1.1 Functions. Input (Independent or x) and output (Dependent or y) of a function. Range: Domain: Function Rule. Input. Output.

Size: px
Start display at page:

Download "1.1 Functions. Input (Independent or x) and output (Dependent or y) of a function. Range: Domain: Function Rule. Input. Output."

Transcription

1 1.1 Functions Function Function: A rule for a relationship between an input, or independent, quantity and an output, or dependent, quantity in which each input value uniquely determines one output value. We say the output is a function of the input. Input (Independent or x) and output (Dependent or y) of a function Domain: The set of all inputs Function Rule Range: The set of all outputs Ex: Input Function Rule Output Ordered pair - 0 Double the input Ex. Is {(1,3), (,3), (3,3)} a function? Ex. Is {(3,-1), (3,-3), (3,4)} a function? Ex. If y = x, is y a function of x? Ex. If y = x, is y a function of x? One-to-One Function Sometimes in a relationship each input corresponds to exactly one output, and every output corresponds to exactly one input. We call this kind of relationship a one-to-one function. Ex. Is {(-1,), (,3), (3,4)} a one-to-one function? Ex. Is {(1,-3), (,3), (3,-3)} a one-to-one function?

2 Graph as Functions Ex. Graph the set of points {(1,3), (,3), (3,3)}: Ex. Graph the set of points {(3,-1), (3,-3), (3,4)}: Vertical Line Test The vertical line test is a handy way to think about whether a graph defines the vertical output as a function of the horizontal input. Imagine drawing vertical lines through the graph. If any vertical line would cross the graph more than once, then the graph does not define only one vertical output for each horizontal input. One-to-one function: Ex. Graph the set of points {(-1,), (,3), (3,4)}: Ex. Graph the set of points {(1,3), (,3), (3,3)}: Horizontal Line Test Once you have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line crosses the graph more than once, then the graph does not define a one-to-one function. Ex 5. Select all of the following graphs which represent y as a function of x. a b c d e f

3 Function Notation The notation output = f(input) defines a function named f. This would be read output is f of input Ex1. The amount of garbage, G, produced by a city with population p is given by G f ( p). G is measured in tons per week, and p is measured in thousands of people. a. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this information in terms of the function f. b. Explain the meaning of the statement f 5. Ex4. Let ht () be the height above ground, in feet, of a rocket t seconds after launching. What is the input? What is the unit of the input? What is the output? Explain the meaning of each statement: a. h1 00 b. h 0 50 Ex0. Based on the table below, a. Evaluate f (8) b. Solve f ( x) 7 x f( x ) Ex 15. Given each function f( x ) graphed, evaluate f (0), f (1) and f (3) Ex 17. Given the function gx ( ) graphed here, a. Evaluate g () b. Solve gx

4 35. Suppose f x x 8x 4. Compute the following: a. f( 1) f(1) b. f ( 0) f ( ) 37. Let f t 3t 5 a. Evaluate f (0) b. Solve f t 0 Circles Q. What is the distance between the points P and Q? Definition of a Circle: A circle is a set of points in the xy-plane that are a fixed distance r from a fixed point (h, k). The fixed distance r is called the radius, and The fixed point (h, k) is the center of the circle. Find the Equation of Circles r (h, k) (x, y) The equation of a circle centered at the point (h, k) with radius r can be written as ( x h) ( y k) r (Called the Standard form of a circle) Unit circle: If r = 1 and the center of the circle is at the origin, then the circle is called the unit circle. x + y = 1 Ex. Write the equation of the circle centered at (-9, 9) with radius 16. Write your answer in standard Form.

5 1. Domain and Range Domain and Range Domain: The set of possible input values to a function Range: The set of possible output values of a function Ex. Is {(4,-3), (5,4), (6,-3)} a function? Domain: Range: Ex. Is {(1,-1), (3,-3), (1,4)} a function? Domain: Range: Ex. Find the domain and range of the following Table? x 8 8 Domain: y Domain and Range of a graph Range: d a b Domain: c Range: Notation for Domain and Range Inequality Set Builder Notation Interval notation 5 h 10 h 5 h 10 (5, 10] 5 h 10 h 5 h 10 [5, 10) 5 h 10 h 5 h 10 (5, 10) h h 10 h h 10 [10, ) all real numbers h h (, ) Combining two intervals together: As an inequality it is: 1 x 3 or x 5 In set builder notation: x 1 x 3 or x 5 In interval notation: [1,3] (5, ) h h (,10)

6 Is the graph a function? Domain: Range: Is the graph a function? Domain: Range: Is the graph a function? Domain: Range: Is the graph a function? Domain: Range:

7 Is the graph a function? Domain: Range: Is the graph a function? Domain: Range: Finding the Domain of a Function The Domain of most frequently used Mathematical functions, like linear, quadratic, and exponential functions, is the set of all real numbers. However, the following situations are not: 1 A zero in the denominator, such as, and x A negative value under an even root symbol, such as x. a. f(x) = x + b. x g(x) = x + 1 x c. h(x) = x 1 d. i(x) = x 4 e. j(x) = 3x + 9 f. x 5 k(x) = 4 x x 5

8 Piecewise Defined Functions A piecewise defined function is a function that is defined by different formulas on different parts of its domain. Ex. Given each function, evaluate: f ( 1), f (0), f (), f (4). f x 3 4x if x 1 x 1 if x x if x 1 0 f x 4 if 0 x 3 3x 1 if x 3 Graph a piecewise defined function: (Find the Domain and Range of the functions) 4, if x. x + 4, if x < x, if x 1, if x Ex. f x f x x, if x f(x) = { x 1, if x 1 x, if < x 4 x, if x

9 1.3 Rates of Change and Behavior of Graphs Rate of Change A rate of change describes how the output quantity changes in relation to the input quantity. The units on a rate of change are output units per input units Some other examples of rates of change would be quantities like: A population of rats increases by 40 rats per week A barista earns $9 per hour (dollars per hour) Average Rate of Change The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values. Change of Output y y y1 Average rate of change = = Change of Input x x x Average Rate of Change using Function Notation Given a function f(x), the average rate of change on the interval [a, b] is Change of Output f ( b) f ( a) Average rate of change = Change of Input b a 1 Ex 1. Ex 1a. Ex 1b. Ex. Find the average rate of change of the following functions: a. f ( x) x x on the interval [1, 9] b. g( x) x 4 x on the interval [-1. 3]

10 on the interval [1, 1+h] d. x 3x x 1 c. i( x) 4 x f on the interval [ a, a h] e. x x 3x 4 g on the interval [x, x + h] f. j ( x) x 3 on the interval [ a, a h] 3 g. i x x x 5 on the interval [x, x + h] h. sx 3 5x on the interval [x, x + h]

11 Note: f is increasing on (a, b) and (c, d). f is decreasing on (b, c) Ex 3. Ex 4. a. b. Local Extrem A point where a function changes from increasing to decreasing is called a local maximum. A point where a function changes from decreasing to increasing is called a local minimum. Together, local maxima and minima are called the local extrema, or local extreme values, of the function.

12 Concavity A function is concave up if the rate of change is increasing. A function is concave down if the rate of change is decreasing. A point where a function changes from concave up to concave down or vice versa is called an inflection point. Larger increase Smaller increase Larger increase Smaller increase Graphically, concave down functions bend downwards like a frown, and concave up function bend upwards like a smile. Increasing Decreasing Concave Down Concave Up Ex 6. Examine the graph of the function and find the interval that is (a)concave up, (b)concave down and (c)the approximate coordinates, ( x, y), of all points of inflection (if any). Concave up Concave down Point of inflection Show Behaviors of the Toolkit Functions on P.43 and show how to use calculator to graph and estimate the local extrema (like the problem 40). Use a graph to estimate the local extrema and inflection points of each function, and to estimate the intervals on which the function is increasing, decreasing, concave up, and concave down. / k( t) 3t t

13 1.4 Composition of Functions Composition of Functions When the output of one function is used as the input of another, we call the entire operation a composition of functions. We write f(g(x)), and read this as f of g of x or f composed with g at x. An alternate notation for composition uses the composition operator: ( f g)( x) is read f of g of x or f composed with g at x, just like f(g(x)). The domain of f g is the set of all x in the domain of g such that g(x) is in the domain of f. In other words, f gx is defined whenever both g(x) and f(g(x)) are defined. Ex1. Domain g(x) A f(g(x)) B f g x A B Ex5) If f x x and g x x, then find a) f(g(4)) e) gx f (Also find its domain) b) g(f()) c) f f 4 f) f x g (Also find its domain) d) f g1

14 For each pair of functions, find 1 x 4. f x, g x 4 x f g x and g f x and their domains. Simplify your answers. 7. If f(x) = x 4 + 6, g(x) = x 6 and h(x) = x, find f ( g( h( x ))). (Expand your answer) Find functions f( x ) and ( ) gx so the given function can be expressed as hx f g x 36. hx x h x 4 x.

15 1.5 Transformations of Functions In this section, we will learn to transform what we already know about the formulas or models, the tool-kit functions (P.43), called parent functions, into what we need. The transformations that we study are shifting, stretching, and reflecting. Ex1: Fill the tables and sketch the graphs of the equations. a) y x b) y x x y x y Domain: Range: g(x) = f(x) + h(x) = f(x) 3

16 1 Ex: Graph the equations y1 x, y 3x and y 3 x using the tables or calculator and draw a sketch of what you see in the coordinate 1 system below. Then compare the graphs of y 3x and y 3 x compare it with the graph of y1 x. (Domain of y is [,]) Domain: Range: g(x) = f(x) h(x) = f(x) + 3

17 Ex3: Fill the tables and sketch the graphs of the equations. Then compare them with the graph of y = x. a) y ( x ) b) y ( x 3) x y x y Domain: Range: g(x) = f(x + 3) h(x) = f(x 4) 3

18 Ex4: Graph the equations y1 x, y x and 3 y x using the tables or calculator and draw a sketch of what you see in the coordinate system below. Then compare the graphs of y x and y 3 x compare it with the graph of y1 x. Domain: Range: g(x) = f(x) g(x) = f ( x )

19 g(x) = f(x) h(x) = f( x) SUMMARY OF TRANSFORMATIONS: A, B, h, k determine the transformation of a function f(x): g( x) Af B( x h) k where any function f(x) has been transformed A: Vertical Stretch if A > 1 or Vertical Compression if 0 < A < 1 (Outside changes in y) -A: would constitute a Vertical Flip over the x axis B: Horizontal Stretch if 0<B<1 or Horizontal Compression if B> 1 (Inside changes in x) -B: would constitute a Horizontal Flip over the y axis h: Horizontal Shift (Inside changes in x) h>0 shifts left h<0 shifts right k: Vertical Shift (Outside changes in y) k>0 shifts up k<0 shifts down

20 40. For each equation below, determine if the function is Odd, Even, or Neither. a. f x x b. 4 3 g x x c. hx x x Ex5. Starting with the graph of f(x) = x, write the equation of the graph that results from a) shifting f(x) 7 units upward. y = b) shifting f(x) 6 units to the right. y = c) reflecting f(x) about the x-axis. y = Ex6. Given a function For example: f x, represent the following in function notation. f xshifted up 3 units: f x 3 a) f xshifted 3 units to the left: b) f xstretched horizontally by a factor of 4: 1 c) f xstretched vertically by a factor of : 3

21 Ex7. If the domain of f is [ 3,9] and range is [1,5], and g(x) = f(3x) 5, find the domain and range of g. Ex8. Use transformations to Graph f(x) = (x 3) + 1 (Use y = x, with domain [, ], to graph f.) Ex9. Use transformations to Graph f(x) = (x + ) + 3 (Use y = x, with domain [, ], to graph f.) The function f( x ) is graphed here. Write an equation for each graph below as a transformation of f( x ). f(x)

22 1.6 Inverse Functions Note: The idea of an inverse function is that the input becomes the output and the output becomes the input. One-to-one Functions A function is one-to-one if any two different inputs in the domain correspond to two different outputs in the range. That is, each X in the domain has one and only one Y in the range. Domain Range Horizontal Line Test Once you have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line crosses the graph more than once, then the graph does not define a one-to-one function. Ex1: Indicate if the function is a one-to-one function: a). b). c). Note: f reads f inverse or inverse of f, and f x f x If a function has an inverse, it is said to be invertible. Input and output relation: f(5) = f 1 (3) =

23 Ex. Ex3. a. b. Ex4. a. b. c.

24 Graph the inverse function Ex b. Ex a. Ex5: (a) Find f 1 x of 1 3x x 5 f x ; b) Find g 1 x of g x x 6 4 3x

Section 1.3 Rates of Change and Behavior of Graphs

Section 1.3 Rates of Change and Behavior of Graphs Section 1. Rates of Change and Behavior of Graphs 5 Section 1. Rates of Change and Behavior of Graphs Since functions represent how an output quantity varies with an input quantity, it is natural to ask

More information

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions QUIZ AND TEST INFORMATION: The material in this chapter is on Quiz 3 and Exam 2. You should complete at least one attempt of Quiz 3 before taking Exam 2. This material is also on the final exam and used

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Section 1.1 Exercises

Section 1.1 Exercises Section. Functions and Function Notation 99 Section. Eercises. The amount of garbage, G, produced by a city with population p is given by G f( p). G is measured in tons per week, and p is measured in thousands

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

Functions & Function Notation

Functions & Function Notation Functions & Function Notation What is a Function? The natural world is full of relationships between quantities that change. When we see these relationships, it is natural for us to ask If I know one quantity,

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X MAT 107 College Algebra Fall 013 Name Final Exam, Version X EKU ID Instructor Part 1: No calculators are allowed on this section. Show all work on your paper. Circle your answer. Each question is worth

More information

Notes: Piecewise Functions

Notes: Piecewise Functions Objective: Students will be able to write evaluate piecewise defined functions, graph piecewise defined functions, evaluate the domain and range for piecewise defined functions, and solve application problems.

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

Explain the mathematical processes of the function, and then reverse the process to explain the inverse.

Explain the mathematical processes of the function, and then reverse the process to explain the inverse. Lesson 8: Inverse Functions Outline Inverse Function Objectives: I can determine whether a function is one-to-one when represented numerically, graphically, or algebraically. I can determine the inverse

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient Chapter 1 PRE-TEST REVIEW Polynomial Functions MHF4U Jensen Section 1: 1.1 Power Functions 1) State the degree and the leading coefficient of each polynomial Polynomial Degree Leading Coefficient y = 2x

More information

1 Wyner PreCalculus Fall 2013

1 Wyner PreCalculus Fall 2013 1 Wyner PreCalculus Fall 2013 CHAPTER ONE: FUNCTIONS AND THEIR GRAPHS Summary, Terms, and Objectives Most of calculus and precalculus is based on functions. A function is a process that takes one or more

More information

Math 1101 Test 2 Practice Problems

Math 1101 Test 2 Practice Problems Math 1101 Test 2 Practice Problems These problems are not intended to cover all possible test topics. These problems should serve as on activity in preparing for your test, but other study is required

More information

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28} Mock Final Exam Name Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) 1) A) {- 30} B) {- 6} C) {30} D) {- 28} First, write the value(s) that make the denominator(s) zero. Then solve the

More information

College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić. Name: Simplify and write the answer so all exponents are positive:

College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić. Name: Simplify and write the answer so all exponents are positive: College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić Name: Covers: R.1 R.4 Show all your work! Simplify and write the answer so all exponents are positive: 1. (5pts) (3x 4 y 2 ) 2 (5x 2 y 6 ) 3 = 2.

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work.

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work. April 9, 009 Name The problems count as marked The total number of points available is 160 Throughout this test, show your work 1 (15 points) Consider the cubic curve f(x) = x 3 + 3x 36x + 17 (a) Build

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

Intermediate Algebra Final Exam Review

Intermediate Algebra Final Exam Review Intermediate Algebra Final Exam Review Note to students: The final exam for MAT10, MAT 11 and MAT1 will consist of 30 multiple-choice questions and a few open-ended questions. The exam itself will cover

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

How much can they save? Try $1100 in groceries for only $40.

How much can they save? Try $1100 in groceries for only $40. It s Not New, It s Recycled Composition of Functions.4 LEARNING GOALS KEY TERM In this lesson, you will: Perform the composition of two functions graphically and algebraically. Use composition of functions

More information

3. Solve the following inequalities and express your answer in interval notation.

3. Solve the following inequalities and express your answer in interval notation. Youngstown State University College Algebra Final Exam Review (Math 50). Find all Real solutions for the following: a) x 2 + 5x = 6 b) 9 x2 x 8 = 0 c) (x 2) 2 = 6 d) 4x = 8 x 2 e) x 2 + 4x = 5 f) 36x 3

More information

Chapter 1: Functions. Section 1.1 Functions and Function Notation. Section 1.1 Functions and Function Notation 1

Chapter 1: Functions. Section 1.1 Functions and Function Notation. Section 1.1 Functions and Function Notation 1 Section. Functions and Function Notation Chapter : Functions Section. Functions and Function Notation... Section. Domain and Range... Section. Rates of Change and Behavior of Graphs... 4 Section.4 Composition

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

The First Derivative Test

The First Derivative Test The First Derivative Test We have already looked at this test in the last section even though we did not put a name to the process we were using. We use a y number line to test the sign of the first derivative

More information

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Let s review the definition of a polynomial. A polynomial function of degree n is a function of the form P(x) = a n x n + a

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen nd Edition Solutions created at The Evergreen State College and Shoreline Community College Last edited 9/6/17

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information

HORIZONTAL AND VERTICAL TRANSLATIONS

HORIZONTAL AND VERTICAL TRANSLATIONS MCR3U Sections 1.6 1.8 Transformations HORIZONTAL AND VERTICAL TRANSLATIONS A change made to a figure or a relation such that the figure or graph of the relation is shifted or changed in shape. Translations,

More information

In #1 and 2, use inverse operations to solve each equation. 2.

In #1 and 2, use inverse operations to solve each equation. 2. In #1 and 2, use inverse operations to solve each equation. 1. 3x + 12 + 5x = 7 2. 1 (4x + 10) = x 5 2 3. Alex and Alyssa both have savings accounts. Alex has $515 and saves $23 per month. Alyssa has $725

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc.

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc. 2.6 Graphs of Rational Functions Copyright 2011 Pearson, Inc. Rational Functions What you ll learn about Transformations of the Reciprocal Function Limits and Asymptotes Analyzing Graphs of Rational Functions

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

ID: ID: ID: of 39 1/18/ :43 AM. Student: Date: Instructor: Alfredo Alvarez Course: 2017 Spring Math 1314

ID: ID: ID: of 39 1/18/ :43 AM. Student: Date: Instructor: Alfredo Alvarez Course: 2017 Spring Math 1314 1 of 39 1/18/017 10:43 AM Student: Date: Instructor: Alfredo Alvarez Course: 017 Spring Math 1314 Assignment: Practice Final 1. Graph the equation. y= x 3 ID: 1.1-11. Perform the multiplication and write

More information

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function?

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function? 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

8 Building New Functions from Old Ones

8 Building New Functions from Old Ones Arkansas Tech University MATH 2243: Business Calculus Dr. Marcel B. Finan 8 Building New Functions from Old Ones In this section we discuss various ways for building new functions from old ones. New functions

More information

Day 1~ 2-1 Relations & Functions

Day 1~ 2-1 Relations & Functions NOTES: Honors Algebra Unit 1: Linear Equations Day 1~ -1 Relations & Functions Part 1: Use the following words to complete the sentences below: Inputs Dependent Range Range Domain Independent Relation

More information

Secondary Math 3 Honors Unit 10: Functions Name:

Secondary Math 3 Honors Unit 10: Functions Name: Secondary Math 3 Honors Unit 10: Functions Name: Parent Functions As you continue to study mathematics, you will find that the following functions will come up again and again. Please use the following

More information

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review Chapter 4 Test Review Students will be able to (SWBAT): Write an explicit and a recursive function rule for a linear table of values. Write an explicit function rule for a quadratic table of values. Determine

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

PreCalculus: Semester 1 Final Exam Review

PreCalculus: Semester 1 Final Exam Review Name: Class: Date: ID: A PreCalculus: Semester 1 Final Exam Review Short Answer 1. Determine whether the relation represents a function. If it is a function, state the domain and range. 9. Find the domain

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

UNIT 3: MODELING AND ANALYZING QUADRATIC FUNCTIONS

UNIT 3: MODELING AND ANALYZING QUADRATIC FUNCTIONS UNIT 3: MODELING AND ANALYZING QUADRATIC FUNCTIONS This unit investigates quadratic functions. Students study the structure of quadratic expressions and write quadratic expressions in equivalent forms.

More information

Absolute Value Functions

Absolute Value Functions By: OpenStaxCollege Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of absolute values. (credit: "s58y"/flickr) Until the 1920s, the so-called

More information

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8 MAC 1147 Exam #1a Answer Key Name: Answer Key ID# Summer 2012 HONOR CODE: On my honor, I have neither given nor received any aid on this examination. Signature: Instructions: Do all scratch work on the

More information

MTH4100 Calculus I. Lecture notes for Week 2. Thomas Calculus, Sections 1.3 to 1.5. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 2. Thomas Calculus, Sections 1.3 to 1.5. Rainer Klages MTH4100 Calculus I Lecture notes for Week 2 Thomas Calculus, Sections 1.3 to 1.5 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Reading Assignment: read Thomas

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 A] Refer to your pre-calculus notebook, the internet, or the sheets/links provided for assistance. B] Do not wait until the last minute to complete this

More information

4x 2-5x+3. 7x-1 HOMEWORK 1-1

4x 2-5x+3. 7x-1 HOMEWORK 1-1 HOMEWORK 1-1 As it is always the case that correct answers without sufficient mathematical justification may not receive full credit, make sure that you show all your work. Please circle, draw a box around,

More information

x 4 D: (4, ); g( f (x)) = 1

x 4 D: (4, ); g( f (x)) = 1 Honors Math 4 Describing Functions One Giant Review Name Answer Key 1. Let f (x) = x, g(x) = 6x 3, h(x) = x 3 a. f (g(h(x))) = 2x 3 b. h( f (g(x))) = 1 3 6x 3 c. f ( f ( f (x))) = x 1 8 2. Let f (x) =

More information

Semester Review Packet

Semester Review Packet MATH 110: College Algebra Instructor: Reyes Semester Review Packet Remarks: This semester we have made a very detailed study of four classes of functions: Polynomial functions Linear Quadratic Higher degree

More information

Math 110 Midterm 1 Study Guide October 14, 2013

Math 110 Midterm 1 Study Guide October 14, 2013 Name: For more practice exercises, do the study set problems in sections: 3.4 3.7, 4.1, and 4.2. 1. Find the domain of f, and express the solution in interval notation. (a) f(x) = x 6 D = (, ) or D = R

More information

MATH 1113 Exam 1 Review

MATH 1113 Exam 1 Review MATH 1113 Exam 1 Review Topics Covered Section 1.1: Rectangular Coordinate System Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and Linear Functions Section 1.5: Applications

More information

College Algebra Notes

College Algebra Notes Metropolitan Community College Contents Introduction 2 Unit 1 3 Rational Expressions........................................... 3 Quadratic Equations........................................... 9 Polynomial,

More information

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science College Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 111 George Voutsadakis (LSSU) College Algebra December 2014 1 / 74 Outline 1 Additional

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Pre-Calculus Midterm Practice Test (Units 1 through 3)

Pre-Calculus Midterm Practice Test (Units 1 through 3) Name: Date: Period: Pre-Calculus Midterm Practice Test (Units 1 through 3) Learning Target 1A I can describe a set of numbers in a variety of ways. 1. Write the following inequalities in interval notation.

More information

MCR3U 1.1 Relations and Functions Date:

MCR3U 1.1 Relations and Functions Date: MCR3U 1.1 Relations and Functions Date: Relation: a relationship between sets of information. ie height and time of a ball in the air. In relations, the pairs of time and heights are "ordered"; ie ordered

More information

Quarter 2 400, , , , , , ,000 50,000

Quarter 2 400, , , , , , ,000 50,000 Algebra 2 Quarter 2 Quadratic Functions Introduction to Polynomial Functions Hybrid Electric Vehicles Since 1999, there has been a growing trend in the sales of hybrid electric vehicles. These data show

More information

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative Warmup 1) The lengths of the sides of a square are decreasing at a constant rate of 4 ft./min. In terms of the perimeter, P, what is the rate of change of the area of the square in square feet per minute?

More information

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions Honors Advanced Algebra Name Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions MGSE9 12.F.IF.7 Graph functions expressed symbolically and show key features

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

Section 1.1 Functions and Function Notation

Section 1.1 Functions and Function Notation Chapter 1: Functions Section 1.1 Functions and Function Notation... 1 Section 1. Basic Toolkit Functions... 11 Section 1.3 Domain and Range... 1 Section 1.4 Composition of Functions... Section 1.5 Transformation

More information

North Carolina State University

North Carolina State University North Carolina State University MA 141 Course Text Calculus I by Brenda Burns-Williams and Elizabeth Dempster August 7, 2014 Section1 Functions Introduction In this section, we will define the mathematical

More information

( ) = 2 x + 3 B. f ( x) = x 2 25

( ) = 2 x + 3 B. f ( x) = x 2 25 PRACTICE - Algebra Final Exam (Semester 1) - PRACTICE 1. Which function contains only a vertical translation? A. f x ( ) = x + 3 B. f ( x) = x 5 C. f ( x) = 1( x 9) D. f ( x) = x + 4. Which function is

More information

AP Calculus Summer Homework MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

AP Calculus Summer Homework MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Calculus Summer Homework 2015-2016 Part 2 Name Score MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the distance d(p1, P2) between the points

More information

Regents Review Session #3 Functions

Regents Review Session #3 Functions Regents Review Session #3 Functions A relation is a set of ordered pairs. A function is a relation in which each element of the domain corresponds t exactly one element in the range. (Each x value is paired

More information

Calculus I Practice Problems 8: Answers

Calculus I Practice Problems 8: Answers Calculus I Practice Problems : Answers. Let y x x. Find the intervals in which the function is increasing and decreasing, and where it is concave up and concave down. Sketch the graph. Answer. Differentiate

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2 Precalculus Fall Final Exam Review Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplify the expression. Assume that the variables

More information

Chapter 3A -- Rectangular Coordinate System

Chapter 3A -- Rectangular Coordinate System Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 3A! Page61 Chapter 3A -- Rectangular Coordinate System A is any set of ordered pairs of real numbers. A relation can be finite: {(-3, 1), (-3,

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

Math 1311 Section 5.5 Polynomials and Rational Functions

Math 1311 Section 5.5 Polynomials and Rational Functions Math 1311 Section 5.5 Polynomials and Rational Functions In addition to linear, exponential, logarithmic, and power functions, many other types of functions occur in mathematics and its applications. In

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

3 Inequalities Absolute Values Inequalities and Intervals... 4

3 Inequalities Absolute Values Inequalities and Intervals... 4 Contents 1 Real Numbers, Exponents, and Radicals 2 1.1 Rationalizing the Denominator................................... 2 1.2 Factoring Polynomials........................................ 2 1.3 Algebraic

More information

Section 12.2 The Second Derivative

Section 12.2 The Second Derivative Section 12.2 The Second Derivative Higher derivatives If f is a differentiable function, then f is also a function. So, f may have a derivative of its own, denoted by (f ) = f. This new function f is called

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information