The Nuclear Equation of State and the neutron skin thickness in nuclei

Size: px
Start display at page:

Download "The Nuclear Equation of State and the neutron skin thickness in nuclei"

Transcription

1 The Nuclear Equation of State and the neutron skin thickness in nuclei Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Physics beyond the standard model and precision nucleon structure measurements with parity-violating electron scattering Trento, August 1st-5th

2 Table of contents: Brief introduction The Nuclear Many-Body Problem Nuclear Energy Density Functionals Nuclear Equation of State: the symmetry energy The neutron skin thinckess and the symmetry energy The impact of the neutron skin (symmetry energy) on nuclear and astrophyiscs observables Some examples: Neutron stars outer crust, parity violating asymmetry, pygmy states (?), GDR, dipole polarizability, GQR, AGDR... Conclusions 2

3 INTRODUCTION 3

4 The Nuclear Many-Body Problem: Nucleus: from few to more than 200 strongly interacting and self-bound fermions. Underlying interaction is not perturbative at the (low)energies of interest for the study of masses, radii, deformation, giant resonances,... Complex systems: spin, isospin, pairing, deformation,... Many-body calculations based on NN scattering data in the vacuum are not conclusive yet: different predictions (interaction in the medium) are found depending on the approach EoS and (recently) few groups in the world are able to perform extensive calculations for light and medium mass nuclei Based on effective interactions, Nuclear Energy Density Functionals are successful in the description of masses, nuclear sizes, deformations, Giant Resonances,... 4

5 Nuclear energy density functionals E[ρ] are commonly derived from an effective Hamiltonian solved at first order perturbation theory (Hartree-Fock) E = Ψ H Ψ Φ H eff (ρ) Φ Exact EDF? E[ρ] Kohn-Sham iterative scheme (static) Determine/copy/invent/derive... E[ρ] Initial guess ρ 0 Calculate potential V eff from ρ 0 (h = δe/δρ) Solve single particle equation of motion (hφ i = ǫ i φ i ) φ i A Use φ i for calculating new ρ 1 = φ i 2 Repeat until consistency between ρ and V eff Runge-Gross Theorem (dynamic): exist also E[ρ(t),t] dt{ Φ(t) i t Φ(t) E[ρ(t),t]} = 0 i Useful for the study of small perturbations of the gs ρ: GR 5

6 Nuclear Energy Density Functionals: Main types of successful EDFs for the description of masses, deformations, nuclear distributions, Giant Resonances,... Relativistic mean-field models, based on Lagrangians where effective mesons carry the interaction: L int = ΨΓ σ ΨΦ σ + ΨΓ δ τψφ δ ΨΓ ω γ µ ΨA (ω)µ ΨΓ ρ γ µ τψa (ρ)µ e Ψ ˆQγ µ ΨA (γ)µ Non-relativistic mean-field models, based on Hamiltonians where effective interactions are proposed and tested: VNucl eff = Vlong range attractive +V short range repulsive +V SO +V pair Fitted parameters contain (important) correlations beyond the mean-field Nuclear energy functionals are phenomenological not directly connected to any NN (or NNN) interaction 6

7 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E A (ρ,β = 0) + S(ρ)β2 +O(β 4 ) Nuclear Matter [ β = ρ ] n ρ p ρ 7

8 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E A (ρ,β = 0) + S(ρ)β2 +O(β 4 ) Nuclear Matter Symmetric Matter [ β = ρ ] n ρ p ρ 8

9 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E A (ρ,β = 0) + S(ρ)β2 +O(β 4 ) Nuclear Matter Symmetric Matter Symmetry energy [ β = ρ ] n ρ p ρ 9

10 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E A (ρ,β = 0) + S(ρ)β2 +O(β 4 ) = E (J+Lx+ A (ρ,β = 1 ) 0)+β2 2 K symx 2 +O(x 3 ) [ β = ρ n ρ p ρ ; x = ρ ρ ] 0 3ρ 0 10

11 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E (ρ,β = 0)+β2 A ( J + L x+ 1 ) 2 K sym x 2 +O(x 3 ) S(ρ 0 ) = J d dρ S(ρ) = ρ0 L = P 0 3ρ 0 ρ 2 0 [ d2 β = ρ n ρ p ρ dρ 2S(ρ) = K sym ρ0 9ρ 2 0 ; x = ρ ρ ] 0 3ρ 0 11

12 The Nuclear Equation of State: Infinite System neutron matter e(ρ,δ=1) e ( MeV ) 10 0 Saturation (0.16 fm 3, 16.0 MeV) S(ρ)~ -10 e(ρ,δ=0) symmetric matter ρ ( fm 3 ) E A (ρ,β) = E (ρ,β = 0)+β2 A ( J + L x+ 1 ) 2 K sym x 2 +O(x 3 ) The uncertainties on S(ρ 0 ) = J d S(ρ) around saturation density dρ S(ρ) = ρ0 L = P (mainly due to L) impact on many0 nuclear physics 3ρ 0 ρ 2 d2 0 dρ 2S(ρ) and = K sym astrophysics observables. ρ0 9ρ

13 The symmetry energy and the neutron skin in 208 Pb r np r 2 n 1/2 r 2 p 1/2 Simple macroscopic model: r np 1 12 IR J L ( ) L p neut 0 r np (fm) Linear Fit, r = Mean Field SkM* Ska DD-PC1 FSUGold DD-ME1 DD-ME2 G2 Sk-T4 NL3.s25 PK1.s24 Sk-Rs RHF-PKO3 SkI2 RHF-PKA1 SV Sk-Gs NL3* NL3 PK1 NL-SV2 TM1 SkI5 G1 NL-RA1 PC-F1 NL-SH PC-PK1 NL2 NL HFB-8 MSk7 v090 SkP SkX Sk-T6 HFB-17 SGII D1N SLy5 SLy4 SkMP SkSM* SIV MSL0 MSkA BCP D1S L (MeV) Physical Review Letters 106, (2011) The faster the symmetry energy increases with density (L), the largest the size of the neutron skin in (heavy) nuclei. [Exp. from strongly interacting probes: fm (Physical Review C (2012))]. 13

14 The impact of the neutron skin on nuclear and astrophyiscs observables 14

15 The neutron skin and the parity violating asymmetry in 208 Pb 10 7 A pv 7,4 7,2 7,0 6,8 MSk7 D1S D1N SGII Sk-T6 SkP HFB-17 SkX SLy4 SLy5 SkM* BCP MSkA MSL0 DD-ME2 SIV SkMP SkSM* DD-ME1 DD-PC1 RHF-PKO3 FSUGold Zenihiro Ska Sk-Rs RHF-PKA1 Sk-Gs SV PK1.s24 SkI2 HFB-8 v090 Tarbert Hoffmann Klos Linear Fit, r = Mean Field From strong probes Sk-T4 NL3.s25 PC-PK1 G2 NL-SH NL-SV2 TM1, NL-RA1 NL3 SkI5 PC-F1 PK1 G1 NL3* 0,1 0,15 0,2 0,25 0,3 r np (fm) Physical Review Letters 106, (2011) NL2 NL1 Electrons interact by exchanging a γ (couples to p) or a Z 0 boson (couples to n) Ultra-relativistic electrons, depending on their helicity (±), will interact with the nucleus seeing a slightly different potential: Coulomb ± Weak A pv dσ+/dω dσ /dω dσ +/dω+dσ /dω Weak Coulomb Input for the calculation are the ρ p and ρ n (main uncertainty) and nucleon form factors for the e-m and the weak neutral current. In PWBA for small ( momentum transfer: A pv G Fq q2 r 2 p 1/2 ) r np 2πα 3F p(q) (Calculation at a fixed q equal to PREx) The largest the size of the neutron distribution in nuclei ( r np ), the smaller the parity violating asymmetry. [Exp. from ew probes: 0.302±0.175 fm (Physical Review C 85, (2012))]. 15

16 Isovector Giant Resonances (some considerations) In isovector giant resonances neutrons and protons oscillate out of phase Isovector resonances will depend on oscillations of the density ρ iv ρ n ρ p S(ρ) will drive such oscillations The excitation energy (E x ) within a Harmonic Oscillator approach is expected to depend on the symmetry energy: 1 d ω = 2 U m dx 2 δ k E x 2 e δβ 2 S(ρ) where β = (ρ n ρ p )/(ρ n +ρ p ) σγ abs The dipole polarizability (α Energy 2 IEWSR) measures the tendency of the nuclear charge distribution to be distorted, that is, from a macroscopic point of view α electric dipole moment external electric field 16

17 The neutron skin and the Giant Dipole Resonance in 208 Pb (E x f(0.1) S(0.1fm 3 ) ) 6.4 f(0.1)={s(0.1)(1+k}} 1/2 [MeV 1/2 ] E -1 [MeV] Physical Review C 77, (2008) The larger the neutron skin of 208 Pb, the faster the symmetry energy increases with density around saturation [ S(ρ A ) J L ρ 0 ρ A 3ρ 0 ], and the smaller the excitation energy of the Giant Dipole Resonance (GDR). 17

18 The symmetry energy and the Pygmy Dipole Resonance (Pygmy: low-energy excited state appearing in the dipole response of N Znuclei) Physical Review C 81, (2010) The larger the neutron skin in 208 Pb, the faster the symmetry energy increases with density, the larger is the energy (E) times the probability (P) of exciting the Pygmy state (EWSR = E P) WARNING: we lack of a clear understanding of the physical reason for this correlation 18

19 Dipole polarizability and the neutron skin in 208 Pb 10 2 α D J (MeV fm 3 ) r=0.97 FSU NL3 DD-ME Skyrme SV SAMi TF (fm) r np Physical Review C (2012); (2013); 92, (2015) Macroscopic model: Using the dielectric theorem: m 1 moment can be computed from the expectation value of the Hamiltonian in the constrained (D dipole operator) ground state H = H+λD Assuming the Droplet Model (heavy nucleus): [ α D α bulk D 1+ 1 ] L where 5 J α bulk D πe2 A r 2 (Migdal first derived) 54 J L αexp D αbulk D α bulk 5J D By using the Droplet Model [ one can also find: ] α D J πe2 54 A r r np r coul np r surf np 2 r 2 1/2 (I I C ) For a fixed value of the symmetry energy at saturation, the larger the neutron skin in 208 Pb, the larger the dipole polarizability. 19

20 IV-IS GQRs and the neutron skin in 208 Pb Within the Quantum Harmonic Oscillator approach E IV x = 2 hω h 2 V sym r m ( hω 0 ) 2 r 4 and EDF calculations, one can 2 deduce V sym 8(S(ρ A ) S kin (ρ 0 )) S kin 0 (ρ 0 ) ε F0 /3 (Non-Rel) E (MeV) { S(ρ A ) J L ρ 0 ρ A ε F 0 A 2/3 [ ( ) 2 ( ) ] } 2 3ρ 0 3 8ε 2 E IV x 2 E IS x +1 F 0 The larger the neutron skin in 208 Pb, the smallest the difference between the IS and IV excitation energies in GQRs. B(E2;IV) (10 3 fm 4 MeV -1 ) 6 20

21 E1 transitions in CER and the neutron skin in 208 Pb 1 -,T ,1 -,2 - IVSGDR,T ,T ,T 0 AGDR GT IAS T Z =T 0-1 Daughter nucleus L=1 L=1, S=1 S=1 strong (p,n) E1 M1 Target nucleus 1 -,T 0 1 +,T 0 T Z =T 0 0 +,T 0 E AGDR -E IAS (MeV) Exp. Data from Ref. [56] Exp. Data from Ref. [53] R n -R p (fm) Phys. Rev. C 92, (2015) AGDR ( J π = 1 with L = 1 and S = 0) is the T 0 1 component of the charge-exchange of the GDR. 5 J E AGDR E IAS 5 3 I 1+γ α H Z hc m r 2 1/2 [ ( 1 ε F 3J ) I 3 2 E AGDR E IAS ε (E E IVGDR ε) magdr 0 C m IVGDR 0 ( Rnp R surf ) ] np r 2 1/2 3 7 I C The larger the neutron skin in 208 Pb, the smaller the excitation energy of the IVGDR (as we have seen) and consistently the smaller the difference between the excitation energies of AGDR - IAS 21

22 Relevance of the neutron star crust on the star evolution and dynamics (brief motivation) The crust separates neutron star interior from the photosphere (X-ray radiation). The thermal conductivity of the crust is relevant for determining the relation between observed X-ray flux and the temperature of the core. Electrical resistivity of the crust might be important for the evolution of neutron star magnetic field. Conductivity and resistivity depend on the structure and composition of the crust Neutrino emission from the crust may significantly contribute to total neutrino losses from stellar interior (in some cooling stages). A crystal lattice (solid crust) is needed for modelling pulsar glitches, enables the excitation of toroidal modes of oscillations, can suffer elastic stresses... Mergers (binary systems that merge) may enrich the interstellar medium with heavy elements, created by a rapid neutron-capture process. In accreting neutron stars, instabilities in the fusion light elements might be responsible for the phenomenon of X-ray bursts Source: Pawel Haensel

23 The neutron skin in 208 Pb and the structure and composition of a neutron star outer crust span 7 orders of magnitude in denisty (from ionization 10 4 g/cm to the neutron drip g/cm) it is organized into a Coulomb lattice of neutron-rich nuclei (ions) embedded in a relativistic uniform electron gas T 10 6 K 0.1 kev one can treat nuclei and electrons at T = 0 K At the lowest densities, the electronic contribution is negligible so the Coulomb lattice is populated by 56 Fe nuclei. As the density increases, the electronic contribution becomes important, it is energetically advantageous to lower its electron fraction by e +(N,Z) (N+1,Z 1)+ν e and therefore Z with constant (approx) number of N As the density continues to increase, penalty energy from the symmetry energy due to the neutron excess changes the composition to a dif ferent N plateau Z A Z 0 p Fe where(a A 0 8a 0,Z 0 ) = 56 Fe 26 sym The Coulomb lattice is made of more and more neutron-rich nuclei until the critical neutron-drip density is reached (µ drip = m n). [M(N,Z)+m n < M(N+1,Z)] Composition Composition FSUGold Protons Neutrons Ni NL3 N=82 N=32 Fe Sr Sr Kr Kr N=50 N= Se Se ρ(10 11 g/cm 3 ) Sn N=82 Ge Zn Ni Cd Pd Ru Mo Zr Sr Mo Kr Zr SrKr Physical Review C 78, (2008) The larger the neutron skin of 208 Pb (L ), the more exotic the composition of the outer crust. 23

24 Some available constraints on J and L from terrestrial experiments and astrofisical observations 24

25 CONCLUSIONS 25

26 Conclusions: EoS around saturation The isovector channel of the nuclear effective interaction is not well constrained by current experimental information. Many observables available in current laboratories are sensitive to the symmetry energy. Problems: accuracy and model dependent analysis. Systematic experiments may help. Exotic nuclei more sensitive to the isovector properties (due to larger neutron excess). Problems: more difficult to measure, accuracy and model dependent analysis. Systematic experiments may help. The most promissing observables to constraint the symmetry energy are the neutron skin thickness and the dipole polarizability in medium and heavy nuclei. 26

27 Thank you for your attention! 27

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza The Nuclear Symmetry Energy: constraints from Giant Resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano Trobada de Nadal 2012 Table of contents:

More information

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Joint LIA COLL-AGAIN, COPIGAL, and POLITA Workshop, April 26th-29th 2016. 1 Table of contents:

More information

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN MITP Scientific Program Neutron Skins of Nuclei May 17th-27th 2016. 1 Table of contents:

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

Equazione di Stato ed energia di simmetria

Equazione di Stato ed energia di simmetria Equazione di Stato ed energia di simmetria Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Workshop Strength, Napoli. Aprile 16th 17th, 215 1 Table of contents: Introduction

More information

Isospin asymmetry in stable and exotic nuclei

Isospin asymmetry in stable and exotic nuclei Isospin asymmetry in stable and exotic nuclei Xavier Roca Maza 6 May 2010 Advisors: Xavier Viñas i Gausí and Mario Centelles i Aixalà Motivation: Nuclear Chart Relative Neutron excess I (N Z )/(N + Z )

More information

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy) 2nd European Nuclear Physics Conference EuNPC 2012, 16-21

More information

The pygmy dipole strength, the neutron skin thickness and the symmetry energy

The pygmy dipole strength, the neutron skin thickness and the symmetry energy The pygmy dipole strength, the neutron skin thickness and the symmetry energy Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo Pozzi Marco Brenna Kazhuito Mizuyama

More information

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Institute of Theoretical Physics Chinese Academy of Sciences

More information

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo

More information

Covariance analysis for Nuclear Energy Density Functionals

Covariance analysis for Nuclear Energy Density Functionals Covariance analysis for Nuclear Energy Density Functionals Xavier Roca-Maza Università degli Studi di Milano and INFN Information and statistics in nuclear experiment and theory ISNET-3 16 20 November

More information

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Department of Physics. Peking University. January 19th 2016.

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Xavier Roca-Maza Università degli Studi di Milano and INFN Via Celoria 16, I-20133, Milano (Italy)

More information

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Xavier Roca-Maza Università degli Studi di Milano and INFN Via Celoria 16, I-20133, Milano (Italy)

More information

Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN

Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN Neutron Skins of Nuclei: from laboratory to stars 4 7 May 2015. MITP

More information

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy) Nuclear Structure and Dynamics II. July 9th to 13th 2012.

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Viñas a M. Centelles a M. Warda a,b X. Roca-Maza a,c a Departament d Estructura i Constituents

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,b X. Viñas b M. Centelles b M. Warda b,c a INFN sezione di Milano. Via Celoria 16,

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

arxiv: v1 [nucl-th] 14 Feb 2012

arxiv: v1 [nucl-th] 14 Feb 2012 The pygmy dipole strength, the neutron radius of 8 Pb and the symmetry energy arxiv:1.38v1 [nucl-th] 14 Feb 1 X. Roca-Maza 1,, M. Brenna 1,3, M. Centelles, G. Colò 1,3, K. Mizuyama 1, G. Pozzi 3, X. Viñas

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Spin and Isospin excitations in Nuclei Some general comments on EDFs Motivation and present situation: example GTR Propose new fitting protocols

Spin and Isospin excitations in Nuclei Some general comments on EDFs Motivation and present situation: example GTR Propose new fitting protocols Towards the improvement of spin-isospin properties in nuclear energy density functionals Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-2133 Milano,

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints Nuclear symmetry energy deduced from dipole excitations: a comparison with other constraints G. Colò June 15th, 2010 This work is part of a longer-term research plan. The goal is: understanding which are

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

arxiv: v1 [nucl-th] 26 Jun 2011

arxiv: v1 [nucl-th] 26 Jun 2011 Study of the neutron skin thickness of 208 Pb in mean field models X. Roca-Maza 1,2, M. Centelles 1, X. Viñas 1 and M. Warda 1, 1 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information

Nuclear symmetry energy and neutron skin thickness

Nuclear symmetry energy and neutron skin thickness Nuclear symmetry energy and neutron skin thickness M. Warda arxiv:1202.4612v1 [nucl-th] 21 Feb 2012 Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie Sk lodowskiej, ul. Radziszewskiego 10, 20-031 Lublin,

More information

Nature of low-energy dipole states in exotic nuclei

Nature of low-energy dipole states in exotic nuclei Nature of low-energy dipole states in exotic nuclei Xavier Roca-Maza Università degli Studi di Milano, Via Celoria 16, I-133, Milano SPES One-day Workshop on "Collective Excitations of Exotic Nuclei" December

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Nuclear Equation of State from ground and collective excited state properties of nuclei

Nuclear Equation of State from ground and collective excited state properties of nuclei Nuclear Equation of State from ground and collective excited state properties of nuclei arxiv:1804.06256v1 [nucl-th] 17 Apr 2018 X. Roca-Maza 1 and N. Paar 2 1 Dipartimento di Fisica, Università degli

More information

Neutron Rich Nuclei in Heaven and Earth

Neutron Rich Nuclei in Heaven and Earth First Prev Next Last Go Back Neutron Rich Nuclei in Heaven and Earth Jorge Piekarewicz with Bonnie Todd-Rutel Tallahassee, Florida, USA Page 1 of 15 Cassiopeia A: Chandra 08/23/04 Workshop on Nuclear Incompressibility

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic New Skyrme energy density functional for a better description of spin-isospin resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-2133 Milano,

More information

Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics.

Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics. Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics. WHY modern nuclear physics is so COOL? (a short introduction) The nuclear realm Simplicity Hot and dense

More information

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols Towards the improvement of spin-isospin properties in nuclear energy density functionals Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-20133 Milano,

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

Gianluca Colò. Density Functional Theory for isovector observables: from nuclear excitations to neutron stars. Università degli Studi and INFN, MIlano

Gianluca Colò. Density Functional Theory for isovector observables: from nuclear excitations to neutron stars. Università degli Studi and INFN, MIlano Density Functional Theory for isovector observables: from nuclear excitations to neutron stars Gianluca Colò NSMAT2016, Tohoku University, Sendai 1 Outline Energy density functionals (EDFs): a short introduction

More information

Relativistic versus Non Relativistic Mean Field Models in Comparison

Relativistic versus Non Relativistic Mean Field Models in Comparison Relativistic versus Non Relativistic Mean Field Models in Comparison 1) Sampling Importance Formal structure of nuclear energy density functionals local density approximation and gradient terms, overall

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure

Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure Reactions and Structure of Exotic Nuclei INT Workshop March, 2015 Cassiopeia A (circa 1675) Giant (Hercules) Awakes and Drives off

More information

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Discerning the symmetry energy and neutron star properties from nuclear collective excitations International Workshop XLV on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 15-21, 2017 Discerning the symmetry energy and neutron star properties from

More information

Low-lying dipole response in stable and unstable nuclei

Low-lying dipole response in stable and unstable nuclei Low-lying dipole response in stable and unstable nuclei Marco Brenna Xavier Roca-Maza, Giacomo Pozzi Kazuhito Mizuyama, Gianluca Colò and Pier Francesco Bortignon X. Roca-Maza, G. Pozzi, M.B., K. Mizuyama,

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Giant resonances in exotic nuclei & astrophysics

Giant resonances in exotic nuclei & astrophysics Giant resonances in exotic nuclei & astrophysics 1) Giant resonances: properties & modelisation 2) Giant resonances in exotic nuclei 3) Giant resonances and astrophysics E. Khan 1) Properties and modelisation

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T. W. Donnelly (M.I.T.),.), I. Sick (Univ. Basel) Summary

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional Computational Advances in Nuclear and Hadron Physics, Kyoto, 21.09.-30.10. 2015 Constraining the Relativistic Nuclear Energy Density Functional N. Paar Department of Physics, Faculty of Science, University

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

Relativistic point-coupling models for finite nuclei

Relativistic point-coupling models for finite nuclei Relativistic point-coupling models for finite nuclei T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University of

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals

Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals Nicolas Chamel Institute of Astronomy and Astrophysics Université Libre de Bruxelles, Belgium in collaboration

More information

Collective excitations in nuclei away from the valley of stability

Collective excitations in nuclei away from the valley of stability Collective excitations in nuclei away from the valley of stability A. Horvat 1, N. Paar 16.7.14, CSSP 14, Sinaia, Romania 1 Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)

More information

Structure properties of medium and heavy exotic nuclei

Structure properties of medium and heavy exotic nuclei Journal of Physics: Conference Series Structure properties of medium and heavy exotic nuclei To cite this article: M K Gaidarov 212 J. Phys.: Conf. Ser. 381 12112 View the article online for updates and

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Functional Orsay

Functional Orsay Functional «Theories» @ Orsay Researchers: M. Grasso, E. Khan, J. Libert, J. Margueron, P. Schuck. Emeritus: N. Van Giai. Post-doc: D. Pena-Arteaga. PhD: J.-P. Ebran, A. Fantina, H. Liang. Advantages of

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

Compact star crust: relativistic versus Skyrme nuclear models

Compact star crust: relativistic versus Skyrme nuclear models Problem How do relativistic models, used to build EoS of compact stars, behave at subsaturation densities? EoS at subsaturation densities/crust of compact stars: how do relativistic and Skyrme nuclear

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Neutron stars at JLAB and the Pb Radius Experiment

Neutron stars at JLAB and the Pb Radius Experiment Neutron stars at JLAB and the Pb Radius Experiment PREX uses parity violating electron scattering to accurately measure the neutron radius of 208 Pb. 208 Pb This has many implications for nuclear structure,

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

An extended liquid drop approach

An extended liquid drop approach An extended liquid drop approach Symmetry energy, charge radii and neutron skins Lex Dieperink 1 Piet van Isacker 2 1 Kernfysisch Versneller Instituut University of Groningen 2 GANIL, Caen, France ECT,

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

Nuclear and Coulomb excitations of the pygmy dipole resonances

Nuclear and Coulomb excitations of the pygmy dipole resonances SPES Legnaro, 5-7 ovember uclear and oulomb excitations of the pygmy dipole resonances M. V. Andrés a), F. tara b), D. Gambacurta b), A. Vitturi c), E. G. Lanza b) a)departamento de FAM, Universidad de

More information

The isospin dependence of the nuclear force and its impact on the many-body system

The isospin dependence of the nuclear force and its impact on the many-body system Journal of Physics: Conference Series OPEN ACCESS The isospin dependence of the nuclear force and its impact on the many-body system To cite this article: F Sammarruca et al 2015 J. Phys.: Conf. Ser. 580

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics 1/3 S.PÉRU The nucleus a complex system? What is the heaviest nucleus? How many nuclei do exist? What about the shapes of the nuclei? I) Some features about the nucleus discovery radius, shape binding

More information

Neutron-star properties with unified equations of state

Neutron-star properties with unified equations of state Neutron-star properties with unified equations of state Nicolas Chamel in collaboration with J. M. Pearson, S. Goriely, A. F. Fantina Institute of Astronomy and Astrophysics Université Libre de Bruxelles,

More information

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009 ISTANBUL-06 New developments in covariant density functional theory Saariselkä April 20, 2009 Peter Ring Technical University Munich Universidad Autónoma de Madrid 1 Content Covariant density functionals

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso June 3, 26 Nuclear Landscape To convincingly locate

More information

Localized form of Fock terms in nuclear covariant density functional theory

Localized form of Fock terms in nuclear covariant density functional theory Computational Advances in Nuclear and Hadron Physics September 21 October 3, 215, YITP, Kyoto, Japan Localized form of Fock terms in nuclear covariant density functional theory Haozhao Liang ùíî RIKEN

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI

A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI Corso di Laurea Magistrale in Fisica A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI Relatore: Prof. Gianluca COLÒ Correlatore: Prof.ssa Angela BRACCO Correlatore: Dott. Xavier ROCA-MAZA

More information

Neutron skins of nuclei vs neutron star deformability

Neutron skins of nuclei vs neutron star deformability Neutron skins of nuclei vs neutron star deformability Chuck Horowitz, Indiana U., INT, Mar. 2018 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react with protons to make

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method)

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) (note) (note) Schrodinger equation: Example: find an approximate solution for AHV Trial wave function: (note) b opt Mean-Field Approximation

More information

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY International Journal of Modern Physics E Vol. 17, No. 8 (2008) 1441 1452 c World Scientific Publishing Company PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY J. LI, B.

More information

The Isovector Giant Dipole Resonance

The Isovector Giant Dipole Resonance Giant Resonances First Experiments: G.C.Baldwin and G.S. Klaiber, Phys.Rev. 71, 3 (1947) General Electric Research Laboratory, Schenectady, NY Theoretical Explanation: M. Goldhaber and E. Teller, Phys.

More information