Effective Rheological Properties in Semidilute Bacterial Suspensions

Size: px
Start display at page:

Download "Effective Rheological Properties in Semidilute Bacterial Suspensions"

Transcription

1 Noname manuscript No. (will be inserte by the eitor) Effective Rheological Properties in Semiilute Bacterial Suspensions Mykhailo Potomkin Shawn D. Ryan Leoni Berlyan Receive: ate / Accepte: ate Abstract Interactions between swimming bacteria have le to remarkable experimentally observable macroscopic properties such as the reuction of the effective viscosity, enhance mixing, an iffusion. In this work, we stuy an iniviual base moel for a suspension of interacting point ipoles representing bacteria in orer to gain greater insight into the physical mechanisms responsible for the rastic reuction in the effective viscosity. In particular, asymptotic analysis is carrie out on the corresponing kinetic equation governing the istribution of bacteria orientations. This allows one to erive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show goo qualitative agreement with numerical simulations an previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, an regularity properties for this kinetic PDE moel. Keywors effective viscosity kinetic moels bacterial suspension asymptotic analysis Contents 1 Introuction Moel for Semiilute Bacterial Suspensions M. Potomkin Department of Mathematics, The Pennsylvania State University, University Park, PA mup20@math.psu.eu S. D. Ryan Department of Mathematical Sciences an Liqui Crystal Institute, Kent State University, Kent, OH sryan18@kent.eu L. Berlyan Department of Mathematics, The Pennsylvania State University, University Park, PA berlyan@math.psu.eu

2 2 Mykhailo Potomkin et al. 2.1 Definition of the effective viscosity for a suspension of point force ipoles Conitions impose to erive an explicit formula for the effective viscosity Separation of variables Existence of a steay state P () P x(x) is constant in the z-irection Derivation of asymptotic expression for P for small B Evaluation of Fourier transforms The form of asymptotic expansion in B Contribution at O(B) Contribution at O(B 2 ) Explicit formula for the effective viscosity Mechanisms require for the ecrease in the effective viscosity Effective noise conjecture Comparison to numerical simulations Global solvability of the kinetic equation Conclusions A Appenix: Explicit form of integral terms I i from (39) B Appenix: Justification of the representation formula (17) Introuction Bacterial suspensions exhibit remarkable macroscopic properties ue to the emergence of self-organization among its components. In particular, interesting effective properties such as enhance iffusivity, the formation of sustaine whorls an jets, an the ability to extract useful work among other results have been recently observe for suspensions of bacteria, such as Bacillus subtilis [40, 37, 22, 34, 8]. The striking experimental observations on the effective viscosity provie the motivation for stuying a suspension s effective properties; namely, the observation of a seven-fol reuction in the effective viscosity of a suspension of swimming B. subtilis [35]. This reuction is observe below 2% volume fraction typically referre to as the ilute regime where bacteria are far apart an essentially interact with the backgroun flui only. With the assumption of no interbacterial interactions, this regime has been stuie analytically in recent works (e.g., [32, 17, 15, 16]). There bacterial tumbling was introuce in orer for the formula to preict a ecrease in the effective viscosity [16]. However, in the absence of tumbling (e.g., for anaerobic bacteria) the ecrease is still observe experimentally [35]. It was shown recently in [29] that interbacterial interactions substantially contribute to effective viscosity an an estimate for this contribution was given. Rigorous analysis of this contribution an its corresponing effect on the effective viscosity of the suspension is the main component of this paper. We begin with an iniviual base moel (IBM) previously introuce in [29,28], which has been successfully use to capture the ecrease in the effective viscosity an other collective phenomena. Such suspensions, where interbacterial interactions play an important role an are moele as a sum of pairwise interactions, are referre to as semi-ilute. Our goal is to ientify the unerlying mechanisms that contribute to the ecrease of the effective

3 Effective Rheological Properties in Semiilute Bacterial Suspensions 3 viscosity in this concentration regime. The main tool we employ is a kinetic theory erive from this iniviual base moel. The purpose for employing a kinetic approach is to replace a large system of couple ifferential equations by a single continuum partial ifferential equation with respect to a probability istribution of bacteria positions an orientations. Note that it is natural to consier probabilistic quantities since the main focus of this work is the stuy of the effective properties. The main computational avantage of the kinetic approach is that the number of bacteria N oes not increase the complexity of the problem [39,5]. Namely, the PDE coul be solve numerically with a fixe spatial or temporal gri inepenent of N. In aition to the ability to consier many ifferent initial conitions at once, another avantage to introucing this probabilistic framework is to consier the limiting regime as N, the so-calle mean fiel limit. More information on kinetic equations can be foun in the seminal works of the 1970 s [24,6,10] or more contemporary reviews [7,19,25,9]. Significant ifficulty in the analysis come from the incorporation of interactions. First, they appear in the kinetic equation as a non-local term ue to the fact that the suspension of interacting bacteria is generally escribe analytically by configurations of all bacteria. Secon, the main interactions that are taken into account are hyroynamic, which iverge as bacteria approach one another as the square of their istance. This results in a singular kernel in this non-local term. Thus, the kinetic equation consists of a nonlocal, nonlinear PDE ue to the presence of interactions. Using a kinetic approach, the main result of this paper is an explicit asymptotic formula for the effective viscosity with interbacterial interactions taken into account. The formula reveals the physical mechanisms necessary for the ecrease in effective viscosity observe experimentally. To achieve this result we first fin the steay state solution of the kinetic equation an then use this solution to compute the effective viscosity. For completeness, we also establish the well-poseness of the kinetic equation. This paper is organize as follows. Section 2 begins by introucing the iniviual base moel uner consieration for a semi-ilute bacterial suspension. From this, the kinetic equation for the orientation istribution is formally erive. The reason we begin with the IBM is that the effective properties of a suspension are erive from knowlege of microscopic configurations, which is transferre from the IBM to the kinetic moel. In Section 3 we introuce the main conitions uner which we erive the asymptotic formula for the effective viscosity an iscuss their physical significance. Section 4 contains the erivation of the asymptotic steay state solution to the kinetic equation for the orientation istribution in the limit of small non-sphericity. The effective viscosity from the asymptotic formula is then compare to the same quantity compute from irect simulations of the iniviual base moel in Section 5. The important physical mechanisms for the ecrease in viscosity are ientifie an the orientation istribution is compare to the results of previous works in the ilute case. In aition, the normal stress ifferences an relaxation time are consiere. The existence, uniqueness an regularity properties of a

4 4 Mykhailo Potomkin et al. solution to the kinetic PDE are proven in Section 6. Finally, we formulate our conclusions an outline potential future investigations in Section 7. 2 Moel for Semiilute Bacterial Suspensions We begin by introucing the couple PDE/ODE system governing the flui an bacteria ynamics respectively. Each bacterium is represente as a point force ipole. One force represents the bacterium s propulsion mechanism (e.g., flagellar motion) an the other is the opposing viscous rag exerte by the bacterium s boy on the flui. This approximation has been experimentally verifie by observing the flow ue to a bacterium (e.g., Bacillus subtilis) in a flui an comparing it to that of a force ipole [11]. As a bacterium swims through the flui its trajectory may be altere through interactions with other bacteria an the backgroun flow. At every moment in time a bacterium propels itself in the irection in which it is oriente. If one bacterium comes into close contact with another, then a collision can occur altering the bacterium s position. This is moele by an exclue volume potential. Finally, the flow itself has an impact on a bacterium trajectory through the ambient backgroun flow an the sum of flows inuce from the propulsion of all the other bacteria on its position. To make these ieas more concrete we now introuce an iniviual base moel (IBM), which governs a bacterium s position an orientation. We consier N bacteria with the position of the center of mass of the ith bacterium x i = (x i, y i, z i ) an orientation i = ( i 1, i 2, i 3). A bacterium s translational velocity is erive from a balance of forces ue to self-propulsion, collisions, an the flow fiel acting on the position of the bacterium. A bacterium s orientation velocity is erive from a balance of torques in the form of Jeffery s equation for an ellipsoi in a linear flow with aitional terms ue to the flows generate by the other bacteria in the suspension [20]. Thus, the equations of motion for bacterial positions x an orientations originally introuce from first principles in [29] are ẋ i = V 0 i + ( u j (x i, j ) + F j (x i ) ) + u BG (x i ), (1) j i ḋ i = 1 2 i ω BG i B i 0 (x i ) + ω j (x i, j ) j i E BG 0 (x i ) + E j (x i, j ) i + 2DẆ, (2) j i where V 0 is an iniviual bacterium s swimming spee an B is the Bretherton constant which takes into account the geometry of the bacterium s boy (B 1: near spherical, B 1: neele-like). The externally-impose planar shear flow contributes to each bacterium s motion through the flui velocity,

5 Effective Rheological Properties in Semiilute Bacterial Suspensions 5 u BG = (0, γx, 0) T, as well as its effect on a bacterium s( orientation through the vorticity ω BG 0 = x u BG an rate of strain E BG 0 = 1 2 x u BG + ( x u BG ) ) T. Here W is a white noise an we let D B 2 be the iffusion coefficient. This orer of D will be use throughout this work an represents the iea that the ranom motion present in the system has a greater effect the more elongate a particle is. The aitional terms in Jeffrey s equation (2) beyon the contribution from the backgroun flow are ue to the vorticity ω j an rate of strain E j generate by the j-th ipole on position of the i-th ipole ω j = x u j, E j = 1 2 ( x u j + ( x u j ) T ). Each of these terms epens on the flui velocity u j, which is governe by Stokes equation an will be escribe in greater etail below. Remark 1 The equations of motion (1)-(2) are a 5N couple system of orinary ifferential equations in comparison to the ilute case stuie in [16] where there were only two ODEs governing the evolution of a single bacterium in an infinite meium (only epening on a single bacterium s orientation). Thus, the semi-ilute system of equations as a greater complexity than the ilute case previously stuie. The use of Stokes equation to moel the flui is justifie by estimating the Reynol s number. Base on the typical size l 0 1 µm an swimming spee V 0 20 µm/s of a bacterium, in aition to the typical ynamic viscosity η Pa s an ensity ρ 10 3 kg/m 3 of the suspening flui, the flow has a Reynols number Re aroun Thus, inertial effects can be neglecte. Also, it is assume that a steay-state flow is establishe on a timescale much smaller than the characteristic timescale, which is the time for a bacterium to swim its length. The flow at the position of bacterium i ue to bacterium j is given by u j (x i, j ) = u(x j x i, j ) where u(x, ) is a solution of the Stokes problem η 0 x u(x, ) x p(x, ) = x [D()δ(x) ], x R 3, x u(x, ) = 0, x R 3, (3) u(x, ) 0, x, where η 0 is the ambient flui viscosity an p is the pressure. The ipole tensor D = {D lm } is given by D lm () := U 0 ( l m 1 ) 3 δ lm, (4) where U 0 is the strength of the ipole referre to as the ipole moment. For pushers, bacteria that propel themselves from behin such as B. subtilis, U 0 < 0. Equation (3) has an explicit solution: u k (x, ) := 1 8πη 0 3 l=1 m=1 3 D lm ()G kl,m (x), (5)

6 6 Mykhailo Potomkin et al. ( ) where G kl (x) = 1 δkl 8πη 0 x + x kx l x is the Oseen tensor. 3 Remark 2 In orer to stuy the role of interactions in semi-ilute suspensions it is natural to eal with a point representation of swimmers such that the whole suspension is moele by points interacting in the flui. In our paper, a swimmer is represente by a point force ipole with the ipole tensor (4). In general, for a given moel of a swimmer, such a point representation can by foun as the secon orer term in the multipole expansion, see [21]. We note that all results of this paper such as the asymptotic formula for orientation istribution an effective viscosity can be easily moifie to semi-ilute suspensions with swimmers whose ipole tensor is ifferent from (4). In orer to analyze the system (1)-(2), the associate kinetic theory for the probability ensity of bacterial configurations (positions an orientations of each bacterium) is stuie. In general, to erive the corresponing kinetic equation one assumes that initial conitions are ranom. Then each sum in the equations of motion is a sum of ientically istribute ranom variables. The key step in the formal erivation of the kinetic equation is replacing all sums in the equations of motion by their expectations [26,39,18]. This allows one to replace all the sums representing interactions by integrals with respect to a probability ensity function P (t, x, ) of fining a given bacterium at position x with orientation. By replacing the sums with integrals in the system (1)-(2) an enforcing conservation of probability, a stanar Fokker-Planck equation escribing the evolution of the ensity P is obtaine t P + x (VP ) + (ΩP ) D P = 0, (6) where the translational an orientation fluxes are efine by V(x, ) := V up (x, )x S + u BG (x), (7) V L S 2 V L Ω(x, ) := 1 ω + BE, P (x, ) x S + ω BG () + BE BG (). (8) V L S 2 Here <, > enotes the uality with respect to the L 2 -norm, V L := [ L, L] 3, an we neglect the Lennar Jones term F ue to the fact that collisions only play a small role at low concentrations. The functions u, ω, an E uner the integral sign epen on x x, an, an they are efine as follows u(x, ) := U0 8πη 0 x [( I/3)G(x)], ω(x,, ) := 1 2 [ x u(x, )], (9) E(x,, ) := [ D x (u(x, ))], where D x (u) := 1 2 ( xu + [ x u] T ) represents the symmetric graient an I is the ientity matrix. Also, ω BG () an E BG () are efine in the same way as (9), but with the flui velocity u replace with the backgroun flow u BG.

7 Effective Rheological Properties in Semiilute Bacterial Suspensions 7 1 Remark 3 Since ω, E x x, the integrals with respect to the spatial variables must be consiere in the istributional or principal value sense (which 3 are equivalent here). Namely, < u i x j, ϕ >= C ij ()ϕ(0) + ui x j (ϕ(x) ϕ(0))x, where C ij () = lim ε 0 x =ε u i n j s x. The orientation vector S 2 can be represente by two inepenent angles in spherical coorinates := (cos α sin β, sin α sin β, cos β) = ( 1, 2, 3 ), (10) for azimuthal angle α [0, 2π) an polar angle β [0, π) with unit basis vectors ˆα := ( sin α, cos α, 0) an ˆβ := (cos α cos β, sin α cos β, sin β) respectively. Here one must be careful to note that the ivergence an the Laplacian in orientations (the Laplace-Beltrami operator) in (6) are taken over the unit sphere. In particular, for any fiel A = A() the following efinition hols A := 1 sin β [ α(a α ) + β (sin βa β )] = A { 2 (A ) } =1, (11) where A α = A ˆα, A β = A ˆβ, an is the classical graient. 2.1 Definition of the effective viscosity for a suspension of point force ipoles To efine the effective viscosity consier the contributions to stress: (i) ue to ipolar hyroynamic interactions Σ lm() := N i=1 U 0 V L ( l m δ lm /3), l, m = 1, 2, 3, epening only on each particle s orientation [3] an (ii) ue to soft collisions (the exclue volume constraints) Σ LJ lm (x) := N i=1 j i F l (x i x j )(x i m x j m), l, m = 1, 2, 3, V L epening only on the relative positions of each bacterium [41]. Both are combine to form the total stress ue to interactions first use in [29,28].

8 8 Mykhailo Potomkin et al. We assume that all bacteria are in the volume V L at any instant of time. The bacterial configurations are enote by x := (x 1,..., x N ) an := ( 1,..., N ). The ultimate goal is to compute the effective viscosity ue to hyroynamic interactions at low concentrations for comparison with experimental observation [35] an numerical simulations. At lower concentrations φ, where the striking experimental ecrease in the effective viscosity was observe, the contribution ue to collisions is relatively small an for the proceeing analysis will be neglecte Σ(x, ) = Σ () + Σ LJ (x) Σ (), for φ small. (12) The exact concentration interval where the formula (12) works well will be etermine later by comparison with irect numerical simulations of the suspension. Thus, it is sufficient to restrict attention to the ensity of orientations enote P () efine as P () := 1 P (x, )x, where P () = 1. (13) N V L S 2 For comparison with experiment, the main quantity of interest is the shear viscosity or component η 1212 of the fourth orer viscosity tensor relating the stress to the strain, henceforth, enote as ˆη. We efine the effective viscosity as the average ratio of the corresponing components of the stress an strain tensors ˆη η 0 := 1 Σ xy η 0 V L V L S γ P (x, )xs = ρ Σ γ xy()p ()S, (14) 2 S 2 as in [29,28]. Here ρ = N/ V L is the mean concentration or number ensity. The following nonlinear, nonlocal integro-ifferential equation escribes the evolution of the orientation ensity P (t, ) where < Ω > x = interaction terms t P (t, ) = (< Ω > x P (t, )), (15) 1 N V L ΩP x (t, x)x, Ω contains the backgroun flow an Ω(t, x, ) = ω BG + E BG + 1 N V L S 2 V L ω + BE, P (t, x, ) x. Equation (15) is obtaine by integrating (6) in x an iviing by N. Remark 4 In this work, lower concentrations of bacteria are consiere where the primary contribution to the effective viscosity from interactions is the ipolar component of the stress, Σ, which only epens on the set of bacterium orientations. Thus, the ẋ equation will not factor into the final formula; however, F is the force associate to a truncate Lennar-Jones type potential imposing exclue volume constraints. For more information on its efinition an why it is neee for global solvability see [28]. This quantity still remains in the original couple ODE system use for simulations to ensure that particles remain a finite istance apart avoiing an artificial ivergence in the flui velocity u 1/ x i x j (see section 5.3).

9 Effective Rheological Properties in Semiilute Bacterial Suspensions 9 3 Conitions impose to erive an explicit formula for the effective viscosity To calculate the effective viscosity we impose three conitions to make the system more amenable to mathematical analysis. 3.1 Separation of variables In this paper only small concentrations are consiere where collisions are not important, yet the flow of each bacterium affects all others. The bacteria are at large istances apart an, thus, since the backgroun flow provies the major contribution to bacterial motion, then istributions of positions an orientations become essentially inepenent of one another. This can be justifie from the experimental work of Aranson et al. (e.g., see [37, 2]). Henceforth, it is assume that the positions an orientations are ecouple. Conition (C1): The ensity P (x, ) can be written as P (x, ) = P x (x)p () (separation of variables), (16) where P () = 1 N V L P (x, )x an P S 2 ()S = 1. Here N is the number of bacteria, supp(p x (x)) V L, where the spatial ensity P x (x) can be foun by P x (x) = P (x, )S S 2. This conition is use twice. First, the effective viscosity at low concentration only epens on the orientation (see Remark 4). Thus, using conition (C1) an explicit equation for the evolution of the orientation istribution can be erive from (15). Secon, V formally contains iverging integrals (e.g., FxS since F x 12 ), which will no longer be present in the equation for the orientation istribution P () allowing for further mathematical analysis. It will be observe at the en of this work that the asymptotic expansion for P () epens on P x (x) through the coefficients, thus all the information about spatial patterns is preserve. 3.2 Existence of a steay state P () A steay state solution to (15) is efine as follows Definition 1 ˆP () is calle a steay state solution to (15) if it solves ( ) 0 = < Ω > x ˆP (). To compute time inepenent effective viscosity we impose the following conition. Conition (C2): There exists a nontrivial steay state solution to (15).

10 10 Mykhailo Potomkin et al. First, note that there is no trivial steay state unless B = 0 in which case we fin the uniform orientation istribution P () = 1 4π. This can be obtaine both in the limit as B 0 in the asymptotic results erive herein for P () an from observing that the trivial steay state woul be a constant satisfying the constraint P S 2 ()S = 1. One still nees to prove the existence of a steay state in the general case B 0. The conition (C2) can be formulate as a theorem an its proof may be the topic of a future work. Here we remain focuse on the stuy of the effective viscosity. 3.3 P x (x) is constant in the z-irection We assume that P x (x) is constant in z for the case of the planar shear backgroun flow uner consieration in this work. This is consistent with past numerical observations by Ryan et al. [29] an experimental observation in [38] since the suspension remains below any critical concentration for threeimensional collective motion. Also, collective motion even in full 3D experiments an simulations in planar shear flow has been observe to be essentially 2D in the shearing plane [38]. Thus, following experimental observation, we assume the same. Conition (C3): The ensity P x (x) is constant in z. The conition (C3) essentially follows from the physical setup of the quasi- 2D thin film suspension. In Appenix B we show that the conition (C3) leas to the following representation formula for the Fourier transform of the spatial istribution F [P x ]: (F [P x ]) 2 = δ(k 3 ) ˆP 2 12(k 1, k 2 ). (17) Here k = (k 1, k 2, k 3 ) is the Fourier variable, an ˆP 12 (k 1, k 2 ) is a smooth function efine in k-space inepenent of k 3. 4 Derivation of asymptotic expression for P for small B In this section, an expression for the orientation istribution P () is erive. Since (15) is a nonlinear integro-ifferential equation it is challenging, in general, to fin an analytical solution. Thus, we look for P () by asymptotic expansion in the limit of small non-sphericity (B 1). This will allow us to apply analytical techniques an erive an expression, which will provie physical insight into the mechanisms contributing to the ecrease in the effective viscosity. Rewrite the equation for the orientation ensity P () (15) as (the argument t is suppresse for simpler notation) t P + [(ω BG + BE BG ] 1 )P + N V L ( ˆΩP (x, ))x = 0, (18)

11 Effective Rheological Properties in Semiilute Bacterial Suspensions 11 where ˆΩ(x, ) := 1 ω + BE, P x (x ) x P ( ). (19) V L S 2 Herein ˆΩ will enote the component of the orientational flux Ω ue to interactions. Observe that the ω an E are functions of x x,, an. Using Conition (C1) efine in (16) we obtain a close form equation for a steay state P () (provie that P x is given): 0 = [(ω BG + BE BG )P () ] + 1 ( ˆΩ(x,, )P x (x)p ()) S x. (20) N V L V L The first term in (20) is the contribution ue to the backgroun planar shear flow: [(ω BG () + BE BG ())P () ] = 3γB 2 sin2 β sin 2αP () + γ 2 (1 + B cos 2α){ αp ()} (21) + γb 4 sin 2α sin 2β{ βp ()}. The secon term in (20) is the contribution of hyroynamic interactions between bacteria. Notice the convolution form of the nonlocal terms in the spatial variable. In the next section, the Fourier transform will be utilize to compute quantities necessary to erive the formula for the effective viscosity. Specifically, using tools such as Parseval s Theorem, one can take the spatial integrals an consier them in Fourier space where they will prove easier to analyze. After using the separation of variables (16), the ensity will be expresse in terms of the Fourier frequencies k. The main goal for the remainer of this section is to write the system in a convenient form for using the Fourier transform. This iea follows naturally from the aforementione observation that all the interactions terms take the form of a convolution. Introuce the Fourier transform C(k) := F [P x ](k): P x (x) = 1 (2π) 3 e ik x C(k)k. (22) Define H(x x,, ) := ω(x x,, )+BE(x x,, ), then the following equalities hol < H P x, P x > x =< F [H P x ], F [P x ] > k =< F [H], (F [P x ]) 2 > k, (23) where an F stan for convolution an Fourier transform, respectively. The first equality is Parseval s ientity an the secon is the fact that the Fourier transform of a convolution is the prouct of Fourier transforms. Thus, one can rewrite equation (20) in the following form [(ω BG + BE BG )P () ] + {P ()P ( ) < F [H](F [P x ]) 2 } > k S = 0. (24) S 2

12 12 Mykhailo Potomkin et al. In orer to compute F [H] one must first unerstan how the Fourier transform acts on the flui velocity u an its erivatives. 4.1 Evaluation of Fourier transforms In orer to analyze (24), an analytical expression for the Fourier transform F [H] = F [ω] + BF [E] is neee. Both terms epen on the flui velocity u efine by (3). Recall the ipolar stress Σ(x, ) = D()δ(x) = U 0 ( I/3)δ(x). (25) Then the Stokes equation in (3) can be written as η 0 x u + x p = x Σ(x, ), x u = 0. (26) Denote the Fourier transform of a function f(x) as f(k) = F [f] (k) = e i(k x) f(x)x, an compute the Fourier transform of u an the symmetric graient D x (u). Proposition 1 Let u be a solution of (3) an let Σ be efine by (25). Then (i) Σ( ) = U 0 ( I/3), (ii) ũ(k) = i ) (I kk Σ(k) k η 0 k k 2 k, (27) (iii) F [D x (u)] = 1 ( ) 2η 0 k 4 k 2 Σkk 2kk Σkk + k 2 kk Σ. (28) Here enotes the transpose. Proof The part (i) follows from the fact that the Fourier transform of δ- function is 1. We split the proof of (ii) into two steps: First, we fin the Fourier transform of the pressure p, then by using the first equation in (3) we fin ũ. Step 1: Evaluation of p = F [p]. By taking the ivergence of (26) in x we obtain x p = x ( x Σ). (29) Observe that F [ x p] = k 2 p(k), F [ x ( x Σ)] = Σ : 2 xe ik x x = Σ(k) : kk. Substituting these formulas into (29) we obtain k 2 p(k) = Σ(k) : kk, an, thus, we fin an expression for the Fourier transform of the pressure p: p(k) = 1 k 2 Σ(k) : kk. (30)

13 Effective Rheological Properties in Semiilute Bacterial Suspensions 13 Step 2: Evaluation of ũ = F [u]. Return to Stokes equation (26) an observe that η 0 F [ x u] = η 0 k 2 ũ(k), F [ x Σ] = i Σ(k)k. F [ x p] = ik p(k), Using these relations one fins that η 0 k 2 ũ(k) + ik p(k) = i Σ(k)k. After rearranging the terms an using (30) we complete the proof of (ii). To prove (iii) we first observe that F [D x (u)] = i 2 (ũk + kũ ). Plug the Fourier transform of u from (ii) into this expression to fin F [D x (u)] = i 2 (ũk + kũ ) = 1 2η 0 k 2 ((I kk k 2 ) Σ(k)kk + kk Σ(k)(I kk k 2 ) Use the fact that Σ is symmetric ( Σ = Σ ) to complete the proof of (iii). Remark 5 It is easily seen that F [D x (u)] oes not epen on k, since F [D x (u)] can be rewritten as F [D x (u)] = 1 k Σ η 0 k k 2 k η 0 k k Σ k k k + k η 0 k k Σ. k This subsection is conclue by summarizing the analytical expressions for the two main components of F [H] = F [ω] + BF [E]: F [E] = ( F [D x (u)] ) = F [D x (u)] F [D x (u)] (31) F [ω] = 1 2 F [ x u] = 1 [ ik F [u]], (32) 2 where F [u] an F [D x (u)] are given by Proposition 1. k k k ). 4.2 The form of asymptotic expansion in B Recall the steay-state Liouville equation (24) with the backgroun terms substitute in: 0 = 3γB 2 sin2 β sin 2αP () + γ 2 (1 + B cos 2α) αp () + γb 4 sin 2α sin 2β βp () + 1 {P ()P ( ) < F [H], (F [P x ]) 2 } > k S. (33) N V L S 2 We consier the asymptotic expansion in the Bretherton constant, B 1, for the orientation istribution, P (), up to the secon orer: P (α, β) = P (0) (1) (2) (α, β) + P (α, β)b + P (α, β)b2 + O(B 3 ). (34)

14 14 Mykhailo Potomkin et al. Substituting (34) into (33) we get ifferent equations at ifferent orers of B. It is straightforwar that P (0) 1 (α, β) = 4π (surface area of the unit sphere is 4π) solves the equation at orer O(1). We want to consier the asymptotic expansion about the uniform istribution because it has been extensively ocumente in theory an experiment that as the bacterium boies become or spherical (B 0), then the istribution in angles is uniform [29,16]. In the next two subsections, the linear orer term P (1) (α, β) an quaratic orer term P (2) (α, β) are compute. 4.3 Contribution at O(B) First, notice that ω(x x,, ) = 0. Inee, this follows from (11) since ω = 0 an the classical ivergence of ω with respect to is zero (note that ω = A, where A = x u oes not epen on ). This observation implies F [H] = B F [E]. Using this equality an expaning the ivergence uner the integral sign we rewrite (33) as follows: 0 = γ 2 [B sin(2α) sin β (cos β βp 3 sin βp ) + (1 + B cos(2α)) α P ] + B P ( )P () (F [E()])(F [P x ]) 2 k S (35) N V L S [P ()]P ( ) F [H()](F [P x ]) 2 k S. N V L S 2 The first integral at O(B) is 1 16π 2 (F [E()])(F [P x ]) 2 k S, (36) N V L S 2 By switching the orer of integration an noting ΣS S 2 = U S 2 0 [ ( ) I/3]S = 0 we obtain that (36) is zero using (31) an (28). Since both [P ()] an BE are of the orer O(B), the secon integral in (35) at O(B) is 1 4πN V L S 2 P (1) () F [ω](f [P x]) 2 k S which is also zero ue to S 2 U 0 ( I/3)S = 0. Thus, the integral terms o not contribute to equation (35) at orer O(B), an it has the following form: 0 = γ 2 After substituting P (0) = 1 4π [ ] 3P (0) sin(2α) sin2 β + α P (1). (37) an solving (37), one fins that P (1) (α, β) = 3 8π sin2 β cos(2α). (38)

15 Effective Rheological Properties in Semiilute Bacterial Suspensions 15 Since the integral terms are zeros at orer O(B), the contribution ue to interactions oes not appear at orer O(B) an thus the only contribution is ue to the backgroun flow. It will be shown later that up to O(B) the contribution to the effective viscosity by the bacteria is zero. This will she light on the fact that interactions are necessary to see the ecrease in the effective viscosity an the backgroun flow alone is insufficient. Note that even though this is the contribution ue to the backgroun flow the strain rate γ is not present. Therefore, the magnitue of the flow will not have an effect on the longtime limit of the effective viscosity at O(B). However, once the terms at the next orer are compute one observes a competition evelop between the backgroun flow an the flow ue to inter-bacterial interactions. In this case the magnitue of the shear γ becomes important. 4.4 Contribution at O(B 2 ) Consier terms in (35) of orer O(B 2 ): 0 = γ 2 sin(2α) sin β cos β βp (1) () 3γ 2 sin(2α) sin2 (β)p (1) () + γ 2 αp (2) () + γ 2 cos(2α) αp (1) () 1 + 4πN V L F [E]F [P x ] 2 k P (1) ( )S S [P (2) 4πN V L ()] F [ω](f [P x]) 2 k S (39) S [P (1) 4πN V L ()] F [E](F [P x]) 2 k S S [P (1) (1) ()]P N V L ( ) F [ω](f [P x ]) 2 k S. S 2 Denote the four integral terms in equation (39) by I 1, I 2, I 3 an I 4, respectively. The following equalities hol: U 0 ( I 1 = A sin 2 β cos(2α) + C sin 2 β sin(2α) ), 40πη 0 N V L I 2 = I 3 = 0, 3U 0 I 4 = 10πη 0 N V L D sin(2α) sin2 β, where constants A, C, an D are efine as follows A := 1 2 sin 2 (2θ) ˆP 12k 2 2 kθ, C := 1 2 sin(4θ) 2 ˆP 12 k 2 kθ, D := cos(θ) sin(θ) ˆP 12k 2 2 kθ. (40)

16 16 Mykhailo Potomkin et al. Here ˆP 12 is from (17), an we use spherical coorinates in the Fourier space (k = k, θ, φ). The calculations of I i can be foun in Appenix A. After substitution of the expressions for each I i, we get the following equation for P (2) (): 0 = γ 2 sin(2α) sin β cos β βp (1) () 3γ 2 sin(2α) sin2 (β)p (1) () + γ 2 αp (2) () + γ 2 cos(2α) αp (1) () (41) U 0 ( + A sin 2 β cos(2α) + C sin 2 β sin(2α) ) 40πη 0 N V L 3U πη 0 N V L D sin2 β sin(2α). Base on the form of the equation (41), the following representation is use to fin P (2) (): P (2) () = C 1 sin 4 β cos(4α) + C 2 sin 2 β cos(2α) + C 3 sin 2 β sin(2α). (42) In orer to fin each C i substitute (42) into (41): [ ] [ 3γ 0 = 8π 2γC 1 sin(4α) sin 4 U 0 A β + γc πη 0 N V L [ + γc 2 + U 0 C 40πη 0 N V L + 3U 0 D 10πη 0 N V L ] sin 2 β sin(2α). ] sin 2 β cos(2α) Since the factors are linearly inepenent, each coefficient is zero an, thus, we fin the C i s: C 1 = 3 16π, C 2 = U0(C+12D) 40γπη 0N V L, C 3 = U 0A 40γπη 0N V L. Using these coefficients one obtains an explicit formula for the orientation istribution up to O(B 3 ): P (α, β) = 1 4π 3 [ 3 8π sin2 β cos(2α)b + 16π sin4 β cos(4α) C + 12D U 0 40γπη 0 N V L sin2 β cos(2α) (43) ] U 0 A 40γπη 0 N V L sin2 β sin(2α) B 2 + O(B 3 ). Formula (43) is the main result of Section 4. Since A, C, an D contain ˆP 12, all the spatial information is embee in these coefficients. In particular, we foun the lowest orer (in B) contribution of hyroynamic interactions to the P () occurs at O(B 2 ). In the following section, the contribution of hyroynamic interactions to the effective viscosity is compute as well as the change in the effective normal stress coefficients. The combination of these two quantities will escribe the total effect of hyroynamic interactions on the rheological behavior of the bacterial suspension.

17 Effective Rheological Properties in Semiilute Bacterial Suspensions 17 5 Explicit formula for the effective viscosity Using the expression for the orientation istribution, P () efine in (43), an the formula for the effective viscosity for ipoles in a suspension (14), we compute the contribution to the effective viscosity ue to interactions: η int := η η 0 η 0 = U 2 0 B 2 ρ 2  75γ 2 πη 0 < 0. (44) where  = 1 N A O(1) an the equality hols up to orer O(B 3 ). The 2 quantity η int behaves like ρ 2 in concentration (cf. [4] where an expansion for the effective viscosity to orer two in concentration is erive for passive spheres corresponing to pairwise interactions). As an aitional check of consistency, consier the imensions of the final quantity. The ipole moment [U 0 ] = kg m2 s, both the Bretherton constant B an  are imensionless, the 2 concentration/number ensity [ρ] = 1 m, the ambient viscosity [η 3 0 ] = kg m s, an the strain rate [γ] = 1 s resulting in ηint being imensionless. In aition, the orientation istribution P () from (43) can be use to compute the effective first an secon ipolar normal stress coefficients N 12 = Σ 11 Σ 22 γ an N 2 23 = Σ 22 Σ 33 γ to investigate the effect of hyroynamic interactions. The main avantage of the mathematical moel is that 2 the computation of the effective normal stress coefficients is straightforwar in contrast to experiment where its measurement can be quite complicate [13]. These coefficients can provie important information about the suspension. For example, the ratio of the first normal stress to the viscosity etermines the effective relaxation time [13]. Also, phenomena such as extruate swelling [1] an seconary flow [27] are important in many technological applications. A simple calculation shows that N 12 = Σ 11 Σ 22 γ 2 N 13 = Σ 22 Σ 33 γ 2 = U 0ρ γ 2 = U 0ρ γ 2 [ 2 5 2U 0ρ(C + 12D) ] B 2 75γπη 0 [ U 0ρ(C + 12D) 75γπη 0 B 2 (45) ]. (46) The approximations are vali for B 1, so for pushers (U 0 < 0) N 12 > 0 an N 23 < 0 where as for pullers (U 0 > 0) N 12 < 0 an N 23 > 0. Both results are consistent with the preictions in [16, 31] while proviing aitional information about the concentration epenence. The effective normal stress coefficients grow linearly with concentration in the presence of interacting bacteria; however, the fact that the normal stresses of active suspensions are non-zero in the case of a planar shear flow inicate the emergence of non- Newtonian behavior. One sees in (45)-(46) that as the shear rate γ the normal stresses approach zero inicating the ominance of the backgroun flow on the suspension overwhelming any contribution from interactions.

18 18 Mykhailo Potomkin et al. 5.1 Mechanisms require for the ecrease in the effective viscosity In this subsection, the mechanisms that lea to a ecrease in the effective viscosity are investigate. These same mechanisms are shown in [30] to be responsible for collective motion an large scale structure formation in suspensions of pushers. Our mathematical analysis provies insight beyon experiment. Formula (44) reveals that elongation of bacteria, self-propulsion, an interactions are all require to observe a ecrease in the effective viscosity; namely, for spherical bacteria (B = 0) the net change in the effective viscosity is zero. In aition, active bacteria are require, since U 0 f p = 0 results in no change in the effective viscosity where f p is the propulsion force. Finally, if the spatial ensity P x (x) is near uniform, then  = 1 2N sin 2 (2θ) ˆP 12k 2 0 resulting in 2 no change in the effective viscosity. In the limit γ the contribution to motion of bacteria ue to shear ominates the contribution ue to interactions with P () maximize at α = π/2 an β = π/2 (alignment with y-axis). This is analogous to the passive case where bacteria in a planar shear flow ten to align with the irection where the flui exerts the least amount of torque on the bacterium boy. Therefore, confirming our main conclusion that in orer to exhibit a ecrease in the effective viscosity active, elongate bacteria whose interactions result in a non-uniform istribution in space are neee. 5.2 Effective noise conjecture In this subsection, the results herein involving a semi-ilute suspension of point force ipoles are compare to the previous result for a ilute suspension of prolate spherois with propulsion moele as a point force [16]. Thus, the only contribution to bacterial motion is the backgroun flow. In [16], finite size bacteria are taken as spherois with a point force (δ function) accounting for self-propulsion. In aition, each bacterium experiences a ranom reorientation referre to as tumbling. Biologically tumbling correspons to a reorientation of a bacterium in hopes of fining a more favorable (nutrient rich) environment. Typically in experiment this is observe when the concentration of oxygen is low. Thus, bacteria enter a more ormant state resulting in a lower swimming spee an an increase tumbling rate [36]. Since only the term containing  contributes to the effective viscosity, one can choose to match the coefficient of this term P int = 1 4π 3 8π B cos(2α) sin2 β π B2 sin 4 β cos(4α) U 0 ρ C + 12D B 2 sin 2 β cos(2α) U 0ρ B 2 sin 2 β sin(2α) + O(B 3 ) 40γπη 0 40γπη 0 with the corresponing coefficient in the erivation by Haines et al. [16], which is quaratic in the iffusion strength D. To make the formulas for the effective

19 Effective Rheological Properties in Semiilute Bacterial Suspensions 19 viscosity ientical, the strength of the effective noise/iffusion (tumbling) is chosen to be ˆD := 15η 0γ η0 2γ4 Â2 B 2 γ 2 ρ 2 U0 2 12ÂBρU > 0, 0 (since U 0 < 0 for pushers). Observe that ˆD, chosen in this way, epens only on the physical parameters present in the problem an the same effective viscosity as the ilute case stuie in [16] is foun. This ˆD is referre to as the effective noise an the phenomenon where stochasticity arises from a completely eterministic system is calle self-inuce noise. A future work may seek to explain this phenomenon rigorously using mathematical analysis. One heuristic iea is that the perioic (eterministic) Jeffrey orbits are estroye by interactions resulting in stochastic behavior. Some conclusions about this effective noise can be mae that ensure its consistency with physical reality. As bacteria become spheres B 0, ˆD 0 resulting in no change in the effective viscosity consistent with [16]. Also as the strain/shear rate γ, ˆD 0. This is physically intuitive, because as the shear rate becomes large its contribution ominates that ue to hyroynamic interactions resulting in behavior that resembles that of a passive suspension. Thus, the contribution to the effective viscosity ue to hyroynamic interactions is zero. Finally, we compare our results with irect simulations for the couple PDE/ODE system compose of Stokes PDE (3) an (1)-(2). 5.3 Comparison to numerical simulations In this section, the accuracy of the erive formula is teste by comparing it to recent numerical simulations. The numerical proceure is outline in [29]. These simulations are parallel in nature allowing them to be carrie out on GPUs for greater efficiency. Figure 1 shows how both the formula an numerical computations of viscosity change with bacterium shape as all other system parameters remain fixe. Here shape is accounte for through the Bretherton constant B = b2 a 2 b 2 +a 2 where b is the length of the major axis an a is the length of the minor axis of the ellipsoi representing a bacterium. First, notice that in both the formula an numerics the contribution to the effective viscosity ue to hyroynamic interactions ecreases with B (increasing in magnitue). This is ue to the fact that as bacteria become more asymmetrical as B 1 the inter-bacterial hyroynamic interactions have a greater effect on alignment. This alignment increases the magnitue of the ipolar stress leaing to an even bigger ecrease in the effective viscosity. The agreement between the analytical formula an numerical simulations breaks own as B becomes large, but this is expecte ue to the fact that the asymptotic formula is vali in the regime where B 1 (small non-sphericity).

20 20 Mykhailo Potomkin et al. 0 Effective Viscosity, η η Analytical Numerical Bretherton Constant, B Fig. 1 Comparison of the formula for the effective viscosity with numerical simulations as bacterium shape changes through the Bretherton constant B for a fixe volume fraction Φ =.02 an shear rate γ =.1. The vertical bars represent the error in the numerical approximation. Error in the analytical solutions comes from the numerical estimation of Â. Figure 2 shows how both the formula an numerical computations of viscosity change with the concentration of the suspension as all other system parameters remain fixe. It is seen that as concentration increases the effective viscosity ecreases. This can easily be explaine by the fact that as the concentration increases, the motion of bacteria begins to be ominate by inter-bacterial hyroynamic interactions. This leas to collective motion of the bacteria in the suspension, which subsequently ecreases the viscosity. The two results begin to iverge near volume fraction Φ.02. The reason the numerical simulations o not ecrease as much is that collisions are taken into account. It was shown in [29] that the stress ue to collisions is a positive contribution to the effective viscosity that is not capture by the formula. This contribution begins to become important beyon the ilute regime (Φ > 2%) Effective Viscosity, η η Analytical Numerical Concentration, Φ Fig. 2 Comparison of the formula for the effective viscosity with numerical simulations as the volume fraction Φ changes for a fixe shape B =.2 an shear rate γ =.1.

21 Effective Rheological Properties in Semiilute Bacterial Suspensions 21 Figure 3 shows how both the formula an numerical computations of viscosity change with the shear rate of the backgroun flow in the suspension as all other system parameters remain fixe. As expecte when the shear rate is large in both the analytical formula an simulations, the ecrease in viscosity ue to hyroynamic interactions is negligible. This is ue to the fact that the backgroun flow ominates motion of bacteria wiping out the effects of inter-bacterial interactions an stopping any collective structures from forming. When the shear rate is too small the effective viscosity becomes unboune. This makes sense given that at small shear rate the system becomes almost non-issipative an thus the effective viscosity is not well-efine. This can easily be seen by noting that the viscosity is the ratio of the stress over the strain an when the strain is essentially zero the effective viscosity becomes unboune. All three plots show goo qualitative agreement with each other, experimental observation, an physical intuition. 0 Effective Viscosity, η η Analytical Numerical Shear Rate, γ Fig. 3 Comparison of the formula for the effective viscosity with numerical simulations as the shear rate γ changes for a fixe volume fraction Φ =.02 an shape B =.2. 6 Global solvability of the kinetic equation In this section, we stuy solvability of the main nonlinear integro-ifferential equation (15) governing the evolution of the orientation istribution. Primarily we are intereste in existence, uniqueness, an the regularity properties of solutions of (15). First, we note that (15) is an equation of the form: ([ ] ) t P = K(, )P ( )S + k() P + D P. (47) S 2 Inee, one can obtain (15) by substituting K(, ) = ω(, ) + BE(, ), k() = ω BG () + BE BG (). (48)

22 22 Mykhailo Potomkin et al. Both K an k from (48) are infinitely smooth functions of. Therefore, in this section we consier (47) for the general case of smooth K an k. We follow the stanar proceure for the analysis of the well-poseness of the evolution PDEs (e.g., see [12, 23, 14]). In particular, we introuce the notion of a weak solution. By H s (s R) we enote the corresponing Sobolev spaces. Definition 2 For T > 0, the function f which belongs to space H given by H = L 2 ((0, T ), H 1 (S 2 )) H 1 ((0, T ), H 1 (S 2 )) (49) is a weak solution of (47) if for almost all t [0, T ] an all h H 1 (S 2 ) [ ] t f, h = D f, h + f, K(, )fs + k() h, (50) S 2 where, is the uality prouct for istributions on the unit sphere S 2. Remark 6 Accoring to the well-known embeing (see [33]) the fact that a weak solution f belongs to H implies that it is continuous with respect to t [0, T ] with values in L 2 (S 2 ), i.e., f C([0, T ]; L 2 (S 2 )). Definition 3 A function f C([0, T ]; L 2 (S 2 )) is calle positive in istributional sense if f, h 0 (51) for all t [0, T ] an all h C(S 2 ) such that h() 0 for all S 2. The following theorem is the main result of this section. Theorem 1 Assume f 0 L 2 (S 2 ), K C 2 (S 2 S 2 ), k C 2 (S 2 ) an T > 0. Assume also that f 0 is positive in the istributional sense. Then the following statements hol: (i) There exists the unique weak solution of (47) f on interval [0, T ] such that f t=0 = f 0. The weak solution f is positive. It continuously epens on initial conitions, i.e., there exists a positive constant C > 0 such that sup f (1) f (2) L2 (S 2 ) C f (1) 0 f (2) 0 L 2 (S 2 ), (52) t [0,T ] where f (1) an f (2) are weak solutions with initial conitions f (1) t=0 = f (1) 0 an f (2) t=0 = f (2) 0, respectively. (ii) For all s 0 if f 0 H s (S 2 ), then f C([0, T ]; H s (S 2 )). If f 0 C (S 2 ), then f C([0, T ]; C (S 2 )).

23 Effective Rheological Properties in Semiilute Bacterial Suspensions 23 (iii) For all s 0 if f 0 H s (S 2 ), then for all m 0 an t > 0: ( f(t) 2 H s+m (S 2 ) C ) t m, (53) where the constant C epens only on f 0 H s (S 2 ), s, an m. In particular, for all p Z. f C((0, ); H p (S 2 )) Proof STEP 0. (Preliminaries) Consier spaces of functions with mean zero: L 2 (S 2 ) := L 2 (S 2 ) {f : f, 1 = 0} Ḣ s (S 2 ) := H s (S 2 ) {f : f, 1 = 0}. Note that for f L 1 (S 2 ) f, 1 = fs. S 2 We use f L2 (S 2 ) as a norm in Ḣ1 (S 2 ). In this proof we assume that f S 2 0 S = 1. Consier the mean zero component of the solution f; namely, g := f 1 4π. If f is the weak solution of (47), then g satisfies t g, h = D g, h + 1 4π + g, K(, )g( )S h S [ ] 4π + g, K(, )S + k() h (54) S 2 for all h H 1 (S 2 ). Existence, uniqueness, an continuous epenence on initial conitions will be proven for g, which is equivalent to the proof of the same properties for f. Below C enotes a positive constant an it may change from line to line. STEP 1. (Local existence) Let E N be the space spanne by the first N eigenvalues of the Laplace-Beltrami operator, an let Π N be the orthogonal projector on the space E N. Introuce the Galerkin approximation g N, which is the solution of the following equation: t gn, h = D g N, h + 1 4π + gn, K(, )g N ( )S h S [ ] 4π + g, K(, )S + k() h, (55) S 2 for all h E N, an g N t=0 = Π N g 0, where g 0 := f 0 1 4π. In a stanar manner, the problem (55) can be interprete as a system of N ODEs, an its solution g N exists for t [0, t N ) for some t N > 0. Taking

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013 Survey Sampling Kosuke Imai Department of Politics, Princeton University February 19, 2013 Survey sampling is one of the most commonly use ata collection methos for social scientists. We begin by escribing

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

R is the radius of the sphere and v is the sphere s secular velocity. The

R is the radius of the sphere and v is the sphere s secular velocity. The Chapter. Thermal energy: a minnow, an E. Coli an ubiquinone a) Consier a minnow using its fins to swim aroun in water. The minnow must o work against the viscosity of the water in orer to make progress.

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE Journal of Soun an Vibration (1996) 191(3), 397 414 THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE E. M. WEINSTEIN Galaxy Scientific Corporation, 2500 English Creek

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena Chaos, Solitons an Fractals (7 64 73 Contents lists available at ScienceDirect Chaos, Solitons an Fractals onlinear Science, an onequilibrium an Complex Phenomena journal homepage: www.elsevier.com/locate/chaos

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

PHYS 414 Problem Set 2: Turtles all the way down

PHYS 414 Problem Set 2: Turtles all the way down PHYS 414 Problem Set 2: Turtles all the way own This problem set explores the common structure of ynamical theories in statistical physics as you pass from one length an time scale to another. Brownian

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Basic Thermoelasticity

Basic Thermoelasticity Basic hermoelasticity Biswajit Banerjee November 15, 2006 Contents 1 Governing Equations 1 1.1 Balance Laws.............................................. 2 1.2 he Clausius-Duhem Inequality....................................

More information

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b.

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b. b. Partial erivatives Lecture b Differential operators an orthogonal coorinates Recall from our calculus courses that the erivative of a function can be efine as f ()=lim 0 or using the central ifference

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS

ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS MICHAEL HOLST, EVELYN LUNASIN, AND GANTUMUR TSOGTGEREL ABSTRACT. We consier a general family of regularize Navier-Stokes an Magnetohyroynamics

More information

Advanced Partial Differential Equations with Applications

Advanced Partial Differential Equations with Applications MIT OpenCourseWare http://ocw.mit.eu 18.306 Avance Partial Differential Equations with Applications Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms.

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

Generalization of the persistent random walk to dimensions greater than 1

Generalization of the persistent random walk to dimensions greater than 1 PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Generalization of the persistent ranom walk to imensions greater than 1 Marián Boguñá, Josep M. Porrà, an Jaume Masoliver Departament e Física Fonamental,

More information

Logarithmic spurious regressions

Logarithmic spurious regressions Logarithmic spurious regressions Robert M. e Jong Michigan State University February 5, 22 Abstract Spurious regressions, i.e. regressions in which an integrate process is regresse on another integrate

More information

A note on the Mooney-Rivlin material model

A note on the Mooney-Rivlin material model A note on the Mooney-Rivlin material moel I-Shih Liu Instituto e Matemática Universiae Feeral o Rio e Janeiro 2945-97, Rio e Janeiro, Brasil Abstract In finite elasticity, the Mooney-Rivlin material moel

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

A SIMPLE ENGINEERING MODEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PRODUCTS

A SIMPLE ENGINEERING MODEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PRODUCTS International Journal on Engineering Performance-Base Fire Coes, Volume 4, Number 3, p.95-3, A SIMPLE ENGINEERING MOEL FOR SPRINKLER SPRAY INTERACTION WITH FIRE PROCTS V. Novozhilov School of Mechanical

More information

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, MATILDE LALÍN 1 Introuction In this note, we stuy the fluctuations in the number

More information

The Three-dimensional Schödinger Equation

The Three-dimensional Schödinger Equation The Three-imensional Schöinger Equation R. L. Herman November 7, 016 Schröinger Equation in Spherical Coorinates We seek to solve the Schröinger equation with spherical symmetry using the metho of separation

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

CONSERVATION PROPERTIES OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO THE SHALLOW WATER EQUATIONS

CONSERVATION PROPERTIES OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO THE SHALLOW WATER EQUATIONS BIT 0006-3835/00/4004-0001 $15.00 200?, Vol.??, No.??, pp.?????? c Swets & Zeitlinger CONSERVATION PROPERTIES OF SMOOTHE PARTICLE HYROYNAMICS APPLIE TO THE SHALLOW WATER EQUATIONS JASON FRANK 1 an SEBASTIAN

More information

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments Problem F U L W D g m 3 2 s 2 0 0 0 0 2 kg 0 0 0 0 0 0 Table : Dimension matrix TMA 495 Matematisk moellering Exam Tuesay December 6, 2008 09:00 3:00 Problems an solution with aitional comments The necessary

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Nonlinear Dielectric Response of Periodic Composite Materials

Nonlinear Dielectric Response of Periodic Composite Materials onlinear Dielectric Response of Perioic Composite aterials A.G. KOLPAKOV 3, Bl.95, 9 th ovember str., ovosibirsk, 639 Russia the corresponing author e-mail: agk@neic.nsk.su, algk@ngs.ru A. K.TAGATSEV Ceramics

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Convective heat transfer

Convective heat transfer CHAPTER VIII Convective heat transfer The previous two chapters on issipative fluis were evote to flows ominate either by viscous effects (Chap. VI) or by convective motion (Chap. VII). In either case,

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

Stable and compact finite difference schemes

Stable and compact finite difference schemes Center for Turbulence Research Annual Research Briefs 2006 2 Stable an compact finite ifference schemes By K. Mattsson, M. Svär AND M. Shoeybi. Motivation an objectives Compact secon erivatives have long

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

6 Wave equation in spherical polar coordinates

6 Wave equation in spherical polar coordinates 6 Wave equation in spherical polar coorinates We now look at solving problems involving the Laplacian in spherical polar coorinates. The angular epenence of the solutions will be escribe by spherical harmonics.

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

The effect of nonvertical shear on turbulence in a stably stratified medium

The effect of nonvertical shear on turbulence in a stably stratified medium The effect of nonvertical shear on turbulence in a stably stratifie meium Frank G. Jacobitz an Sutanu Sarkar Citation: Physics of Fluis (1994-present) 10, 1158 (1998); oi: 10.1063/1.869640 View online:

More information

L p Theory for the Multidimensional Aggregation Equation

L p Theory for the Multidimensional Aggregation Equation L p Theory for the Multiimensional Aggregation Equation ANDREA L. BERTOZZI University of California - Los Angeles THOMAS LAURENT University of California - Los Angeles AND JESÚS ROSADO Universitat Autònoma

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13)

Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13) Slie10 Haykin Chapter 14: Neuroynamics (3r E. Chapter 13) CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012 Neural Networks with Temporal Behavior Inclusion of feeback gives temporal characteristics to

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

arxiv:physics/ v2 [physics.ed-ph] 23 Sep 2003

arxiv:physics/ v2 [physics.ed-ph] 23 Sep 2003 Mass reistribution in variable mass systems Célia A. e Sousa an Vítor H. Rorigues Departamento e Física a Universiae e Coimbra, P-3004-516 Coimbra, Portugal arxiv:physics/0211075v2 [physics.e-ph] 23 Sep

More information

Chapter-2. Steady Stokes flow around deformed sphere. class of oblate axi-symmetric bodies

Chapter-2. Steady Stokes flow around deformed sphere. class of oblate axi-symmetric bodies hapter- Steay Stoes flow aroun eforme sphere. class of oblate axi-symmetric boies. General In physical an biological sciences, an in engineering, there is a wie range of problems of interest lie seimentation

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate

Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate Freun Publishing House Lt., International Journal of Nonlinear Sciences & Numerical Simulation, (9), -, 9 Application of the homotopy perturbation metho to a magneto-elastico-viscous flui along a semi-infinite

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Lower Bounds for the Smoothed Number of Pareto optimal Solutions Lower Bouns for the Smoothe Number of Pareto optimal Solutions Tobias Brunsch an Heiko Röglin Department of Computer Science, University of Bonn, Germany brunsch@cs.uni-bonn.e, heiko@roeglin.org Abstract.

More information

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d A new proof of the sharpness of the phase transition for Bernoulli percolation on Z Hugo Duminil-Copin an Vincent Tassion October 8, 205 Abstract We provie a new proof of the sharpness of the phase transition

More information

Sparse Reconstruction of Systems of Ordinary Differential Equations

Sparse Reconstruction of Systems of Ordinary Differential Equations Sparse Reconstruction of Systems of Orinary Differential Equations Manuel Mai a, Mark D. Shattuck b,c, Corey S. O Hern c,a,,e, a Department of Physics, Yale University, New Haven, Connecticut 06520, USA

More information

arxiv:hep-th/ v1 3 Feb 1993

arxiv:hep-th/ v1 3 Feb 1993 NBI-HE-9-89 PAR LPTHE 9-49 FTUAM 9-44 November 99 Matrix moel calculations beyon the spherical limit arxiv:hep-th/93004v 3 Feb 993 J. Ambjørn The Niels Bohr Institute Blegamsvej 7, DK-00 Copenhagen Ø,

More information

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads IJR International Journal of Railway Vol. 6, No. 4 / December 13, pp. 155-159 The Korean Society for Railway Vibration Analysis of Railway Tracks Force by Distribute Moving Loas Sinyeob Lee*, Dongkyu Kim*,

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations

Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations Characterizing Real-Value Multivariate Complex Polynomials an Their Symmetric Tensor Representations Bo JIANG Zhening LI Shuzhong ZHANG December 31, 2014 Abstract In this paper we stuy multivariate polynomial

More information

LECTURE NOTES ON DVORETZKY S THEOREM

LECTURE NOTES ON DVORETZKY S THEOREM LECTURE NOTES ON DVORETZKY S THEOREM STEVEN HEILMAN Abstract. We present the first half of the paper [S]. In particular, the results below, unless otherwise state, shoul be attribute to G. Schechtman.

More information

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences.

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences. S 63 Lecture 8 2/2/26 Lecturer Lillian Lee Scribes Peter Babinski, Davi Lin Basic Language Moeling Approach I. Special ase of LM-base Approach a. Recap of Formulas an Terms b. Fixing θ? c. About that Multinomial

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Vertical shear plus horizontal stretching as a route to mixing

Vertical shear plus horizontal stretching as a route to mixing Vertical shear plus horizontal stretching as a route to mixing Peter H. Haynes Department of Applie Mathematics an Theoretical Physics, University of Cambrige, UK Abstract. The combine effect of vertical

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

The Press-Schechter mass function

The Press-Schechter mass function The Press-Schechter mass function To state the obvious: It is important to relate our theories to what we can observe. We have looke at linear perturbation theory, an we have consiere a simple moel for

More information

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010 NTNU Page of 6 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk This solution consists of 6 pages. Solution to the exam in TFY423 STATISTICAL PHYSICS Wenesay ecember, 2 Problem. Particles

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM ON THE OPTIMALITY SYSTEM FOR A D EULER FLOW PROBLEM Eugene M. Cliff Matthias Heinkenschloss y Ajit R. Shenoy z Interisciplinary Center for Applie Mathematics Virginia Tech Blacksburg, Virginia 46 Abstract

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

Abstract A nonlinear partial differential equation of the following form is considered:

Abstract A nonlinear partial differential equation of the following form is considered: M P E J Mathematical Physics Electronic Journal ISSN 86-6655 Volume 2, 26 Paper 5 Receive: May 3, 25, Revise: Sep, 26, Accepte: Oct 6, 26 Eitor: C.E. Wayne A Nonlinear Heat Equation with Temperature-Depenent

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information