a linear system with two unknowns

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

2D Geometric Transformations. (Chapter 5 in FVD)

2D Geometric Transformations. (Chapter 5 in FVD) 2D Geometric Transformations (Chapter 5 in FVD) 2D geometric transformation Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2 2D Geometric Transformations Question:

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

Mathematics for 3D Graphics

Mathematics for 3D Graphics math 1 Topics Mathematics for 3D Graphics math 1 Points, Vectors, Vertices, Coordinates Dot Products, Cross Products Lines, Planes, Intercepts References Many texts cover the linear algebra used for 3D

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 Scott Strong sstrong@mines.edu Colorado School of Mines What is the Matrix? p. 1/20 Overview/Keywords/References Advanced

More information

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers, where a is the x-coordinate and b is the y-coordinate.

More information

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99 ESC 489 3D ransforms 1 igid Bod ransforms-3d J.C. Dill transforms3d 27Jan99 hese notes on (2D and) 3D rigid bod transform are currentl in hand-done notes which are being converted to this file from that

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Examples: u = is a vector in 2. is a vector in 5.

Examples: u = is a vector in 2. is a vector in 5. 3 Vectors and vector equations We'll carefully define vectors, algebraic operations on vectors and geometric interpretations of these operations, in terms of displacements These ideas will eventually give

More information

Matrix Calculations: Linear maps, bases, and matrices

Matrix Calculations: Linear maps, bases, and matrices Matrix Calculations: Linear maps, bases, and matrices A Kissinger Institute for Computing and Information Sciences Version: autumn 2017 A Kissinger Version: autumn 2017 Matrix Calculations 1 / 37 Outline

More information

Linear and affine transformations

Linear and affine transformations Linear and affine transformations Linear Algebra Review Matrices Transformations Affine transformations in Euclidean space 1 The linear transformation given b a matri Let A be an mn matri. The function

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information