Chapter 3 Problem Solutions

Size: px
Start display at page:

Download "Chapter 3 Problem Solutions"

Transcription

1 Chate Poblem Solutions Poblem A Equation (5) gives P P G G log h log h L 4 log d t t t sys Substituting gives P log 6 log log 4 log 875 m B The wavelength is given by 8 The fee-sace ath loss is then 9 5 m 4d 4 L ath log log 5 The eceived owe in fee sace is given by the ange equation: P P G G L L t t sys ath log 6 7 m C Equation (6) gives hh t A Adi sin d The agument of the sine function is hh t 754 d 5 Then sin That is, the agument is about % lage than the sine Poblem Fom the geomety of Figue, Chate,

2 ht tan i x tan, x which gives x 5 m Similaly, h tan d x tan, d x which gives dx 7 m Adding gives Now Equation (6) gives Equation (7) gives d m hh t A Adi sin Adi sin 8 A di d 5 4 hh t 4 A Adi Adi 9 A di d 5 Relative to the value obtained fom Equation (6), the aoximation of 9A di Equation (7) is log 99 8Adi Poblem We stat by calculating the themal noise floo The noise figue is F 9 o F 794 The noise owe efeed to the eceive inut is P kt B kt B F n ant In decibels this is W P m Then fo a SNR of 7 we need a n signal owe of P 7 m A Fom Equation (5) we have m log 6 log log 6 4 log 844 m 4log d Solving gives d 484 km d Chate,

3 B In fee sace the ange equation gives m log 6 L ath This gives a maximum ath loss of L 54 Now ath 4 d L ath log At 85 MHz the wavelength is 5 m 6 Substituting gives d 4 m Poblem 4 Since the noise and intefeence owes add, we will have to wok with owe athe than with decibels Fom Poblem we know that the 8 noise floo is at 957 W The signal owe is 7 highe, o P n 5 48 W P The signal owe exceeds the sum of intefeence and noise by 6, o by a facto of 98 That is, 5 P P P 957 P Solving gives the intefeence owe as n i i 8 P i 48 W That is, P 6 m Now fo tansmission ove a flat eath we have i 6 m log 6 log log 6 4 log 844 m 4log d, i d whee d i is the distance fom base station B to the hand-held eceive Solving gives d 8 km The seaation between base stations is then i d d d km AB i i Poblem 5 A Equation (4) gives a h e log 75h 497 fo f 4 MHz e = log Then Equation () gives the median ath loss as Chate,

4 log 8 log te loghte logd a he log 8 log log log 5 L uban f h 5 67 B The eceived signal owe is given by P 5 log m m C Using Equation (5), P 5 log 7 log log log 88 m The flat Eath model gives an ovely otimistic estimate of the eceived signal owe Poblem 6 We stat by calculating the themal noise floo The noise figue is F 6 o F 98 The noise owe efeed to the eceive inut is Pn kt BF In decibels this is W P n m Then fo a SNR of 8 we need a signal owe of P 8 5 m A Using the aametes fom at B of Poblem 5 we have 5 5 m log m 7 4 L5 uban db The maximum ath loss is gives L5 uban 5 The Hata model f hte log hte log d ahe log log d log 8 log log 8 log Chate, 4

5 Solving gives d 45 km B Using Equation (5), 5 5 m log 7 log log6 4 4 log d Solving gives d 4 km The flat Eath model oveestimates the maximum ange by an ode of magnitude Poblem 7 Equation (5) gives a h log f 7 h 56log f 8 e e log log 8 45 Then Equation () gives the median ath loss in uban aeas as log 8 log te loghte logd a he log 8 log log log 45 L uban f h 5 67 In sububan aeas we have fom Equation (6) In ual aeas Equation (7) gives L sububan L uban log f log L ual L uban 478 log f 8log f log 8log Poblem 8 In the Lee model, distances ae measued in feet and miles Conveting the aametes given in Poblem 5 gives h 984 ft, h 55 ft, and d 746 mi Now Equation (5) gives t Chate, 5

6 c log log log 85 5 log Table gives P mile 77 m and 48 fo New Yok Equation (49), modified to include system losses, gives 746 P,5 77 m 48log m Poblem 9 In the solution to Poblem 6 we showed that the minimum eceived signal owe is P 5 m Using the numbes fom Poblem 8, we have d 5 m 77 m 48log Solving gives d 98 mi, o 8 km This is lowe than the 45 km obtained in Poblem 6 using the Hata model Pat of the diffeence may be a consequence of the lage value of ath-loss exonent that the Lee model uses fo New Yok City Poblem Fom Equation (64) we have P f m PQ P P Q Q, ath ath whee the fade magin f m is given by f m P Poblem The eceive sensitivity is m 5 95 m Fom the solution to Poblem we have fm PQ 85 Q 7 Chate, 6

7 This is equivalent to f m 5 Q 7 Solving gives f 76 m Fade magin is defined by f m P Substituting gives P f 95 m m m Poblem Equation (5) gives c 5 8 log log log Table gives P mile 7 m and 68 fo Philadelhia Equation (49), modified to include system losses, gives P,5 7 m 68log 6 5 m A A eceived signal owe above the median owe is -5 m Fom Equation (64) we have P P P Q ath 5 m 5 m P P 5 m Q 8 Q 5 6 B At 5 mi the median eceived signal owe is Then, P,5 5 5 mi 7 m 68log 6 4 m 5 m 4 m P P 5 mi 5 m Q 8 Q Chate, 7

8 Poblem The eceive s themal noise floo is given by 5 Pn ktbf W, o P 5 m The eceive sensitivity is 5 above the noise n floo, o 5 m 5 m Now Solving gives, P m P P P 9 Q Q ath 8 P 897 m Using the Lee model fom Poblem d 897 m 7 m 68log 6 Solving gives the maximum oeating ange as d mi o 78 km Poblem 4 A Fom Poblem we have The equied fade magin is f m P P Q ath f 987 m fm 95 Q 6 B The eceive s noise figue is F 4 o F 5 We find the eceive s noise floo to be o Pn kt BF W, P 5 m The eceive sensitivity is above this noise n floo, o m Since the fade magin is given by f P, we have the equied median eceived signal level m P f 987 m m m C The tansmitted owe is 5 W o Pt 454 m The ange equation gives m 454 m 6 L ath, so the maximum ath loss is L 54 ath Chate, 8

9 Fo a medium-sized city Equation (5) gives e log 7 e 56log 8 a h f h f log log 8 96 Then Equation () gives log 8 log te loghte logd a he log 8 loghte loghte log log h L uban f h 5 Setting h h 64 m te log te, gives the equied antenna height as te Poblem 5 Equation (8) gives A A A A A cos f t t The amlitude A is at its eak when f t t f t t n Now Then and cos, o f d c t d c t t, t Substituting and solving fo f gives f nf f, as equied Similaly a the amlitude A is at a null when cos f t t, o f t t n Chate, 9

10 Substituting as above and solving fo f gives f nf f, as equied The diffeence between two successive fequency eaks is f f t t In Figue 6 we ae given t t 5 μs This imlies f MHz The figue shows eaks at 85 MHz, 85 MHz, and 854 MHz, which is consistent with the ediction Poblem 6 Using Equation () with the aveage owe P, P P P P e d P P P e e P 68 Poblem 7 Using Equation () with the aveage owe P,min,min P P,,min P SNR SNRmin P P P,min Pn P n e e P P d 95 Solving gives Conveting to decibels gives,min P n 5 P 95,min P 95 P P,min SNR 95 SNR n min Chate,

11 SNR 9 SNR min Poblem 8 Conveting out of decibels gives the following owes and coesonding delays: Powe Delay Data Relative Powe Delay (μs ) Then Equation () gives k t k 486 μs, Equation () gives t 54 s, Equation () gives 6 μs, and Equation (5) gives B coh 48 khz The maximum system data ate deends on the ulse shae and sectal efficiency used Fo examle, if binay hase-shift keying is used with ectangula ulses, then a 48 khz bandwidth can suot a 74 kbits/s data ate d Poblem 9 8 At a fequency of 9 GHz the wavelength is 58 m 9 9 The eceive s velocity is 6 mh, o v 68 m/s The maximum v 68 Dole shift is then f d 7 Hz Signals aive ove the two 58 aths with Dole shifts of f f cos 5 69 Hz f d d d f cos 85 d 48 Hz The Dole sead is then fdf d 54 Hz The eiod of a fading cycle is given by Equation (4) as t nn 648 ms 54 At a bit ate of 88 Mbits/s, the duation of one bit is T 84 ns Then since T T, the fading is slow Altenatively we can calculate sig nn sig Chate,

12 the coheence time using Equation (47) to be T Since Tsig T coh the fading is slow To esimate the velocity needed fo fast fading, set T T sig coh coh 9 6 f 84 v d 5 ms Solving gives v 48 km/s, o 77,8 mh Poblem Fist, 9 u ath 9 4 Using Figue with an aea coveage of 4 P R Next F gives a equied bounday coveage of 75 Equation (64) gives f m 75 P R P P sens R sens Q ath Solving gives the fade magin f 67 m sens Chate,

c( 1) c(0) c(1) Note z 1 represents a unit interval delay Figure 85 3 Transmit equalizer functional model

c( 1) c(0) c(1) Note z 1 represents a unit interval delay Figure 85 3 Transmit equalizer functional model Relace 85.8.3.2 with the following: 85.8.3.2 Tansmitted outut wavefom The 40GBASE-CR4 and 100GBASE-CR10 tansmit function includes ogammable equalization to comensate fo the fequency-deendent loss of the

More information

Revision of Lecture Eight

Revision of Lecture Eight Revision of Lectue Eight Baseband equivalent system and equiements of optimal tansmit and eceive filteing: (1) achieve zeo ISI, and () maximise the eceive SNR Thee detection schemes: Theshold detection

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications Mobile and Satellite Communications Lectue 3 Radio Channel Modelling Channel Models If one was to walk away fom a base station, and measue the powe level eceived, a plot would like this: Channel Models

More information

Giuseppe Bianchi, Ilenia Tinnirello

Giuseppe Bianchi, Ilenia Tinnirello Powe units - ecibel Decibel (B): logaithmic unit of intensity use to inicate powe lost o gaine between two signals Name afte Alexane Gaham Bell. ( ) log P P 1 / Decibels - Bm» Not much use by us 1BW30Bm

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Contol Systems Fequency Domain Analysis The fequency esponse of a system is defined as the steady-state esponse of the system to a sinusoidal (hamonic) input. Fo linea systems, the esulting steady-state

More information

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation.

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation. Sona Equation: The Wave Equation The Geat Wave Hokusai LO: Recognize hysical inciles associated with tems in sona equation. the Punchline If density too high to esolve individual oganisms, then: E[enegy

More information

Applications of radars: Sensing of clouds and precipitation.

Applications of radars: Sensing of clouds and precipitation. Lectue 1 Applications of adas: Sensing of clouds and pecipitation. Ojectives: 1. aticle ackscatteing and ada equation.. Sensing of pecipitation and clouds with adas (weathe adas, space adas: TMM and CloudSat).

More information

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10 Class XII - Physics Wave Optics Chapte-wise Poblems Answes Chapte (c) (a) 3 (a) 4 (c) 5 (d) 6 (a), (b), (d) 7 (b), (d) 8 (a), (b) 9 (a), (b) Yes Spheical Spheical with huge adius as compaed to the eath

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Analysis of Finite Word-Length Effects

Analysis of Finite Word-Length Effects T-6.46 Digital Signal Pocessing and Filteing 8.9.4 Intoduction Analysis of Finite Wod-Length Effects Finite wodlength effects ae caused by: Quantization of the filte coefficients ounding / tuncation of

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math Pecalculus Ch. 6 Review Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. ) ) 6 7 0 Two sides and an angle (SSA) of a tiangle ae

More information

Mobile Radio Communications

Mobile Radio Communications Course 3: Radio wave propagation Session 3, page 1 Propagation mechanisms free space propagation reflection diffraction scattering LARGE SCALE: average attenuation SMALL SCALE: short-term variations in

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Amplitude and Phase Fluctuations for Gravitational Waves Propagating through Inhomogeneous Mass Distribution in the Universe

Amplitude and Phase Fluctuations for Gravitational Waves Propagating through Inhomogeneous Mass Distribution in the Universe Amplitude and Phase Fluctuations fo Gavitational Waves Popagating though Inhomogeneous Mass Distibution in the Univese Ryuichi Takahashi Nagoya Univ. PD RT ApJ 644 80 006 RT, uyama & Michikoshi A&A 438

More information

Experiment I Voltage Variation and Control

Experiment I Voltage Variation and Control ELE303 Electicity Netwoks Expeiment I oltage aiation and ontol Objective To demonstate that the voltage diffeence between the sending end of a tansmission line and the load o eceiving end depends mainly

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db . (Balanis 6.43) You can confim tat AF = e j kd cosθ + e j kd cosθ N = cos kd cosθ gives te same esult as (6-59) and (6-6), fo a binomial aay wit te coefficients cosen as in section 6.8.. Tis single expession

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Online-routing on the butterfly network: probabilistic analysis

Online-routing on the butterfly network: probabilistic analysis Online-outing on the buttefly netwok: obabilistic analysis Andey Gubichev 19.09.008 Contents 1 Intoduction: definitions 1 Aveage case behavio of the geedy algoithm 3.1 Bounds on congestion................................

More information

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES EKT 345 MICROWAVE ENGINEERING CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and close

More information

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II ENGR 990 Engineeing Mathematics pplication of Tigonometic Functions in Mechanical Engineeing: Pat II Poblem: Find the coodinates of the end-point of a two-link plana obot am Given: The lengths of the links

More information

FREE SPACE OPTICS - MEASUREMENT OF TRANSMISSION QUALITY LINK PARAMETERS

FREE SPACE OPTICS - MEASUREMENT OF TRANSMISSION QUALITY LINK PARAMETERS FREE SPACE OPTICS - MEASUREMENT OF TRANSMISSION QUALITY LINK PARAMETERS Pavel Hovořák, Otaka Wilfet Depatment of Radioelectonics, Bno Univesity of Technology, Faculty of Electical Engineeing and Communication,

More information

Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013 METR

Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013 METR Review Dopple Rada (Fig. 3.1) A simplified block diagam 10/9-11/11/013 METR 5004 1 A ( θϕ, ) exp ψt c i Ei = j π f t + j E A ( θϕ, ) = exp jπ f t + jψt c 4π Vi = Aiexp jπ ft j + jψt λ jq(t) ψ e Complex

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

A Deep Convolutional Neural Network Based on Nested Residue Number System

A Deep Convolutional Neural Network Based on Nested Residue Number System A Deep Convolutional Neual Netwok Based on Nested Residue Numbe System Hioki Nakahaa Ehime Univesity, Japan Tsutomu Sasao Meiji Univesity, Japan Abstact A pe-tained deep convolutional neual netwok (DCNN)

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by Poblem Pat a The nomal distibution Gaussian distibution o bell cuve has the fom f Ce µ Calculate the nomalization facto C by equiing the distibution to be nomalized f Substituting in f, defined above,

More information

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER Jey N. Baham Anand B. Shetty Mechanical Kinesiology Laboatoy Depatment of Kinesiology Univesity of Nothen Coloado Geeley, Coloado Muscle powe is one

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

This brief note explains why the Michel-Levy colour chart for birefringence looks like this...

This brief note explains why the Michel-Levy colour chart for birefringence looks like this... This bief note explains why the Michel-Levy colou chat fo biefingence looks like this... Theoy of Levy Colou Chat fo Biefingent Mateials Between Cossed Polas Biefingence = n n, the diffeence of the efactive

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Physics 1C Fall 2011: Quiz 1 Version A 1

Physics 1C Fall 2011: Quiz 1 Version A 1 Physics 1C Fall 2011: Quiz 1 Vesion A 1 Depatment of Physics Physics 1C Fall Quate - 2011 D. Mak Paddock INSTRUCTIONS: 1. Pint you full name below LAST NAME FIRST NAME MIDDLE INITIAL 2. You code numbe

More information

Cross section dependence on ski pole sti ness

Cross section dependence on ski pole sti ness Coss section deendence on ski ole sti ness Johan Bystöm and Leonid Kuzmin Abstact Ski equiment oduce SWIX has ecently esented a new ai of ski oles, called SWIX Tiac, which di es fom conventional (ound)

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

! Frequency Response of LTI Systems. " Magnitude Response. " Phase Response. " Example: Zero on Real Axis. ! We can define a magnitude response

! Frequency Response of LTI Systems.  Magnitude Response.  Phase Response.  Example: Zero on Real Axis. ! We can define a magnitude response Lectue Outline ESE 53: Digital Signal Pocessing Lec 3: Febuay 23st, 207 Fequency Response of LTI Systems! Fequency Response of LTI Systems " agnitude Response " Simple Filtes " Phase Response " Goup Delay

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Absolute Specifications: A typical absolute specification of a lowpass filter is shown in figure 1 where:

Absolute Specifications: A typical absolute specification of a lowpass filter is shown in figure 1 where: FIR FILTER DESIGN The design of an digital filte is caied out in thee steps: ) Specification: Befoe we can design a filte we must have some specifications. These ae detemined by the application. ) Appoximations

More information

6.1: Angles and Their Measure

6.1: Angles and Their Measure 6.1: Angles and Thei Measue Radian Measue Def: An angle that has its vetex at the cente of a cicle and intecepts an ac on the cicle equal in length to the adius of the cicle has a measue of one adian.

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # Review Math (Pe -calculus) Name MULTIPLE CHOICE. Choose the one altenative that best completes the statement o answes the question. Use an identit to find the value of the epession. Do not use a

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction Fast DCT-based image convolution algoithms and application to image esampling and hologam econstuction Leonid Bilevich* a and Leonid Yaoslavsy** a a Depatment of Physical Electonics, Faculty of Engineeing,

More information

CHAPTER 3 NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF SOLIDIFICATION IN A CYLINDRICAL PCM STORAGE UNIT

CHAPTER 3 NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF SOLIDIFICATION IN A CYLINDRICAL PCM STORAGE UNIT 46 CHAPER 3 NUMERICAL AND EXPERIMENAL INVESIGAIONS OF SOLIDIFICAION IN A CYLINDRICAL PCM SORAGE UNI he design of a PCM based stoage system along with the flow of heat tansfe fluids (HF) involves solidification

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing.5 Advanced Fluid Mechanics Poblem 6.1 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin The sketch shows a cicula beaing pad which

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

Homework Set 3 Physics 319 Classical Mechanics

Homework Set 3 Physics 319 Classical Mechanics Homewok Set 3 Phsics 319 lassical Mechanics Poblem 5.13 a) To fin the equilibium position (whee thee is no foce) set the eivative of the potential to zeo U 1 R U0 R U 0 at R R b) If R is much smalle than

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005 MIT OpenouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion Sping 2005 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 6.641 Electomagnetic

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

where a = x 10-3 for units of kcal/mol

where a = x 10-3 for units of kcal/mol Detemining the Enegy of Activation Paametes fom Dynamic MR Expeiments: -D. Rich Shoemake (Souce: Dynamic MR Spectoscopy by J. Sandstöm, and me) he esults contained in this document have been published:

More information

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic In the fixed-oint imlementation of a digital filte only the esult of the multilication oeation is quantied The eesentation of a actical multilie with the quantie at its outut is shown below u v Q ^v The

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Wave Incidence. Dr. Cruz-Pol. Normal Incidence. Ex.1. Light traveling in air encounters the water; another medium.

Wave Incidence. Dr. Cruz-Pol. Normal Incidence. Ex.1. Light traveling in air encounters the water; another medium. D. Cu-Pol Ex.1. Light taveling in ai encountes the wate; anothe medium. Wave Incidence [Chapte 10 cont, Sadiku] D. Sanda Cu-Pol Electical and Compute Engineeing Dept. UPR-Maagüe Ex.1. Light encountes atmosphee,

More information

Retrieval of three-dimensional distribution of rainfall parameters for rain attenuation correction using multi-parameter radar

Retrieval of three-dimensional distribution of rainfall parameters for rain attenuation correction using multi-parameter radar Retieval of thee-dimensional distibution of ainfall paametes fo ain attenuation coection using multi-paamete ada Dong-Soon Kim 1, Dong-In Lee 1, Masayuki Maki 2 and Ji-Young Gu 1 1 Depatment of Envionmental

More information

A Cross Section surface tension viscosity σ U 2 10 inertia gravity gd

A Cross Section surface tension viscosity σ U 2 10 inertia gravity gd .5 Final Exam 005 SOLUTION Question U A Coss Section Photo emoved fo copyight easons. Souce: Figue 7l in Clanet, C. "Dynamics and stability of wate bells." J. Fluid Mech 40 (00): -47. R d Tooidal im U

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Improvement in Accuracy for Design of Multidielectric Layers Microstrip Patch Antenna

Improvement in Accuracy for Design of Multidielectric Layers Microstrip Patch Antenna 498 Impovement in Accuacy fo Design of Multidielectic Layes Micostip Patch Antenna Sami Dev Gupta*, Anvesh Gag and Anuag P. Saan Jaypee Institute of Infomation Technology Univesity Noida, Utta Padesh,

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Galois Contest. Wednesday, April 12, 2017

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Galois Contest. Wednesday, April 12, 2017 The ENTRE fo EDUATIN in MATHEMATIS and MPUTING cemc.uwateloo.ca 2017 Galois ontest Wednesday, Apil 12, 2017 (in Noth Ameica and South Ameica) Thusday, Apil 13, 2017 (outside of Noth Ameica and South Ameica)

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet Advanced Subsidiay GCE (H57) Advanced GCE (H557) Physics B (Advancing Physics) Data, Fomulae and Relationships Booklet The infomation in this booklet is fo the use of candidates following the Advanced

More information

Inverse Square Law and Polarization

Inverse Square Law and Polarization Invese Squae Law and Polaization Objectives: To show that light intensity is invesely popotional to the squae of the distance fom a point light souce and to show that the intensity of the light tansmitted

More information

DESIGN OF BEAMS FOR MOMENTS

DESIGN OF BEAMS FOR MOMENTS CHAPTER Stuctual Steel Design RFD ethod Thid Edition DESIGN OF BEAS FOR OENTS A. J. Clak School of Engineeing Deatment of Civil and Envionmental Engineeing Pat II Stuctual Steel Design and Analysis 9 FA

More information

Max/Min Word Problems (Additional Review) Solutions. =, for 2 x 5 1 x 1 x ( 1) 1+ ( ) ( ) ( ) 2 ( ) x = 1 + (2) 3 1 (2) (5) (5) 4 2

Max/Min Word Problems (Additional Review) Solutions. =, for 2 x 5 1 x 1 x ( 1) 1+ ( ) ( ) ( ) 2 ( ) x = 1 + (2) 3 1 (2) (5) (5) 4 2 . a) Given Ma/Min Wod Poblems (Additional Review) Solutions + f, fo 5 ( ) + f (i) f 0 no solution ( ) (ii) f is undefined when (not pat of domain) Check endpoints: + () f () () + (5) 6 f (5) (5) 4 (min.

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs.

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs. MAP4C1 Exam Review Exam Date: Time: Room: Mak Beakdown: Answe these questions on a sepaate page: 1. Which equations model quadatic elations? i) ii) iii) 2. Expess as a adical and then evaluate: a) b) 3.

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Empirical Prediction of Fitting Densities in Industrial Workrooms for Ray Tracing. 1 Introduction. 2 Ray Tracing using DRAYCUB

Empirical Prediction of Fitting Densities in Industrial Workrooms for Ray Tracing. 1 Introduction. 2 Ray Tracing using DRAYCUB Empiical Pediction of Fitting Densities in Industial Wokooms fo Ray Tacing Katina Scheebnyj, Muay Hodgson Univesity of Bitish Columbia, SOEH-MECH, Acoustics and Noise Reseach Goup, 226 East Mall, Vancouve,

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8 Poblem Set #0 Math 47 Real Analysis Assignment: Chate 8 #2, 3, 6, 8 Clayton J. Lungstum Decembe, 202 xecise 8.2 Pove the convese of Hölde s inequality fo = and =. Show also that fo eal-valued f / L ),

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Topic 4a Introduction to Root Finding & Bracketing Methods

Topic 4a Introduction to Root Finding & Bracketing Methods /8/18 Couse Instucto D. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: cumpf@utep.edu Topic 4a Intoduction to Root Finding & Backeting Methods EE 4386/531 Computational Methods in EE Outline

More information

Chapter 8 Sampling. Contents. Dr. Norrarat Wattanamongkhol. Lecturer. Department of Electrical Engineering, Engineering Faculty, sampling

Chapter 8 Sampling. Contents. Dr. Norrarat Wattanamongkhol. Lecturer. Department of Electrical Engineering, Engineering Faculty, sampling Content Chate 8 Samling Lectue D Noaat Wattanamongkhol Samling Theoem Samling of Continuou-Time Signal 3 Poceing Continuou-Time Signal 4 Samling of Dicete-Time Signal 5 Multi-ate Samling Deatment of Electical

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES EKT 356 MICROWAVE COMMUNICATIONS CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

EXAM NMR (8N090) November , am

EXAM NMR (8N090) November , am EXA NR (8N9) Novembe 5 9, 9. 1. am Remaks: 1. The exam consists of 8 questions, each with 3 pats.. Each question yields the same amount of points. 3. You ae allowed to use the fomula sheet which has been

More information

Broadband Noise Predictions Based on a New Aeroacoustic Formulation

Broadband Noise Predictions Based on a New Aeroacoustic Formulation Boadband Noise Pedictions Based on a New Aeoacoustic Fomulation J. Caspe and F. Faassat NASA Langley Reseach Cente Hampton, Viginia AIAA Pape -8 Aifame Noise Session 4 th AIAA Aeospace Sciences Meeting

More information

Chapter 1 Functions and Graphs

Chapter 1 Functions and Graphs Capte Functions and Gaps Section.... 6 7. 6 8 8 6. 6 6 8 8.... 6.. 6. n n n n n n n 6 n 6 n n 7. 8 7 7..8..8 8.. 8. a b ± ± 6 c ± 6 ± 8 8 o 8 6. 8y 8y 7 8y y 8y y 8 o y y. 7 7 o 7 7 Capte : Functions and

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Title. Author(s)Y. IMAI; T. TSUJII; S. MOROOKA; K. NOMURA. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)Y. IMAI; T. TSUJII; S. MOROOKA; K. NOMURA. Issue Date Doc URL. Type. Note. File Information Title CALCULATION FORULAS OF DESIGN BENDING OENTS ON TH APPLICATION OF THE SAFETY-ARGIN FRO RC STANDARD TO Autho(s)Y. IAI; T. TSUJII; S. OROOKA; K. NOURA Issue Date 013-09-1 Doc URL http://hdl.handle.net/115/538

More information