A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

Size: px
Start display at page:

Download "A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops"

Transcription

1 Australian Journal of Basic and Applied Sciences, 5(2): , 20 ISSN A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops Mohammad Hossein Ferdowsi, 2 A.V.amyad, 3 halil Alizadeh Islamic Azad University, Gonabad Branch Gonabad, Iran Member of young researchers club. 2 Full professor, Department of Mathematics, Ferdowsi University of Mashhad. 3 Islamic Azad University, Gonabad Branch. Abstract: this paper reviews the previous studies on the effects of power system stabilizers (PSS) on damping generator s rotor oscillations through excitation control using auxiliary stabilizing signals. The authors of previous papers have neglected the interaction between two control loops: load frequency control (LFC) and automatic voltage control (AVR). Such assumption is, however, valid only in the conditions were amplitudes of disturbances are negligible or in special situations where the coupling between the two systems is not very strong. The present paper attempts to compare the performance of fuzzy logic PSS (FLPSS) with fuzzy model reference learning PSS (FMRLPSS) taking into account the interaction between LFC and AVR loops. The results show several advantages of fuzzy PSS over conventional PSS. ey words: Automatic voltage regulation; Load frequency control; Power system stabilizer; Fuzzy logic control INTRODUCTION The low-frequency oscillations are attributed to the oscillations of the mechanical mode of the system and can be approximately analyzed with a linear one-machine infinite bus model (Yau, N.A.N. yu 983). A complete system model for low-frequency oscillation studies must be included of mechanical and electrical loops. It has been recognized that these oscillations can be controlled by adusting exciter and speed-governor control parameters. Furthermore, it has been shown that the load-voltage characteristic of the power system has a significant effect on its dynamic responses, and suggestions have been made for the proper representation of these characteristics in simulation studies (S.C. Tripathy, N.D. Rao and L. Roy 98;. Yamashita and H. Miyagi 99). The two main control loops of a generation are Load Frequency Controller (LFC) and Automatic Voltage Regulator (AVR) as seen in Fig.. The turbine fed by controllable rate of steam and the Automatic Generation Control method deals with frequency through the LFC loop and with voltage through with the AVR loop, where the main purposes of these controllers are to maintain levels of voltage and frequency at the acceptable values. However, these studies are based on the assumption that there is no interaction between the power/frequency and the reactivepower/voltage control loops. This assumption is permissible only when the speed of the excitation system is much faster than that of the LFC system; in the practical systems, during dynamic perturbations, exists some interaction between these two control channels (E. Rakhshani,. Rouzbehi and S. Sadeh 2009). Fig. : Automatic generation control with LFC and AVR loops. Due to the weak coupling relationship between the AVR and LFC, the voltage and frequency are regulated separately. The study of coupling effects of the AVR and LFC loops can be found in (N. Jaleeli et al., 992; Ibraheem, P. umar and D.P. othari 2005). But in all of these researches there are sketchy attentions to these mutual effects. Furthermore there is no any attention to the turbine output power in the steady state. Also, by neglecting the effect of voltage deviation on load demand, an important interaction in LFC systems is ignored. In order to prevent this problem and improve the accuracy of responses, Rakhshani and et al., in (2009). proposed a Corresponding Author: Mohammad Hossein Ferdowsi, Islamic Azad University, Gonabad Branch Gonabad, Iran Member of young researchers club. Hosseinferdowsi@gmail.com 258

2 Aust. J. Basic & Appl. Sci., 5(2): , 20 combined classical model for low frequency oscillation studies. In this paper this model is used to compare FLPSS and FMRLPSS performance in different conditions (see Fig. 2). Fig. 2: Proposed combined model for compare the performance of CPSS and FLPSS. Problem Formulation: System Modeling: In single machine infinite bus system, the synchronous machine (generator) is connected to an infinite bus through a transformer and two parallel transmission lines. In generator bus, a local load is also supplied as seen Fig. 3. Fig. 3: Schematic of the single machine power system connected to an infinite bus. Fuzzy Logic Power System Stabilizer (FLPSS: Power systems usually operate under highly uncertain stress condition. Moreover, load changes cause the variation of the generator dynamic characteristics so that the different operating conditions are obtained. Therefore, power system controllers should be designed to maintain the robust stability of the system. On the other hand, a CPSS is designed for a linear model representing the generator at a certain operating point and it often does not provide satisfactory results over a wide range of operating conditions. To overcome these drawbacks, fuzzy logic controller (FLC) is an effective tool, which has nonlinear structure. In fuzzy controller design, there is no need to perfect model of the system, which is significant advantage. In what follows, we will describe how the FLPSS has been synthesized. The design process of fuzzy logic controller maybe split in to five steps: ) the selection of control variables, 2) the membership function definition or the fuzzification, 3)the rule creation or the knowledge base, 4) the fuzzy inter face engine, and 5)the defuzzification strategy or the defuzzifier. These steps are shown in Fig. 4. Fig. 4: The basic structure of the fuzzy controller. Also, in Fig. 5 it is shown how to use fuzzy controller in a PSS structure and its illustrations can be explained as the following steps (R. Hooshmand and M. Ataei 2009). 259

3 Aust. J. Basic & Appl. Sci., 5(2): , 20 Fig. 5: Schematic structure of FLPSS. Step (): In this method, two variable and are used as input signal in PSS. The coefficient in and in2 in input stage, keep the input signals within value scale to required value in decision limit. The output signal (U PSS ) is inected to the summary point of AVR as the supplementary signal. Step (2): Each of FLPSS input and output fuzzy variable Y=(, U PSS ) membership function have been chosen identical because of the normalization achieved on the physical variables. The normalization is important because is allows the controller to associate equitable weight to each of thr rules and therefore, to calculate correctly the stabilizing signal. Each of the input and output fuzzy variable, y i is assigned seven linguistic fuzzy subsets varying from Negative Big (NB) to Positive Big (PB). Each subset is associated with a triangular membership function to form a set of seven normalized and symmetrical triangular membership function for fuzzy variables. (see Fig. 6). Fig. 6: Fuzzy variable ya seven membership functions. Step (3): The y max and y min represent maximum and minimum variation of the input and output signals. These values are selected based on simulations data. The range of each fuzzy variable is normalized between -4 to 4 by introducing a scaling factor to represent the actual signal. Step (4): The interface mechanism of the FLC is represented by a 7 7 decision table. The set of decision rules relating all possible combinations of input to outputs is based on previous experience in the field. This set is made up of 49 rules expressed using the same linguistic variables as those of the inputs and is stored in the form of a decision table shown in Table I. Table : flpss decision table. NB NM NS Z PS PM PB NB NB NB NB NB NM NS Z NM NB NB NM NM NS Z PS NS NB NM NM NS Z PS PM Z NM NM NS Z PS PM PM PS NM NS Z PS PM PM PB PM NS Z PS PM PM PB PB PB Z PS PM PB PB PB PB Step (5): Let, 2,..., 3 represent the centroids of M membership functions that are assigned to U PSS and w i represents the firing strength of the ith rule. Thus, for M rules, the output of the controller is: 260

4 Aust. J. Basic & Appl. Sci., 5(2): , 20 U PSS Where M w. J M w. [,,, and 2 M ] i M w i w (3) Fuzzy Model Reference Learning PSS: Figure 7 shows the functional block diagram of the FMRLPSS. It is made up of four main parts; the plant, the fuzzy controller to be tuned, the reference model, and the learning mechanism (an adaptation mechanism) (Layne.R.,.M. Passino, 996). The FMRLPSS uses discrete time signals (r(, and y( with T as the sampling period. It also uses the learning mechanism to observe numerical data from a fuzzy control system. With this numerical data, it characterizes the fuzzy control system s current performance and automatically synthesizes or adusts the fuzzy controller so that some given performance obectives are met. These performance obectives, which is the closed loop specifications are characterized through the reference model of Fig. 7. Fig. 7: Fuzzy Model Reference Learning PSS. Here, the fuzzy control system loop operates to make y( track r( by manipulating u(, while the adaptation control loop seeks to make the output of the plant y( track the output of the reference model ( by manipulating the fuzzy controller parameters. y m C. The Fuzzy Controller: The synchronous generator which represents the plant has an input u( from the fuzzy controller and terminal voltage output y(. The input to the fuzzy controller is the error e( r( y( and change in e( e( kt T ) error c( T Where r( is a reference input. A total of 2 fuzzy rules were employed as indicated below in table with triangular membership functions. Table 2: fmlrpss decision table. NV NL NB NM NS Z PS PM PB PL PV NV NV NV NV NV NV NV NL NB NM NS Z NL NV NV NV NV NV NL NB NM NS Z PS NB NV NV NV NV NL NB NM NS Z PS PM NM NV NV NV NL NB NM NS Z PS PM PB NS NV NV NL NB NM NS Z PS PM PB PL Z NV NL NB NM NS Z PS PM PB PL PV PS NL NB NM NS Z PS PM PB PL PV PV PM NB NM NS Z PS PM PB PL PV PV PV PB NM NS Z PS PM PB PL PV PV PV PV PL NS Z PS PM PB PL PV PV PV PV PV PV Z PS PM PB PL PV PV PV PV PV PV 26

5 Aust. J. Basic & Appl. Sci., 5(2): , 20 In the table above, NV, NL, NB, NM, NS, ZR, PS, PM, PB, Pl, PV stands for negative very large, negative large, negative big, negative medium, negative small, zero, ositive small, positive medium, positive big, positive large, and positive very large. Fig. 8: Membership functions for input universe of discourse. Fig. 9: Membership functions for output u. C2. The Reference Model: A reference model G ( s) is chosen because this model decays to zero in short time. If T = 0. sec, we s can use bilinear transformation to find the discrete equivalent continuous time transfer function G(s) by replacing 2 z s with A Fuzzy Model Reference Learning PSS for Synchronous Generator Terminal Voltage Control T z ( z ) ( z) H ( z) 2 R( z) 9 z 2 y m where y m (z) and R(z) are the transforms of y m (kt ) and r(kt ) respectively. So the discrete time implementation is 9 ym( kt T ) ym ( r( kt T ) r( kt ) C3. The Learning Mechanism: The learning mechanism tunes the rule-base of the direct fuzzy controller so that the closed loop system behaves like the reference model. These rule-base modifications are made by observing data from the controlled process, the reference model, and the fuzzy controller. The learning mechanism consists of two parts: a fuzzy inverse model and a knowledge base modifier. The fuzzy inverse model (having the same rule base with the fuzzy controller) performs the function of mapping y e ( (representing the deviation from the desired behavior) to changes in the process inputs p( that are necessary to force y e ( to zero. The knowledge-base modifier performs the function of modifying the fuzzy controller s rule-base to affect the needed changes in the process inputs. simulation results: In this section, in order to compare the performance of the FLPSS and FMRLPSS, some simulations are performed and its time domain results are provided. Simulations performed in three different operating conditions as follow: a) Normal load condition: The condition in which the system is operated in initial values. The values are selected as P e0 =.0 p.u, Q e0 =0.05p.u, V t0 =.05pu. b) Heavy load conditions: The condition in which the real power (P e ) is increased from.0 to.3 p.u. 3) In the case of fault occurrence in transmission line: The condition in which the line 2 in Fig. is isolated with normal condition. 262

6 Time (s) Time (s) FMRL PSS FL PSS Aust. J. Basic & Appl. Sci., 5(2): , 20 Table 3: the coefficients k to k 6 for the heffron-phillips model in different operational conditions. Operation Conditions Nominal Load Heavy Load Fault in the Line In order to compare the performance of FLPSS and FMRLPSS, the load change in real power is set at 0% and the behavior of frequency deviation in different operational conditions are shown in Figs. 7(a)-7(c). 2 x Frequency deviation (HZ) FMRL PSS FL PSS x 0-4 (a) 0-2 Frequency deviation (HZ) FMRL PSS FL PSS 0.5 x (b) (c) Fig. 0: Compare performance of FLPSS and FMRLPSS: (a) Normal Load, (b) Heavy Load, (c) Fault in the line. Conclusion: Several studies have shown that LFC loops are not completely decoupled from AVR loops. In fact, the interaction between the two loops may only be neglected when disturbances are small in magnitude or coupling coefficients are small. In this paper, performance of fuzzy PSS was compared to that of fuzzy model reference learning PSS in presence of interaction between LFC and AVR loops. The simulation results suggest that fuzzy model reference learning PSS outperforms fuzzy logic PSS in different working conditions. REFERENCES Hooshmand, R., and M. Ataei, An Auto-Tuning Fuzzy Logic PSS Design under Multi-operating Conditions Using Real-Coded Genetic Algorithm" Journal of Electrical Systems, vol. 5, no.. Ibraheem, P., umar and D.P. othari, " Recent Philosophies of Automatic Generation Control Strategies in Power Systems,'' IEEE Trans. on Power Systems, 20(): Jaleeli, N., L.S. VanSlyck, D.N. Ewart, L.H. Fink and A.G. Hoffmann, 992. "Understanding automatic generation control,'' IEEE Trans. on Power Systems, 7(3): Layne J.R.,.M. Passino, 996. Fuzzy Model Reference Learning Control, Journal of Intelligent andf uzzy Systems, 4(): Rakhshani, E.,. Rouzbehi and S. Sadeh, A New Combined Model for Simulation of Mutual Effects between LFC and AVR Loops.IEEE Conf. Power and Energy Engineering. pp: -5. Tripathy, S.C., N.D. Rao and L. Roy, 98. ''Optimization of exciter and speed governor control parameters in stabilizing intersystem oscillations with voltage dependent load characteristics,'' Electric Power and Energy Systems, 3: Yamashita,. and H. Miyagi, 99. ''Multivariable self-tuning regulator for load frequency control system with interaction of voltage on load demand,'' in Proc. IEE Control Theory and Applications Conf., 38: Yau, N.A.N., yu, 983. Electric Power System Dynamics, London, Academic Press. 263

Performance Of Power System Stabilizerusing Fuzzy Logic Controller

Performance Of Power System Stabilizerusing Fuzzy Logic Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 42-49 Performance Of Power System Stabilizerusing Fuzzy

More information

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 6, 2013, 366 370 COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

More information

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer 772 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer Avdhesh Sharma and MLKothari Abstract-- The paper deals with design of fuzzy

More information

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 257-270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers

More information

DESIGN OF A HIERARCHICAL FUZZY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM

DESIGN OF A HIERARCHICAL FUZZY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM Proceedings of the 5th Mediterranean Conference on Control & Automation, July 27-29, 27, Athens - Greece T26-6 DESIGN OF A HIERARCHICAL FUY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM T. Hussein, A. L.

More information

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH Abhilash Asekar 1 1 School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS 78 Journal of Electrical Engineering & Technology, Vol. 2, No. 2, pp. 78~87, 27 Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic S Rahmat-Allah Hooshmand* and Mohammad

More information

DESIGN OF FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM USING GENETIC ALGORITHM

DESIGN OF FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM USING GENETIC ALGORITHM DESIGN OF FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM USING GENETIC ALGORITHM MANISHADUBEY Electrical Engineering Department Maulana Azad National Institute of Technology, 462051,Bhopal,

More information

GENETIC ALGORITHM BASED FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM

GENETIC ALGORITHM BASED FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM Proceedings of the 13th WSEAS International Conference on SYSTEMS GENETIC ALGORITHM BASED FUZZY LOGIC POWER SYSTEM STABILIZERS IN MULTIMACHINE POWER SYSTEM NIKOS E. MASTORAKIS MANISHA DUBEY Electrical

More information

Fuzzy Applications in a Multi-Machine Power System Stabilizer

Fuzzy Applications in a Multi-Machine Power System Stabilizer Journal of Electrical Engineering & Technology Vol. 5, No. 3, pp. 503~510, 2010 503 D.K.Sambariya and Rajeev Gupta* Abstract - This paper proposes the use of fuzzy applications to a 4-machine and 10-bus

More information

Enhanced Fuzzy Model Reference Learning Control for Conical tank process

Enhanced Fuzzy Model Reference Learning Control for Conical tank process Enhanced Fuzzy Model Reference Learning Control for Conical tank process S.Ramesh 1 Assistant Professor, Dept. of Electronics and Instrumentation Engineering, Annamalai University, Annamalainagar, Tamilnadu.

More information

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control esearch Journal of Applied Sciences, Engineering and echnology 4(5): 375-38, ISSN: 4-7467 Maxwell Scientific Organization, Submitted: February, Accepted: March 6, Published: August, Steam-Hydraulic urbines

More information

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India)

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) Indirect Vector Control of Induction motor using Fuzzy Logic Controller RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) ABSTRACT: AC motors are widely used in industries for

More information

ISSN (Print), ISSN (Online) Volume 1, Number 1, May - June (2010), IAEME

ISSN (Print), ISSN (Online) Volume 1, Number 1, May - June (2010), IAEME International Journal Journal of Electrical of Electrical Engineering Engineering and Technology (IJEET), and Technology (IJEET), ISSN 0976 6545(Print) ISSN 0976 6553(Online), Volume 1 Number 1, May June

More information

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 01-09 www.iosrjournals.org Design of PSS and SVC Controller

More information

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION 141 CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION In most of the industrial processes like a water treatment plant, paper making industries, petrochemical industries,

More information

Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization

Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization Available online at www.sciencedirect.com Expert Systems with Applications Expert Systems with Applications xxx (2008) xxx xxx www.elsevier.com/locate/eswa Optimal tunning of lead-lag and fuzzy logic power

More information

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com June 2010

More information

Fuzzy Control of a Multivariable Nonlinear Process

Fuzzy Control of a Multivariable Nonlinear Process Fuzzy Control of a Multivariable Nonlinear Process A. Iriarte Lanas 1, G. L.A. Mota 1, R. Tanscheit 1, M.M. Vellasco 1, J.M.Barreto 2 1 DEE-PUC-Rio, CP 38.063, 22452-970 Rio de Janeiro - RJ, Brazil e-mail:

More information

Adaptive Fuzzy Gain of Power System Stabilizer to Improve the Global Stability

Adaptive Fuzzy Gain of Power System Stabilizer to Improve the Global Stability Bulletin of Electrical Engineering and Informatics ISSN: 2302-9285 Vol. 5, No. 4, December 2016, pp. 421~429, DOI: 10.11591/eei.v5i4.576 421 Adaptive Fuzzy Gain of Power System Stabilizer to Improve the

More information

NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL

NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL 1 B. Venkata Prasanth, 2 Dr. S. V. Jayaram Kumar 1 Associate Professor, Department of Electrical

More information

Design of Decentralized Fuzzy Controllers for Quadruple tank Process

Design of Decentralized Fuzzy Controllers for Quadruple tank Process IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 163 Design of Fuzzy Controllers for Quadruple tank Process R.Suja Mani Malar1 and T.Thyagarajan2, 1 Assistant

More information

CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER

CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER 85 CAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER 5. INTRODUCTION The simulation studies presented in the earlier chapter are obviously proved that the design of a classical

More information

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2 793-82 Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System S. K.

More information

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor dvance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 2 (2013), pp. 169-178 Research India Publications http://www.ripublication.com/aeee.htm Type-2 Fuzzy Logic Control of Continuous

More information

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS

CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 28 CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 3.1 INTRODUCTION This chapter focuses on the mathematical state space modeling of all configurations involved

More information

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1. Stela RUSU-ANGHEL, 2. Lucian GHERMAN MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1-2. UNIVERSITY POLITEHNICA OF TIMISOARA, FACULTY OF ENGINEERING FROM HUNEDOARA, ROMANIA ABSTRACT:

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information

Q-V droop control using fuzzy logic and reciprocal characteristic

Q-V droop control using fuzzy logic and reciprocal characteristic International Journal of Smart Grid and Clean Energy Q-V droop control using fuzzy logic and reciprocal characteristic Lu Wang a*, Yanting Hu a, Zhe Chen b a School of Engineering and Applied Physics,

More information

Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS

Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS P. PAVAN KUMAR M.Tech Student, EEE Department, Gitam University, Visakhapatnam, Andhra Pradesh, India-533045,

More information

Mitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. El-Wakeel M. Abdel Rahman and M. A. L.

Mitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. El-Wakeel M. Abdel Rahman and M. A. L. Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 1), Cairo University, Egypt, December 19-21, 21, Paper ID 192. Mitigating Subsynchronous resonance torques using dynamic

More information

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control

More information

Abstract. 2. Dynamical model of power system

Abstract. 2. Dynamical model of power system Optimization Of Controller Parametersfornon-Linear Power Systems Using Different Optimization Techniques Rekha 1,Amit Kumar 2, A. K. Singh 3 1, 2 Assistant Professor, Electrical Engg. Dept. NIT Jamshedpur

More information

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Nanaware R. A. Department of Electronics, Shivaji University, Kolhapur Sawant S. R. Department of Technology, Shivaji University, Kolhapur

More information

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model 142 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 18, NO. 1, MARCH 2003 A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model Un-Chul Moon and Kwang Y. Lee, Fellow,

More information

Power System Stability Enhancement Using Adaptive and AI Control

Power System Stability Enhancement Using Adaptive and AI Control Power System Stability Enhancement Using Adaptive and AI Control O.P. Malik University of Calgary Calgary, Canada 1 Controller Design Requirements Selection of: System model Control signal Scaling of signals

More information

Improve Performance of Multivariable Robust Control in Boiler System

Improve Performance of Multivariable Robust Control in Boiler System Canadian Journal on Automation, Control & Intelligent Systems Vol. No. 4, June Improve Performance of Multivariable Robust Control in Boiler System Mehdi Parsa, Ali Vahidian Kamyad and M. Bagher Naghibi

More information

AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL

AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL Xinyu Ren and Siqi Fan School of Aero-engine Engineering, Northwestern Polytechnical University Xi'an 710072, China Abstract: Key words: A new kind of multivariable

More information

Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering Communication Delay

Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering Communication Delay Proceedings of the 7th WSEAS International Conference on Power Systems, Beijing, China, September 15-17, 2007 174 Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering

More information

Fuzzy Control Systems Process of Fuzzy Control

Fuzzy Control Systems Process of Fuzzy Control Fuzzy Control Systems The most widespread use of fuzzy logic today is in fuzzy control applications. Across section of applications that have successfully used fuzzy control includes: Environmental Control

More information

CHAPTER 2 MATHEMATICAL MODELLING OF AN ISOLATED HYBRID POWER SYSTEM FOR LFC AND BPC

CHAPTER 2 MATHEMATICAL MODELLING OF AN ISOLATED HYBRID POWER SYSTEM FOR LFC AND BPC 20 CHAPTER 2 MATHEMATICAL MODELLING OF AN ISOLATED HYBRID POWER SYSTEM FOR LFC AND BPC 2.1 INTRODUCTION The technology of the hybrid power system is at an exciting stage of development. Much research effort

More information

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 159-169. ISSN 2454-3896 International Academic Journal of

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

Self-Tuning Control for Synchronous Machine Stabilization

Self-Tuning Control for Synchronous Machine Stabilization http://dx.doi.org/.5755/j.eee.2.4.2773 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 392-25, VOL. 2, NO. 4, 25 Self-Tuning Control for Synchronous Machine Stabilization Jozef Ritonja Faculty of Electrical Engineering

More information

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms Helwan University From the SelectedWorks of Omar H. Abdalla May, 2008 Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

More information

Robust Stability based PI Controller Design with Additive Uncertainty Weight for AGC (Automatic Generation Control) Application

Robust Stability based PI Controller Design with Additive Uncertainty Weight for AGC (Automatic Generation Control) Application International Journal of Electrical and Computer Engineering. ISSN 0974-2190 Volume 6, Number 1 (2014), pp. 35-46 International Research Publication House http://www.irphouse.com Robust Stability based

More information

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 5, May 2012)

International Journal of Emerging Technology and Advanced Engineering Website:   (ISSN , Volume 2, Issue 5, May 2012) FUZZY SPEED CONTROLLER DESIGN OF THREE PHASE INDUCTION MOTOR Divya Rai 1,Swati Sharma 2, Vijay Bhuria 3 1,2 P.G.Student, 3 Assistant Professor Department of Electrical Engineering, Madhav institute of

More information

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Non-member Prof M L Kothari, Member This paper presents a systematic

More information

DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K.

DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K. DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K. Suresh and K. Balu* Lecturer, Dept. of E&I, St. Peters Engg. College, affiliated to Anna University, T.N, India *Professor,

More information

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller.

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller. Comparison Of Interval Type- Fuzzy Controller And Self Tuning Interval Type- Fuzzy Controller For A Magnetic Levitation System Shabeer Ali K P 1, Sanjay Sharma, Dr.Vijay Kumar 3 1 Student, E & CE Department,

More information

Robust Actuator Fault Detection and Isolation in a Multi-Area Interconnected Power System

Robust Actuator Fault Detection and Isolation in a Multi-Area Interconnected Power System Proceedings of the World Congress on Engineering 2011 Vol II, July 6-8, 2011, London, U.K. Robust Actuator Fault Detection and Isolation in a Multi-Area Interconnected Power System Istemihan Genc, and

More information

FUZZY SLIDING MODE CONTROLLER FOR POWER SYSTEM SMIB

FUZZY SLIDING MODE CONTROLLER FOR POWER SYSTEM SMIB FUZZY SLIDING MODE CONTROLLER FOR POWER SYSTEM SMIB KHADDOUJ BEN MEZIANE, FAIZA DIB, 2 ISMAIL BOUMHIDI PhD Student, LESSI Laboratory, Department of Physics, Faculty of Sciences Dhar El Mahraz,Sidi Mohamed

More information

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System 1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

A New Improvement of Conventional PI/PD Controllers for Load Frequency Control With Scaled Fuzzy Controller

A New Improvement of Conventional PI/PD Controllers for Load Frequency Control With Scaled Fuzzy Controller International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-4, April 2015 A New Improvement of Conventional PI/PD Controllers for Load Frequency Control With Scaled

More information

PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER

PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER Tetsuro Kakinoki, Ryuichi Yokoyama Tokyo Metropolitan University t.kakinoki@h4.dion.ne.jp Goro Fujita Shibaura Institute of Technology Kaoru

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR Journal of Engineering Science and Technology Vol., No. (26) 46-59 School of Engineering, Taylor s University FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

Fuzzy Compensation for Nonlinear Friction in a Hard Drive

Fuzzy Compensation for Nonlinear Friction in a Hard Drive Fuzzy Compensation for Nonlinear Friction in a Hard Drive Wilaiporn Ngernbaht, Kongpol Areerak, Sarawut Sujitjorn* School of Electrical Engineering, Institute of Engineering Suranaree University of Technology

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII - Analysis and Stability of Fuzzy Systems - Ralf Mikut and Georg Bretthauer

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII - Analysis and Stability of Fuzzy Systems - Ralf Mikut and Georg Bretthauer ANALYSIS AND STABILITY OF FUZZY SYSTEMS Ralf Mikut and Forschungszentrum Karlsruhe GmbH, Germany Keywords: Systems, Linear Systems, Nonlinear Systems, Closed-loop Systems, SISO Systems, MISO systems, MIMO

More information

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Address for Correspondence a Research Scholar, Department of Electrical & Electronics Engineering,

More information

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com

More information

Design On-Line Tunable Gain Artificial Nonlinear Controller

Design On-Line Tunable Gain Artificial Nonlinear Controller Journal of Computer Engineering 1 (2009) 3-11 Design On-Line Tunable Gain Artificial Nonlinear Controller Farzin Piltan, Nasri Sulaiman, M. H. Marhaban and R. Ramli Department of Electrical and Electronic

More information

General-Purpose Fuzzy Controller for DC/DC Converters

General-Purpose Fuzzy Controller for DC/DC Converters General-Purpose Fuzzy Controller for DC/DC Converters P. Mattavelli*, L. Rossetto*, G. Spiazzi**, P.Tenti ** *Department of Electrical Engineering **Department of Electronics and Informatics University

More information

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller 659 3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller Nitesh Kumar Jaiswal *, Vijay Kumar ** *(Department of Electronics and Communication Engineering, Indian Institute of Technology,

More information

A New Approach to Control of Robot

A New Approach to Control of Robot A New Approach to Control of Robot Ali Akbarzadeh Tootoonchi, Mohammad Reza Gharib, Yadollah Farzaneh Department of Mechanical Engineering Ferdowsi University of Mashhad Mashhad, IRAN ali_akbarzadeh_t@yahoo.com,

More information

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10

More information

Effects of the Controller Performance of DFIG on its Inertia Response

Effects of the Controller Performance of DFIG on its Inertia Response Global Journal of Research in Engineering Volume 11 Issue 3 Version 1.0 April 011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) ISSN: 0975-5861 Effects

More information

Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load

Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load N. S. D. Arrifano, V. A. Oliveira and R. A. Ramos Abstract In this paper, a design method and application

More information

Dynamic simulation of a five-bus system

Dynamic simulation of a five-bus system ELEC0047 - Power system dynamics, control and stability Dynamic simulation of a five-bus system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 16 System modelling

More information

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS Journal of Engineering Science and Technology Vol. 1, No. 1 (26) 76-88 School of Engineering, Taylor s College DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS JAGADEESH PASUPULETI School of Engineering,

More information

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008 SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous

More information

Power System Dynamic stability Control and its On-Line Rule Tuning Using Grey Fuzzy

Power System Dynamic stability Control and its On-Line Rule Tuning Using Grey Fuzzy Power System Dynamic stability Control and its On-Line Rule Tuning Using Grey Fuzzy 1 Pratibha Srivastav, 2 Manoj Jha, 3 M.F.Qureshi 1 Department of Applied Mathematics, Rungta College of Engg. & Tech.,Raipur,

More information

QFT Based Controller Design of Thyristor-Controlled Phase Shifter for Power System Stability Enhancement

QFT Based Controller Design of Thyristor-Controlled Phase Shifter for Power System Stability Enhancement International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 232-9364, ISSN (Print): 232-9356 Volume 5 Issue 4 ǁ Apr. 27 ǁ PP.54-64 QFT Based Controller Design of Thyristor-Controlled

More information

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM Nigerian Journal of Technology, Vol. 19, No. 1, 2000, EKEMEZIE & OSUAGWU 40 EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM Paul N. Ekemezie and Charles C. Osuagwu

More information

Fuzzy-PID Methods for Controlling Evaporator Superheat

Fuzzy-PID Methods for Controlling Evaporator Superheat Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2000 Fuzzy-PID Methods for Controlling Evaporator Superheat R. Q. Zhu Xi an

More information

Advanced Control of a PMSG Wind Turbine

Advanced Control of a PMSG Wind Turbine International Journal of Modern Nonlinear Theory and Application, 16, 5, 1-1 Published Online March 16 in SciRes. http://www.scirp.org/journal/ijmnta http://dx.doi.org/1.436/ijmnta.16.511 Advanced Control

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

LOC-PSS Design for Improved Power System Stabilizer

LOC-PSS Design for Improved Power System Stabilizer Journal of pplied Dynamic Systems and Control, Vol., No., 8: 7 5 7 LOCPSS Design for Improved Power System Stabilizer Masoud Radmehr *, Mehdi Mohammadjafari, Mahmoud Reza GhadiSahebi bstract power system

More information

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator Abstract Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator N. Selvaganesan 1 Prabhu Jude Rajendran 2 S.Renganathan 3 1 Department of Instrumentation Engineering, Madras Institute of

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222

More information

Transient Stability Assessment and Enhancement Using TCSC with Fuzzy Logic Controller

Transient Stability Assessment and Enhancement Using TCSC with Fuzzy Logic Controller Transient Stability Assessment and Enhancement Using TCSC with Fuzzy Logic Controller Ali Qasim Hussein Department of Electrical Engineering, Acharya NAgarjuna University, Nagarjuna Nagar,Guntur,522510,Ap,

More information

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence Models for Inexact Reasoning Fuzzy Logic Lesson 8 Fuzzy Controllers Master in Computational Logic Department of Artificial Intelligence Fuzzy Controllers Fuzzy Controllers are special expert systems KB

More information

COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS

COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS KARTHICK S, LAKSHMI P, DEEPA T 3 PG Student, DEEE, College of Engineering, Guindy, Anna University, Cennai Associate Professor, DEEE, College

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

LFC of an Interconnected Power System with Thyristor Controlled Phase Shifter in the Tie Line

LFC of an Interconnected Power System with Thyristor Controlled Phase Shifter in the Tie Line International Journal of Computer Applications (975 8887) Volume 41 No.9, March 2 LFC of an Interconnected Power System with Thyristor Controlled Phase Shifter in the Tie Line K. P. Singh Parmar CAMPS,

More information

A Computer Application for Power System Control Studies

A Computer Application for Power System Control Studies A Computer Application for Power System Control Studies Dinis C. A. Bucho Student nº55262 of Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal Abstract - This thesis presents studies

More information

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T.

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T. FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T., Dwarhat E-mail: 1 2001.kiran@gmail.com,, 2 bksapkec@yahoo.com ABSTRACT The fuzzy

More information

Stabilizer design based on STATCOM using Simulated Annealing

Stabilizer design based on STATCOM using Simulated Annealing Australian Journal of Basic and Applied Sciences, 5(7): 1318-1325, 2011 ISSN 1991-8178 Stabilizer design based on STATCOM using Simulated Annealing Sayed Mojtaba Shirvani Boroujeni, Hamideh Delafkar, Elahe

More information

Uncertain System Control: An Engineering Approach

Uncertain System Control: An Engineering Approach Uncertain System Control: An Engineering Approach Stanisław H. Żak School of Electrical and Computer Engineering ECE 680 Fall 207 Fuzzy Logic Control---Another Tool in Our Control Toolbox to Cope with

More information

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

More information

A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model

A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model 442 EEE Transactions on Energy Conversion, Vol. 11, No. 2, June 1996 A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model Young-Moon Park, Senior Member, EEE

More information

Multi-Objective Optimization and Online Adaptation Methods for Robust Tuning of PSS Parameters

Multi-Objective Optimization and Online Adaptation Methods for Robust Tuning of PSS Parameters MEPS 06, September 6-8, 2006, Wrocław, Poland 187 Multi-Objective Optimization and Online Adaptation Methods for Robust Tuning of PSS Parameters G. K. Befekadu, O. Govorun, I. Erlich Institute of Electrical

More information

Variable Sampling Effect for BLDC Motors using Fuzzy PI Controller

Variable Sampling Effect for BLDC Motors using Fuzzy PI Controller Indian Journal of Science and Technology, Vol 8(35), DOI:10.17485/ijst/2015/v8i35/68960, December 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Variable Sampling Effect BLDC Motors using Fuzzy

More information

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC 1 RAJENDRA S. SONI, 2 S. S. DHAMAL 1 Student, M. E. Electrical (Control Systems), K. K. Wagh College of Engg. & Research, Nashik 2

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information