CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER

Size: px
Start display at page:

Download "CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER"

Transcription

1 85 CAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER 5. INTRODUCTION The simulation studies presented in the earlier chapter are obviously proved that the design of a classical fuzzy logic controller is found that it is easier than the integral controller, but its performance is not up to the expected level, considering the stability and robustness of the systems. With a view to deal with such limitations the online tuning approach is discussed in this chapter. Basically there are two different tuning approaches for achieving the optimal parameters of the fuzzy logic controller i.e. offline and online tuning. The online tuning is achieved by adding with an expert supervisory fuzzy system to a controller (Abd 2003, Lin 2006). The expert supervisory fuzzy system will continuously examine the power system condition and modify the direct fuzzy controller parameters according to some specified evaluation criterion. The online tuning method will enhance the controller performance in terms of stability and robustness (Mudi 999, Pal 2008). The systematic design procedure of a supervisory expert fuzzy logic control scheme and its implementation are discussed in this chapter. The validation of the control scheme is made using MATLAB simulation. 5.2 SUPERVISORY EXPERT FUZZY CONTROLLER The structure of the proposed supervisory expert fuzzy control (SEFC) scheme is shown in Figure 5.. The control structure consist of a

2 86 Supervisory Fuzzy Controller (SFC), which provides a mechanism to the main goal of the system and a Direct Fuzzy Controller (DFC), which delivers the solutions to particular situations. A standard Mamdani type rule base fuzzy system has been selected for both the types. In the proposed SEFC structure, the Area Control Error (ACE) and change in system input are selected as decision making input parameters of supervisory expert system. The outputs of the supervisory expert system will modify the input scaling factor of the direct fuzzy controller based on the system condition (Kanagaraj 2009). These online scaling factor modifications, namely K and K 2 values respectively, improve the controller performance and reduce the involvement of human operation. The purpose of using change in system input and error as decision making parameters is that the disturbances to the interconnected power system or any abnormal output of the controller can be identified instantly by supervisory expert system either to modify the controller parameters or to move the system operation to safe mode. Figure 5. Structure of the Supervisory Expert Fuzzy Control Scheme

3 SUPERVISORY EXPERT FUZZY CONTROLLER BAESD FREQUENCY STABILIZATION IN A PARALLEL AC-DC INTERCONNECTED POWER SYSTEM 5.3. Membership functions and Rule Base Symmetrical triangular shape membership functions with 50% overlap are selected for the present control scheme. The triangular shape membership functions divide each input and output universe of discourse into adjustment interval with specific linguistic value. The range of universe of discourse of the input and output are predetermined based on the power system operating level. The SEFC is associated with the inputs Area control error (ACE) and the power plant input (U). Similarly the Direct fuzzy logic controller is associated with the inputs E and E. The input and output of the SEFC is assigned with various fuzzy membership functions. The three triangular membership functions are used for the inputs and outputs. The area control error input membership functions are represented by N (negative), Z (zero) and P (positive). The input and output membership functions are represented by L (low), M (medium) and (high).the input and the output membership functions of the SEFC are shown in Figures 5.2 and 5.3.

4 88 N Z P Membership value 0-0 ACE (a) Area Control Error (ACE) L M Membership value U (b) Power Plant Input U Figure 5.2 SEFC Input membership functions

5 89 L M Membership value K (a) Scaling Factor (K ) L M Membership value K 2 (b)scaling Factor Change in Error (K 2 ) Figure 5.3 SEFC Output membership functions

6 90 For the direct fuzzy controller the membership functions of the inputs E and E are Negative Large (NL), Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small (PS), Positive Medium (PM) and Positive Large (PL) and the output membership functions are denoted as Zero (ZE), Very Small (VS), Small (S), Medium (M), Large (L), Very Large (VL) and Very Very Large (VVL). The fuzzy membership functions for inputs and outputs are shown in Figures 5.4 and 5.5. Membership value NL NM NS ZE PS PM PL E (a) Error (E) Membership value 0 NL NM NS ZE PS PM PL E (b) Change in Error ( E) Figure 5.4 Input membership functions of direct fuzzy controller

7 9 Membership value ZE VS S M L V L VVL U Controlled output (U) Figure 5.5 Output membership functions of direct fuzzy controller The intersection minimum operation method has been employed in both the controllers to perform the fuzzy implication operation, which is generally expressed for the two input fuzzy system as A (x ) A (x ) A (x ), A (x ) i i 2 i i 2 min (5.) where A i ( x ) and A i ( x 2 ) are the membership values of input fuzzy sets x and x 2 respectively. The fuzzy rule- base reflects the collected expert Knowledge about how a particular control problem must be treated. The expert knowledge is represented in the form of IF-TEN rules for decision making process, the input fuzzy sets engaged in the IF part of the rule and output fuzzy set engaged in the TEN part of the rule. The rule-base of SEFC is developed with ACE and u as the premise and the gain multiplying factors K and K 2 are consequent of the fuzzy control rules. The structure of the fuzzy rules of SEFC is expressed as, IF ACE is N and U is L TEN, K is L and K 2 is. (5.2)

8 92 Using the fuzzy subsets of ACE and U, totally 8 linguistic fuzzy rules have been developed, as shown in Table 5.. Some of the common criteria which are considered during the development of fuzzy rules of SEFC are: (i) To reduce undershoot and to reduce the settling time the controller gain has to be set a small value when error is high. This may be a possible rule like, IF ACE is P and U is, TEN K is and K 2 is L. (ii) The controller gain should be almost constant and minimum value, if ACE and U are close to zero. For example, the rule IF ACE is Z and U is M, TEN K is M and K 2 is M. (iii) To improve the controller performance under load disturbance, gain around the steady condition is made sufficiently large. The rule is such as, IF ACE is N and U is L, TEN K is L and K 2 is. Similarly the fuzzy rules of direct fuzzy controller are developed using the underlying knowledge about interconnected area system frequency. In the rule structure, the E and E are the premise and controlled output U is the consequence. Thus the 49 rules have been used for the direct fuzzy controller which relates the fuzzy subsets of each inputs and output. The structure of the fuzzy control rules in direct fuzzy controller is expressed as, IF E is PM and E is NS, TEN U is L (5.3) Table 5.2. The linguistic fuzzy rules of direct fuzzy controller are shown in

9 93 Table 5. Linguistic fuzzy rules of the Supervisory Expert Fuzzy Logic Controller Input Output ACE U K K 2 N Z P L M L M L M L L M M M M L L L L Table 5.2 Linguistic fuzzy rules of the Direct Fuzzy Logic Controller E U E NL NM NS ZE PS PM PL NL ZE ZE ZE ZE VS S M NM ZE ZE ZE ZE S M L NS ZE ZE VS VS M L VL ZE ZE VS S S L VL VL PS VS S M M VL VVL VVL PM S M L L VVL VVL VVL PL M L VL VL VVL VVL VVL Figure 5.6 shows the surface view of the supervisory expert fuzzy system, which gives a three dimensional view of the system it is possible to encounter the troubles in diplaying the three area interconnected AC-DC power systems. The supervisory expert fuzzy logic rule viewer for the given typical values of both inputs and output is shown in Figure 5.7.

10 94 Figure 5.6 Three dimensional surface view of the supervisory expert fuzzy logic control rules Figure 5.7 Supervisory expert fuzzy logic rule viewers The primary feedback loop of the on-line mechanism consists of a rule-base direct fuzzy controller whose output is directly applied to power plant area to achieve the desired output. owever the input and the input scaling factor of this controller are modified based on the current status of the system by using SEFC. The SEFC system is designed with a separate rulebase fuzzy controller which is connected in the secondary feedback loop. The supervisory expert system will continuously evaluate the controller performance and produce the appropriate multiplying factor for the primary

11 95 feedback loop controller inputs. The multiplying factors K and K 2 are determined based on controller performance at each sampling interval by the rule-base supervisory expert system. Multiplying factors of the supervisory expert system modifies the input magnitude of the direct fuzzy controller. This SEFC method will enhance the performance of the direct fuzzy controller in terms of stability and robustness Defuzzification Method A defuzzification method converts the fuzzy output from the inference mechanism to a real world crisp value. There are various types of defuzzification. owever, the centre- average defuzzification method is most frequently used to calculate the crisp output from the fuzzy input and is expressed as, U c (c) (5.4) n CRISP i i i n i (c) i where U Crisp is the output of the fuzzy controller, c i denotes the centre of the membership function of the consequent of i th rule, denotes the membership value for the rule s premise and n represents the total number of fuzzy rules Results and Discussions ere, a three area interconnected AC-DC reheat thermal power system has been considered for the system study. It is shown in Figure 5.8. The simulation tests were carried out to compare system dynamic response under similar conditions of operation of the power system.

12 96 Load Disturbance -K- / ace ace u 0.08s+ 0.3s+ 5s+ 0s+ Area- 20s+ Scope sfp FLC Scope2 To Workspace In In2 Out s VDC ace u ace FLC2 0.08s+ 0.3s+ 5s+ 0s+ Area s+ Scope -K- /2.4 Load Disturbance sfp2 To Workspace -K- -K s -K- ace u ace FLC / s+ Area-3 0.3s+ Load Disturbance 5s+ 0s+ Area s+ Scope3 sfp3 To Workspace2 Figure 5.8 Modelling of three area interconnected AC-DC reheat thermal power systems using SEFC For the system study, Integral control, fuzzy logic control and supervisory expert fuzzy logic control schemes have been applied for the three area interconnected AC-DC power systems. The system is simulated for a step load disturbance of 0% (0. p.u. MW) occurring in area-.due to this, change in dynamics response of the system has been observed. Figures 5.9, 5.0 and 5. indicate the frequency deviations of areas, 2 and 3 for a step load disturbance in area-. From Figure 5.9 one can infer that in Integral control, there is an overshoot and the frequency stabilization occurs only after 0 seconds. In fuzzy logic control, overshoot is eliminated and the frequency stabilization occurs after 7 seconds. Whereas in SEFC there is no overshoot and the frequency stabilization occurs within 2.5 seconds.

13 97 Figure 5.0 shows the frequency deviation in area-2 for a 0% disturbance in area-. One can observe the same result except that the frequency stabilization takes place in.4 seconds for Integral control, in 7.6 seconds for fuzzy logic control and in 4.5 seconds for SEFC. Similarly from Figure 5., which shows the frequency deviation in area-3 for a 0% disturbance in area-, one can observe the frequency stabilization as.2 seconds for integral control, 6.5 seconds for fuzzy logic control and 2.5 seconds for SEFC. Figure 5.9 Frequency deviations in area- for a 0% Disturbance in Area- Also the same study is done in the system s response for a step-load disturbance of 30 %( 0.3 p.u.mw) occurring in area- and the frequency deviations of areas, 2 and 3 are shown in Figures 5.2, 5.3 and 5.4 respectively. From the comparison, one can observe that the proposed SEFC instantly responds to the step load disturbance and makes the system stable within a short time.

14 98 Figure 5.0 Frequency deviations in area-2 for a 0% Disturbance in Area- Figure 5. Frequency deviations in area-3 for a 0% Disturbance in Area-

15 99 Figure 5.2 Frequency deviations in area- for a 30% Disturbance in Area- Figure 5.3 Frequency deviations in area-2 for a 30% Disturbance in Area-

16 00 Figure 5.4 Frequency deviations in area-3 for a 30% Disturbance in Area- The Area Control Error (ACE) for a 0% step load disturbance in area- is shown in Figures 5.5, 5.6 and 5.7. Figure 5.5 ACE deviations in area- (0% Disturbance in Area-)

17 0 From the comparison, one can observe that the proposed SEFC instantly responds to the step load disturbance and attain the steady state in a stipulated time than the integral controller and fuzzy logic controller. Figure 5.6 ACE deviations in area-2 (0% Disturbance in Area-) Figure 5.7 ACE deviations in area-3 (0% Disturbance in Area-)

18 02 Similarly, the Area Control Error (ACE) for a 30% step load disturbance in area-is shown in Figures 5.8, 5.9 and From the comparison, one can observe that the Supervisory Expert Fuzzy Controller instantaneously responds to the step load disturbance and reduces the system error within a short time than the Integral controller and Fuzzy Logic controller. Figure 5.8 ACE deviations in area- (30% Disturbance in Area-) Figure 5.9 ACE deviations in area-2 (30% Disturbance in Area-)

19 03 Figure 5.20 ACE deviations in area-3 (30% Disturbance in Area-) The effectiveness of the proposed control has been compared by using error criteria such as Integral Square Error (ISE), Integral Absolute Error (IAE) and settling time. The formulae of the ISE and IAE are given as, 2 ACE dt ISE (5.5) 0 IAE ACE dt (5.6) 0 where ACE is Area Control Error The performance by numerical comparison for a step load disturbance of 0% and 30% in aera- are presented in Table 5.3. From this table, one can observe that the ISE and IAE in SEFC are less compared to the integral control and fuzzy logic control. Also the settling time in SEFC is faster than the integral control and fuzzy logic control.

20 04 Table 5.3 Numerical Comparison for different Load Disturbances ISE IAE Settling Time T s (S) Types of Control 0% Disturbance 30% Disturbance 0% Disturbance 30% Disturbance 0% Disturbance 30% Disturbance Integral Control Fuzzy Control Supervisory Fuzzy Control Practically load on the power systems are continuously varied from time to time. In order to test the robustness of the proposed controller, different step load disturbances have been applied for different time periods as shown in Figure 5.2. It is seen from the Figure 5.2 that in supervisory AC-DC, at the time of 0% load disturbance, the frequency stabilization occurs within 2.5 seconds. At 6 seconds, another 0% of load disturbance is applied. Frequency stabilization occurs within 3 seconds. At the time of 3 seconds the load disturbance is increased from 20% to 40%. During this condition, the frequency stabilization occurs within 3.2 seconds. Similarly, at the same system, if the load disturbance is reduced by 50% at a time of 46.5 seconds, the frequency stabilization occurs within 4.8 seconds. Even though the load has been suddenly reduced, the proposed SEFC reacts perfectly. The results of different load disturbances show that the robustness of the proposed SEFC technique is better than the integral and direct fuzzy logic control techniques.

21 05 Figure 5.2 Performance Comparison of Frequency deviation in area- for a different load disturbance in area- 5.4 SUMMARY i. The results proved that the proposed SEFC maintains the system frequency without any steady state error unlike integral and fuzzy logic controller. ii. The Supervisory Expert Fuzzy Logic controller instantly responds and reduces the Area Control Error (ACE) within a short time than the Integral controller and Fuzzy Logic controller. iii. The proposed SEFC instantaneously responds to the step load disturbance and makes the system stable within a short time. iv. The results of different load disturbances show that the robustness of the proposed SEFC technique is better than the integral and fuzzy logic control techniques.

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control

More information

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION 141 CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION In most of the industrial processes like a water treatment plant, paper making industries, petrochemical industries,

More information

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2 793-82 Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System S. K.

More information

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM Nigerian Journal of Technology, Vol. 19, No. 1, 2000, EKEMEZIE & OSUAGWU 40 EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM Paul N. Ekemezie and Charles C. Osuagwu

More information

Performance Of Power System Stabilizerusing Fuzzy Logic Controller

Performance Of Power System Stabilizerusing Fuzzy Logic Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 42-49 Performance Of Power System Stabilizerusing Fuzzy

More information

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer 772 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer Avdhesh Sharma and MLKothari Abstract-- The paper deals with design of fuzzy

More information

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,

More information

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 104 CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 5.1 INTRODUCTION Fuzzy control is one of the most active areas of research in the application of fuzzy set theory, especially in complex control tasks, which

More information

NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL

NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL NEW CONTROL STRATEGY FOR LOAD FREQUENCY PROBLEM OF A SINGLE AREA POWER SYSTEM USING FUZZY LOGIC CONTROL 1 B. Venkata Prasanth, 2 Dr. S. V. Jayaram Kumar 1 Associate Professor, Department of Electrical

More information

Design of Decentralized Fuzzy Controllers for Quadruple tank Process

Design of Decentralized Fuzzy Controllers for Quadruple tank Process IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 163 Design of Fuzzy Controllers for Quadruple tank Process R.Suja Mani Malar1 and T.Thyagarajan2, 1 Assistant

More information

General-Purpose Fuzzy Controller for DC/DC Converters

General-Purpose Fuzzy Controller for DC/DC Converters General-Purpose Fuzzy Controller for DC/DC Converters P. Mattavelli*, L. Rossetto*, G. Spiazzi**, P.Tenti ** *Department of Electrical Engineering **Department of Electronics and Informatics University

More information

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India)

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) Indirect Vector Control of Induction motor using Fuzzy Logic Controller RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) ABSTRACT: AC motors are widely used in industries for

More information

Fuzzy Control of a Multivariable Nonlinear Process

Fuzzy Control of a Multivariable Nonlinear Process Fuzzy Control of a Multivariable Nonlinear Process A. Iriarte Lanas 1, G. L.A. Mota 1, R. Tanscheit 1, M.M. Vellasco 1, J.M.Barreto 2 1 DEE-PUC-Rio, CP 38.063, 22452-970 Rio de Janeiro - RJ, Brazil e-mail:

More information

Uncertain System Control: An Engineering Approach

Uncertain System Control: An Engineering Approach Uncertain System Control: An Engineering Approach Stanisław H. Żak School of Electrical and Computer Engineering ECE 680 Fall 207 Fuzzy Logic Control---Another Tool in Our Control Toolbox to Cope with

More information

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor dvance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 2 (2013), pp. 169-178 Research India Publications http://www.ripublication.com/aeee.htm Type-2 Fuzzy Logic Control of Continuous

More information

A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops Australian Journal of Basic and Applied Sciences, 5(2): 258-263, 20 ISSN 99-878 A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

More information

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 159-169. ISSN 2454-3896 International Academic Journal of

More information

Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System

Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online Design and Implementation of PI and PIFL ontrollers for ontinuous Stirred Tank Reactor System

More information

Enhanced Fuzzy Model Reference Learning Control for Conical tank process

Enhanced Fuzzy Model Reference Learning Control for Conical tank process Enhanced Fuzzy Model Reference Learning Control for Conical tank process S.Ramesh 1 Assistant Professor, Dept. of Electronics and Instrumentation Engineering, Annamalai University, Annamalainagar, Tamilnadu.

More information

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR Journal of Engineering Science and Technology Vol., No. (26) 46-59 School of Engineering, Taylor s University FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

Project Proposal ME/ECE/CS 539 Stock Trading via Fuzzy Feedback Control

Project Proposal ME/ECE/CS 539 Stock Trading via Fuzzy Feedback Control Project Proposal ME/ECE/CS 539 Stock Trading via Fuzzy Feedback Control Saman Cyrus May 9, 216 Abstract In this project we would try to design a fuzzy feedback control system for stock trading systems.

More information

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence Models for Inexact Reasoning Fuzzy Logic Lesson 8 Fuzzy Controllers Master in Computational Logic Department of Artificial Intelligence Fuzzy Controllers Fuzzy Controllers are special expert systems KB

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII - Analysis and Stability of Fuzzy Systems - Ralf Mikut and Georg Bretthauer

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII - Analysis and Stability of Fuzzy Systems - Ralf Mikut and Georg Bretthauer ANALYSIS AND STABILITY OF FUZZY SYSTEMS Ralf Mikut and Forschungszentrum Karlsruhe GmbH, Germany Keywords: Systems, Linear Systems, Nonlinear Systems, Closed-loop Systems, SISO Systems, MISO systems, MIMO

More information

DESIGN OF AN ADAPTIVE FUZZY-BASED CONTROL SYSTEM USING GENETIC ALGORITHM OVER A ph TITRATION PROCESS

DESIGN OF AN ADAPTIVE FUZZY-BASED CONTROL SYSTEM USING GENETIC ALGORITHM OVER A ph TITRATION PROCESS www.arpapress.com/volumes/vol17issue2/ijrras_17_2_05.pdf DESIGN OF AN ADAPTIVE FUZZY-BASED CONTROL SYSTEM USING GENETIC ALGORITHM OVER A ph TITRATION PROCESS Ibrahim Al-Adwan, Mohammad Al Khawaldah, Shebel

More information

FUZZY CONTROL. Main bibliography

FUZZY CONTROL. Main bibliography FUZZY CONTROL Main bibliography J.M.C. Sousa and U. Kaymak. Fuzzy Decision Making in Modeling and Control. World Scientific Series in Robotics and Intelligent Systems, vol. 27, Dec. 2002. FakhreddineO.

More information

CHAPTER V TYPE 2 FUZZY LOGIC CONTROLLERS

CHAPTER V TYPE 2 FUZZY LOGIC CONTROLLERS CHAPTER V TYPE 2 FUZZY LOGIC CONTROLLERS In the last chapter fuzzy logic controller and ABC based fuzzy controller are implemented for nonlinear model of Inverted Pendulum. Fuzzy logic deals with imprecision,

More information

Keywords: AC-DC tie-lines, dual mode controller, fuzzy logic controller, interconnected power system, loadfrequency control, PI controller, PSO

Keywords: AC-DC tie-lines, dual mode controller, fuzzy logic controller, interconnected power system, loadfrequency control, PI controller, PSO Research Journal of Applied Sciences, Engineering and echnology 7(20): 4264-4274, 204 DOI:0.9026/rjaset.7.798 ISSN: 2040-7459; e-issn: 2040-7467 204 Maxwell Scientific Publication Corp. Submitted: December

More information

Design On-Line Tunable Gain Artificial Nonlinear Controller

Design On-Line Tunable Gain Artificial Nonlinear Controller Journal of Computer Engineering 1 (2009) 3-11 Design On-Line Tunable Gain Artificial Nonlinear Controller Farzin Piltan, Nasri Sulaiman, M. H. Marhaban and R. Ramli Department of Electrical and Electronic

More information

Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller

Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. I (Mar Apr. 2015), PP 43-52 www.iosrjournals.org Comparative Study of Speed

More information

RULE-BASED FUZZY EXPERT SYSTEMS

RULE-BASED FUZZY EXPERT SYSTEMS University of Waterloo Department of Electrical and Computer Engineering E&CE 457 Applied Artificial Intelligence RULE-BASED FUZZY EXPERT SYSTEMS July 3 rd, 23 Ian Hung, 99XXXXXX Daniel Tse, 99XXXXXX Table

More information

Handling Uncertainty using FUZZY LOGIC

Handling Uncertainty using FUZZY LOGIC Handling Uncertainty using FUZZY LOGIC Fuzzy Set Theory Conventional (Boolean) Set Theory: 38 C 40.1 C 41.4 C 38.7 C 39.3 C 37.2 C 42 C Strong Fever 38 C Fuzzy Set Theory: 38.7 C 40.1 C 41.4 C More-or-Less

More information

A NEW STRUCTURE FOR THE FUZZY LOGIC CONTROL IN DC TO DC CONVERTERS

A NEW STRUCTURE FOR THE FUZZY LOGIC CONTROL IN DC TO DC CONVERTERS A NEW STRUCTURE FOR THE FUZZY LOGIC CONTROL IN DC TO DC CONVERTERS JENICA ILEANA CORCAU Division Avionics University of Craiova, Faculty of Electrotechnics Blv. Decebal, nr. 07, Craiova, Dolj ROMANIA ELEONOR

More information

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller 659 3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller Nitesh Kumar Jaiswal *, Vijay Kumar ** *(Department of Electronics and Communication Engineering, Indian Institute of Technology,

More information

AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL

AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL AERO-ENGINE ADAPTIVE FUZZY DECOUPLING CONTROL Xinyu Ren and Siqi Fan School of Aero-engine Engineering, Northwestern Polytechnical University Xi'an 710072, China Abstract: Key words: A new kind of multivariable

More information

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS -MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS C L AU D I U I O N I TA 1, 2, A L I N G EO R G E R A D U C U 1, F LO R I N I OV 2 1 V A T T E N F A L L W I N D P O W E

More information

SPEED CONTROL OF DC MOTOR ON LOAD USING FUZZY LOGIC CONTROLLER (A CASE STUDY OF EMERGENCY LUBE OIL PUMP MOTOR OF H25 HITACHI TURBINE GENERATOR)

SPEED CONTROL OF DC MOTOR ON LOAD USING FUZZY LOGIC CONTROLLER (A CASE STUDY OF EMERGENCY LUBE OIL PUMP MOTOR OF H25 HITACHI TURBINE GENERATOR) Nigerian Journal of Technology (NIJOTECH) Vol. 36, No. 3, July 2017, pp. 867 875 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com

More information

FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES

FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 3, May June, 2016, pp.14 24, Article ID: IJEET_07_03_002 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=3

More information

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

More information

Control of Conical Tank Level using in Industrial Process by Fuzzy Logic Controller

Control of Conical Tank Level using in Industrial Process by Fuzzy Logic Controller Control of Conical Tank Level using in Industrial Process by Fuzzy Logic Controller Alia Mohamed 1 and D. Dalia Mahmoud 2 1 Department of Electronic Engineering, Alneelain University, Khartoum, Sudan aliaabuzaid90@gmail.com

More information

Speed Control of PMSM by Fuzzy PI Controller with MPAC Algorithm

Speed Control of PMSM by Fuzzy PI Controller with MPAC Algorithm IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 10, 2016 ISSN (online): 2321-0613 M. Obulesu 1 Dr. R. Kiranmayi 2 1 Student 2 Professor 1,2 Department of Electrical &

More information

A Hybrid Approach For Air Conditioning Control System With Fuzzy Logic Controller

A Hybrid Approach For Air Conditioning Control System With Fuzzy Logic Controller International Journal of Engineering and Applied Sciences (IJEAS) A Hybrid Approach For Air Conditioning Control System With Fuzzy Logic Controller K.A. Akpado, P. N. Nwankwo, D.A. Onwuzulike, M.N. Orji

More information

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic EEE 8005 Student Directed Learning (SDL) Industrial utomation Fuzzy Logic Desire location z 0 Rot ( y, φ ) Nail cos( φ) 0 = sin( φ) 0 0 0 0 sin( φ) 0 cos( φ) 0 0 0 0 z 0 y n (0,a,0) y 0 y 0 z n End effector

More information

Hamidreza Rashidy Kanan. Electrical Engineering Department, Bu-Ali Sina University

Hamidreza Rashidy Kanan. Electrical Engineering Department, Bu-Ali Sina University Lecture 3 Fuzzy Systems and their Properties Hamidreza Rashidy Kanan Assistant Professor, Ph.D. Electrical Engineering Department, Bu-Ali Sina University h.rashidykanan@basu.ac.ir; kanan_hr@yahoo.com 2

More information

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator Abstract Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator N. Selvaganesan 1 Prabhu Jude Rajendran 2 S.Renganathan 3 1 Department of Instrumentation Engineering, Madras Institute of

More information

Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University. Fuzzy Logic Controllers - Tutorial

Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University. Fuzzy Logic Controllers - Tutorial Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University Directory Table of Contents Begin Article Fuzzy Logic Controllers - Tutorial Robert Fullér

More information

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 6, 2013, 366 370 COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

More information

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller.

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller. Comparison Of Interval Type- Fuzzy Controller And Self Tuning Interval Type- Fuzzy Controller For A Magnetic Levitation System Shabeer Ali K P 1, Sanjay Sharma, Dr.Vijay Kumar 3 1 Student, E & CE Department,

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller

Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller Gurmeet Singh Electrical Engineering Dept. DIT University Dehradun, India Gagan Singh

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016 TW2 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016 ADVANCED CONTROL TECHNOLOGY MODULE NO: EEM7015 Date: Monday 16 May 2016

More information

Design and Analysis of Speed Control Using Hybrid PID-Fuzzy Controller for Induction Motors

Design and Analysis of Speed Control Using Hybrid PID-Fuzzy Controller for Induction Motors Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-2015 Design and Analysis of Speed Control Using Hybrid PID-Fuzzy Controller for Induction Motors Ahmed Fattah Western

More information

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control esearch Journal of Applied Sciences, Engineering and echnology 4(5): 375-38, ISSN: 4-7467 Maxwell Scientific Organization, Submitted: February, Accepted: March 6, Published: August, Steam-Hydraulic urbines

More information

Fuzzy control systems. Miklós Gerzson

Fuzzy control systems. Miklós Gerzson Fuzzy control systems Miklós Gerzson 2016.11.24. 1 Introduction The notion of fuzziness: type of car the determination is unambiguous speed of car can be measured, but the judgment is not unambiguous:

More information

Lecture 06. (Fuzzy Inference System)

Lecture 06. (Fuzzy Inference System) Lecture 06 Fuzzy Rule-based System (Fuzzy Inference System) Fuzzy Inference System vfuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. Fuzzy Inference

More information

Fuzzy Controller. Fuzzy Inference System. Basic Components of Fuzzy Inference System. Rule based system: Contains a set of fuzzy rules

Fuzzy Controller. Fuzzy Inference System. Basic Components of Fuzzy Inference System. Rule based system: Contains a set of fuzzy rules Fuzz Controller Fuzz Inference Sstem Basic Components of Fuzz Inference Sstem Rule based sstem: Contains a set of fuzz rules Data base dictionar: Defines the membership functions used in the rules base

More information

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH Abhilash Asekar 1 1 School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Module - 2 Lecture - 4 Introduction to Fuzzy Logic Control In this lecture today, we will be discussing fuzzy

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 5, May 2012)

International Journal of Emerging Technology and Advanced Engineering Website:   (ISSN , Volume 2, Issue 5, May 2012) FUZZY SPEED CONTROLLER DESIGN OF THREE PHASE INDUCTION MOTOR Divya Rai 1,Swati Sharma 2, Vijay Bhuria 3 1,2 P.G.Student, 3 Assistant Professor Department of Electrical Engineering, Madhav institute of

More information

Application of Hyper-Fuzzy Logic Type -2 in Field Oriented Control of Induction Motor with Broken Bars

Application of Hyper-Fuzzy Logic Type -2 in Field Oriented Control of Induction Motor with Broken Bars IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 5 (May. 2018), VII PP 01-07 www.iosrjen.org Application of Hyper-Fuzzy Logic Type -2 in Field Oriented Control

More information

Fuzzy Logic Controller

Fuzzy Logic Controller Speed Control of Separately Excited DC Motor using Fuzzy Logic Controller A thesis submitted in fulfilment of prerequisites of Bachelor s Degree in Electrical Engineering By T. YUVA RADHA KRISHNA 111EE0055

More information

CHAPTER 6 CLOSED LOOP STUDIES

CHAPTER 6 CLOSED LOOP STUDIES 180 CHAPTER 6 CLOSED LOOP STUDIES Improvement of closed-loop performance needs proper tuning of controller parameters that requires process model structure and the estimation of respective parameters which

More information

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS

MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1. Stela RUSU-ANGHEL, 2. Lucian GHERMAN MANAGEMENT FLOW CONTROL ROTOR INDUCTION MACHINE USING FUZZY REGULATORS 1-2. UNIVERSITY POLITEHNICA OF TIMISOARA, FACULTY OF ENGINEERING FROM HUNEDOARA, ROMANIA ABSTRACT:

More information

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation Engineering, 2011, 3, 755-762 doi:10.4236/eng.2011.37091 Published Online July 2011 (http://www.scirp.org/journal/eng) Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation Abstract

More information

Design of an Intelligent Controller for Armature Controlled DC Motor using Fuzzy Logic Technique

Design of an Intelligent Controller for Armature Controlled DC Motor using Fuzzy Logic Technique esign of an ntelligent Controller for Armature Controlled C Motor using Fuzzy Logic Technique J. Velmurugan jvelmurugan76@gmail.com R. M. Sekar ssvedha08@gmail.com B. Pushpavanam pushpavanamb4u@gmail.com

More information

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 6 ISSN : 2456-3307 Temperature Sensitive Short Term Load Forecasting:

More information

DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K.

DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K. DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K. Suresh and K. Balu* Lecturer, Dept. of E&I, St. Peters Engg. College, affiliated to Anna University, T.N, India *Professor,

More information

NonlinearControlofpHSystemforChangeOverTitrationCurve

NonlinearControlofpHSystemforChangeOverTitrationCurve D. SWATI et al., Nonlinear Control of ph System for Change Over Titration Curve, Chem. Biochem. Eng. Q. 19 (4) 341 349 (2005) 341 NonlinearControlofpHSystemforChangeOverTitrationCurve D. Swati, V. S. R.

More information

A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model

A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model 442 EEE Transactions on Energy Conversion, Vol. 11, No. 2, June 1996 A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model Young-Moon Park, Senior Member, EEE

More information

Lyapunov Function Based Design of Heuristic Fuzzy Logic Controllers

Lyapunov Function Based Design of Heuristic Fuzzy Logic Controllers Lyapunov Function Based Design of Heuristic Fuzzy Logic Controllers L. K. Wong F. H. F. Leung P. IS.S. Tam Department of Electronic Engineering Department of Electronic Engineering Department of Electronic

More information

2010/07/12. Content. Fuzzy? Oxford Dictionary: blurred, indistinct, confused, imprecisely defined

2010/07/12. Content. Fuzzy? Oxford Dictionary: blurred, indistinct, confused, imprecisely defined Content Introduction Graduate School of Science and Technology Basic Concepts Fuzzy Control Eamples H. Bevrani Fuzzy GC Spring Semester, 2 2 The class of tall men, or the class of beautiful women, do not

More information

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T.

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T. FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T., Dwarhat E-mail: 1 2001.kiran@gmail.com,, 2 bksapkec@yahoo.com ABSTRACT The fuzzy

More information

Three Types of Fuzzy Controllers Applied in High-Performance Electric Drives for Three-Phase Induction Motors

Three Types of Fuzzy Controllers Applied in High-Performance Electric Drives for Three-Phase Induction Motors Chapter 24 Three Types of Fuzzy Controllers Applied in High-Performance Electric Drives for Three-Phase Induction Motors José Luis Azcue, Alfeu J. Sguarezi Filho and Ernesto Ruppert Additional information

More information

is implemented by a fuzzy relation R i and is defined as

is implemented by a fuzzy relation R i and is defined as FS VI: Fuzzy reasoning schemes R 1 : ifx is A 1 and y is B 1 then z is C 1 R 2 : ifx is A 2 and y is B 2 then z is C 2... R n : ifx is A n and y is B n then z is C n x is x 0 and y is ȳ 0 z is C The i-th

More information

CHAPTER 2 MODELING OF POWER SYSTEM

CHAPTER 2 MODELING OF POWER SYSTEM 38 CHAPTER 2 MODELING OF POWER SYSTEM 2.1 INTRODUCTION In the day to day scenario, power is an essential commodity to the human beings. The demand is more in developed countries and there is increase in

More information

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL B. MOULI CHANDRA 1 & S.TARA KALYANI 2 1 Electrical and Electronics Department,

More information

Fuzzy Control Systems Process of Fuzzy Control

Fuzzy Control Systems Process of Fuzzy Control Fuzzy Control Systems The most widespread use of fuzzy logic today is in fuzzy control applications. Across section of applications that have successfully used fuzzy control includes: Environmental Control

More information

A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

A unified double-loop multi-scale control strategy for NMP integrating-unstable systems Home Search Collections Journals About Contact us My IOPscience A unified double-loop multi-scale control strategy for NMP integrating-unstable systems This content has been downloaded from IOPscience.

More information

Fuzzy Control. PI vs. Fuzzy PI-Control. Olaf Wolkenhauer. Control Systems Centre UMIST.

Fuzzy Control. PI vs. Fuzzy PI-Control. Olaf Wolkenhauer. Control Systems Centre UMIST. Fuzzy Control PI vs. Fuzzy PI-Control Olaf Wolkenhauer Control Systems Centre UMIST o.wolkenhauer@umist.ac.uk www.csc.umist.ac.uk/people/wolkenhauer.htm 2 Contents Learning Objectives 4 2 Feedback Control

More information

Design and Stability Analysis of Single-Input Fuzzy Logic Controller

Design and Stability Analysis of Single-Input Fuzzy Logic Controller IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000 303 Design and Stability Analysis of Single-Input Fuzzy Logic Controller Byung-Jae Choi, Seong-Woo Kwak,

More information

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model 142 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 18, NO. 1, MARCH 2003 A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model Un-Chul Moon and Kwang Y. Lee, Fellow,

More information

Temperature Control of CSTR Using Fuzzy Logic Control and IMC Control

Temperature Control of CSTR Using Fuzzy Logic Control and IMC Control Vo1ume 1, No. 04, December 2014 936 Temperature Control of CSTR Using Fuzzy Logic Control and Control Aravind R Varma and Dr.V.O. Rejini Abstract--- Fuzzy logic controllers are useful in chemical processes

More information

Synthesis of Nonlinear Control of Switching Topologies of Buck-Boost Converter Using Fuzzy Logic on Field Programmable Gate Array (FPGA)

Synthesis of Nonlinear Control of Switching Topologies of Buck-Boost Converter Using Fuzzy Logic on Field Programmable Gate Array (FPGA) Journal of Intelligent Learning Systems and Applications, 2010, 2: 36-42 doi:10.4236/jilsa.2010.21005 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Synthesis of Nonlinear Control

More information

Fuzzy PID Control System In Industrial Environment

Fuzzy PID Control System In Industrial Environment Information Technology and Mechatronics Engineering Conference (ITOEC 2015) Fuzzy I Control System In Industrial Environment Hong HE1,a*, Yu LI1, Zhi-Hong ZHANG1,2, Xiaojun XU1 1 Tianjin Key Laboratory

More information

Control Of Heat Exchanger Using Internal Model Controller

Control Of Heat Exchanger Using Internal Model Controller IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 7 (July. 2013), V1 PP 09-15 Control Of Heat Exchanger Using Internal Model Controller K.Rajalakshmi $1, Ms.V.Mangaiyarkarasi

More information

LOW COST FUZZY CONTROLLERS FOR CLASSES OF SECOND-ORDER SYSTEMS. Stefan Preitl, Zsuzsa Preitl and Radu-Emil Precup

LOW COST FUZZY CONTROLLERS FOR CLASSES OF SECOND-ORDER SYSTEMS. Stefan Preitl, Zsuzsa Preitl and Radu-Emil Precup Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain LOW COST FUZZY CONTROLLERS FOR CLASSES OF SECOND-ORDER SYSTEMS Stefan Preitl, Zsuzsa Preitl and Radu-Emil Precup Politehnica University

More information

Rule-Based Fuzzy Model

Rule-Based Fuzzy Model In rule-based fuzzy systems, the relationships between variables are represented by means of fuzzy if then rules of the following general form: Ifantecedent proposition then consequent proposition The

More information

AI based Direct Torque Fuzzy Control of AC Drives

AI based Direct Torque Fuzzy Control of AC Drives nternational Journal of Electronic Engineering Research N 0975-6450 Volume 1 Number 3 (009) pp. 33 44 Research ndia Publications http://www.ripublication.com/ijeer.htm A based Direct Torque Fuzzy Control

More information

OUTLINE. Introduction History and basic concepts. Fuzzy sets and fuzzy logic. Fuzzy clustering. Fuzzy inference. Fuzzy systems. Application examples

OUTLINE. Introduction History and basic concepts. Fuzzy sets and fuzzy logic. Fuzzy clustering. Fuzzy inference. Fuzzy systems. Application examples OUTLINE Introduction History and basic concepts Fuzzy sets and fuzzy logic Fuzzy clustering Fuzzy inference Fuzzy systems Application examples "So far as the laws of mathematics refer to reality, they

More information

Intro. ANN & Fuzzy Systems. Lec 34 Fuzzy Logic Control (II)

Intro. ANN & Fuzzy Systems. Lec 34 Fuzzy Logic Control (II) Lec 34 Fuzz Logic Control (II) Outline Control Rule Base Fuzz Inference Defuzzification FLC Design Procedures (C) 2001 b Yu Hen Hu 2 General form of rule: IF Control Rule Base x 1 is A 1 AND AND x M is

More information

Fuzzy Controller of Switched Reluctance Motor

Fuzzy Controller of Switched Reluctance Motor 124 ACTA ELECTROTEHNICA Fuzzy Controller of Switched Reluctance Motor Ahmed TAHOUR, Hamza ABID, Abdel Ghani AISSAOUI and Mohamed ABID Abstract- Fuzzy logic or fuzzy set theory is recently getting increasing

More information

A Comparative Study on Fault Detection and Self- Reconfiguration

A Comparative Study on Fault Detection and Self- Reconfiguration Cleveland State University EngagedScholarship@CSU ETD Archive 010 A Comparative Study on Fault Detection and Self- Reconfiguration Ning Ge Cleveland State University Follow this and additional works at:

More information

Performance Comparison of PSO Based State Feedback Gain (K) Controller with LQR-PI and Integral Controller for Automatic Frequency Regulation

Performance Comparison of PSO Based State Feedback Gain (K) Controller with LQR-PI and Integral Controller for Automatic Frequency Regulation Performance Comparison of PSO Based Feedback Gain Controller with LQR-PI and Controller for Automatic Frequency Regulation NARESH KUMARI 1, A. N. JHA 2, NITIN MALIK 3 1,3 School of Engineering and Technology,

More information

FUZZY TRAFFIC SIGNAL CONTROL AND A NEW INFERENCE METHOD! MAXIMAL FUZZY SIMILARITY

FUZZY TRAFFIC SIGNAL CONTROL AND A NEW INFERENCE METHOD! MAXIMAL FUZZY SIMILARITY FUZZY TRAFFIC SIGNAL CONTROL AND A NEW INFERENCE METHOD! MAXIMAL FUZZY SIMILARITY Jarkko Niittymäki Helsinki University of Technology, Laboratory of Transportation Engineering P. O. Box 2100, FIN-0201

More information

Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement

Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement Engineering, 2009, 1, 1-54 Published Online June 2009 in SciRes (http://www.scirp.org/journal/eng/). Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement

More information

Inter-Ing 2005 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, NOVEMBER 2005.

Inter-Ing 2005 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, NOVEMBER 2005. Inter-Ing 5 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, 1-11 NOVEMBER 5. FUZZY CONTROL FOR A MAGNETIC LEVITATION SYSTEM. MODELING AND SIMULATION

More information

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC CHAPTER - 5 OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC 5.1 INTRODUCTION The power supplied from electrical distribution system is composed of both active and reactive components. Overhead lines, transformers

More information

Learning from Examples

Learning from Examples Learning from Examples Adriano Cruz, adriano@nce.ufrj.br PPGI-UFRJ September 20 Adriano Cruz, adriano@nce.ufrj.br (PPGI-UFRJ) Learning from Examples September 20 / 40 Summary Introduction 2 Learning from

More information

Soft Computing Technique and Conventional Controller for Conical Tank Level Control

Soft Computing Technique and Conventional Controller for Conical Tank Level Control Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 4, No. 1, March 016, pp. 65~73 ISSN: 089-37, DOI: 10.11591/ijeei.v4i1.196 65 Soft Computing Technique and Conventional Controller

More information