Droplet-based DEP microfluidics - High speed liquid actuation on planar substrates and factors influencing picolitre droplet formation

Size: px
Start display at page:

Download "Droplet-based DEP microfluidics - High speed liquid actuation on planar substrates and factors influencing picolitre droplet formation"

Transcription

1 Droplet-based DEP microfluidics - High speed liquid actuation on planar substrates and factors influencing picolitre droplet formation Thirukumaran T.K., Thomas B. Jones *, Karan V.I.S. Kaler Department of Electrical and Computer Engineering University of Calgary, Calgary, Alberta, Canada T2N 1N4 * University of Rochester, Rochester, NY, United States Abstract Successful lab-on-a-chip (LOC) devices resort to some sort of microfluidic system to dispense, transport, and mix small volumes of liquid analyte. We propose a new LOC scheme that integrates liquid dielectrophoretic (DEP) actuation for analyte distribution and droplet dispensing, and then particulate DEP, for subsequent, frequency-selective manipulation of bio-particles contained within the droplets. Multiple picolitre(pl) sized droplets have been formed simultaneously from a parent microliter droplet pipetted onto a coplanar electrode structure patterned and microcoated with dielectrics to control surface wetting. The volumes of the dispensed droplets are controlled by the width of the electrode structure and their number by semicircular bumps patterned into the coplanar strips. We have furthermore shown that integration of particle DEP electrodes within the droplet forming structures can be effectively utilized to sort cell based on their frequency dependent polarization response. KEYWORDS Dielectrophoresis, Liquid actuation, particle DEP, droplet dispensing, microfluidics, Lab-on-chip INTRODUCTION Voltage-controlled formation, conveyance and subsequent manipulation of submicroliter sized fluidic droplet containing cells, macromolecules and/or reagents, without the need for walled microchannels, external pumps and/or valves opens up a new arena of surface fluidic based lab-on-a-chip devices. Such wall-less, openchannel surface fluidic systems, are particularly suited to handling biological cells, DNA and other molecular components as they are immune to the clogging and sample contamination common in closed microfluidic systems.

2 Furthermore, open channel systems, unlike their closed channel counterparts, are immune to leakage problems often encountered at high pumping and channel pressures. The work by Pellat, Melcher, and others [1-3] provided a sound foundation for exploiting electrostatic fields to siphon, transport, and manipulate liquids. Similarly, we leverage the phenomena of dielectrophoresis (DEP) on a microscopic scale, using nonuniform electric fields, to actuate liquids and dispense sub-nanoliter sized droplets. Jones and co-workers [4] have demonstrated the actuation and conveyance of liquids on the surface of insulating substrates. The basic mechanism of electric field induced liquid actuation achieved by employing dielectrically coated coplanar microelectrodes is reasonably well understood [5]. The driving force behind this liquid actuation is DEP, where the non-uniform field required for DEP is generated by appropriate ac excitation of the electrode pair. Electrode widths typically range from 30 µm to 100 µm and are coated by a thin (2 10 µm) insulating dielectric layer [1]. In this paper, we report the development of a DEP actuated surface microfluidic scheme that integrates fluidic transport and droplet formation with DEP of particles contained within the liquid. This capability facilitates and provides for rapid sampling and parallel processing of multiple pl sized droplets containing cells and fractionating them based on their polarization response. BACKGROUND Liquid Dielectrophoresis (L-DEP) To gain insight concerning DEP actuation of liquids, consider a simple arrangement of two coplanar electrodes, patterned on an insulating substrate and coated with a thin insulating dielectric (see Fig. 1). Now consider a drop of liquid (water) placed on the coated coplanar electrode pair, so that it covers a short section of the electrodes, as shown in Fig. 1. When sufficient AC voltage typically ~150 V at a suitable frequency (typically 60 khz or above) is applied, a liquid finger projects from the droplet and travels along the electrodes until it reaches the end of the structure. For water, this DEP actuation is rapid, with transient "meniscus" speeds exceeding 5 cm/s and flow rates of up to ~1 µl/s [4]. The basis for liquid actuation in this case is the interaction of the nonuniform electric field, generated by the electrodes, and the polar liquid molecules. The field gives rise to a net body force acting on the liquid surface to draw out the liquid finger and move it along the electrodes to establish a new hydrostatic equilibrium, with the entire length of the electrodes covered by the finger. The dynamics of the liquid finger formation has been discussed at length by Jones et al [6]. A reduced-order lumped parameter model that takes into account liquid surface tension viscous drag, and the DEP force gives the following [6]: 2 2 ( εliq 1) cc d airv FLiq DEP = (1.1) 2( c + 2 ε c )( c + 2 c ) d liq air d air

3 Under the above actuation force the liquid finger displacement (Z(t) ) is 1/2 proportional to the square root of time (t), namely zt () t, for viscosity dominates flow. The liquid finger once drawn from the parent drop due to liquid DEP actuation is stably sustained between the electrodes as long as the voltage is on. But once the voltage is removed, the liquid finger rapidly breaks up due to capillary stability into multiple droplets, each far smaller than the original parent drop. Droplet formation can be achieved more reliably using semicircular droplet forming bumps patterned on to the electrodes [7]. The bumps must be spaced evenly at the so-called most unstable wavelength according to Rayleigh s instability theory for liquid jets. Particle dielectrophoresis In the present work, we have integrated DEP liquid actuation and subsequent droplet formation with particulate DEP to enable frequency selective manipulation of cells and other microscopic particles suspended in the actuated liquid. Microscopic sized particles such a cells suspended in liquid media and subjected to a inhomogenous electric field ( E 0 ) exhibit a frequency dependent DEP response. For spherically shaped particles of radius a, the time average DEP force exerted on the particle is as follows: uuuur 3 2 ) F = 2πa ε Re[ K ( ω)] E r (1.2) DEP m e 0( rms) where the polarization factor K e ε ε ( ω) =, ε + 2ε p p m m * ε is the complex permittivity, ω is angular velocity of the electric field, is the gradient operator and the subscripts p and m represent particle and medium respectively. It important to note that the DEP force is sensitive to the particle size, the gradient of the electric field squared and furthermore the magnitude and sign of the frequency dependent Clausis Mossotti polarization factor ( Ke( ω )). If Ke( ω ) >0, the DEP interaction force impels particle into region of field intensity maxima (positive DEP), conversely if K ( ) e ω < 0, the particle experience a negative DEP force and are translated to region of field intensity minima. Past work in biological DEP teaches us that the different cells and/or particles exhibit unique frequency dependences in their polarization response arising for a variety of reasons, related to size, shape, composition, surface character and in cells on their physiochemical makeup. We propose to leverage this difference in polarization between different cell types to affect their separation, utilizing a surface fluidic microsystem, as described below.

4 Integrated liquid and Particle Dielectrophoresis The goal of this work is to leverage liquid DEP and particle DEP phenomena to affect the physical separation of a heterogeneous mixture of cells suspended in fluidic media. To achieve in a practical way, we have integrated the finer microelectrode structures that will facilitate positive DEP collection and/or negative DEP repulsion of cells with the fluidic actuation and droplet forming structures. A schematic diagram of this integrated liquid and particle DEP structure is shown in Fig. 2. The coplanar electrodes marked as 1 and 2 in Fig. 2 is used for synthesizing the L-DEP force responsible for liquid actuation while the interdigitated electrodes in the bump region (marked as 3 in Fig. 2) facilitates particle separation based on their polarization behavior. The lower bumps (marked as 4) are used for collecting purer cell population. EXPERIMENTS Methods and Materials - Patterning microelectrodes on Glass The microelectrode structure, shown in Fig. 2, was realized using standard photolithography techniques to pattern the electrodes on a thin layer of metal evaporated on an insulating glass substrate. Details of the fabrication protocol are presented elsewhere [8]. Successful liquid actuation depends heavily on proper dielectric coating of the metal electrode. Dielectric materials of high dielectric constant (K) reduce the required actuation voltage, thus reducing the likelihood of electrical breakdown. We use SU-8 photoresist (K=4) spin-coated to a thickness of ~2 µm which is then covered by a 1.3µm layer of positive photoresist HPR-504, which renders the surface hydrophilic and hence improve rivulet formation. Results and Discussion When an AC voltage is applied across the co-planar electrodes, the non-uniform field acting along the periphery of the droplet tends to lower the droplet contact angle with the surface. The change in contact angle is quiet significant with an increasing voltage and upon a threshold voltage, liquid rivulet projects to balance the hydrodynamic equilibrium caused by the non-uniform electric field. The liquid rivulet moves along the electrode length to maintain a stable hydrodynamic equilibrium. When the voltage across the electrodes is removed, the liquid looses its stability and breaks-up to form sessile droplet based on Rayleigh s instability criteria as discussed before. The time sequence response of the parent droplet to an applied AC voltage of 220 V RMS is shown in Fig. 3. The change in contact angle followed by the liquid rivulet projecting along the electrode length is quite significant from Fig. 3A. Fig. 3B & 3C shows the movement of liquid rivulet along the electrode, while disintegration of rivulet into droplets upon the removal of voltage is as shown in 3D. With the flexibility to form precise droplets at regions of interest [7], thrust was to transport microscopic particles including biological cells along the liquid rivulet and to disperse them to the subsequent daughter droplets. Particles thus dispersed can be manipulated dielectrophoretically, based on their polarization response.

5 For a successful particulate DEP separation, the maximum surface area of the droplet needs to be exposed to the field synthesized by interdigitated electrodes in the bump region. In this work, analytical estimation of the ratio of bump radius to the rivulet width was estimated as in Fig. 4. Experiments with structures based on this estimation show the formation of equal volume droplets as in Fig. 5. Further, it was observed that upon removal of voltage, a portion of the liquid is pulled back into the parent droplet resulting in volume loss in the daughter droplets. To avoid this, three electrode structures [9] were used for the experimental verification of this analytical estimation and the results gave a satisfactory evidence of the bump radius to rivulet width relationship. The electrode structures based on the relation as in eq. (1.3), aids in forming equal volume droplets covering the entire surface area of the bump. x y λ * R bump =(x+y) Fig. 4 Bump ratio calculation; with the volume of liquid trapped between the bumps during actuation being equal to the volume of droplet formed upon voltage removal. The ratio of bump radius (BR) to rivulet radius is estimated as: Fig. 5 Droplets of uniform volume covering the entire surface of the bump 1.92 (rivulet radius) BR = ( Bump radius + Rivulet radius) 2 (1.3) Particulate DEP To verify the particulate DEP effects on open droplets, initial experiments were performed with sample media containing yeast cells (Saccharomyces cerevisiae) placed directly on the bump region. When a sinusoidal AC voltage of 2.47 V RMS is applied at a frequency of 600 khz, yeast cells were observed to be pulled towards the electrodes and also forms pearl chain along the periphery of the bump region due to +ve DEP effect (Fig. 6A). However, at frequencies above 10 MHz, the same cells were observed to be repelled from the electrode periphery (-ve DEP) as in Fig. 6B. Under ve DEP conditions, some cells are trapped within the interdigitated electrodes, this phenomenon though not quantified can be attributed to the smaller electrode gaps resulting in very high particle-particle interaction and thereby forming cell-traps. Cells repelled under ve DEP conditions were actuated along the

6 electrodes below the bumps, forming picolitre droplets on the lower bumps. Experiments are underway to verify the purity of the cell population in these picolitre droplets. CONCLUSION A novel technique for integrating liquid and particulate DEP has been introduced as a new prototype for a laboratory on a chip. The scheme avoids certain difficulties of closed channel devices. With the capability to transport and distribute biological samples to specific locations, this integrated system can be further extended to downstream sample processing including cell lysing, cell cycle monitoring, DNA amplification (PCR reactions) and other detection systems (ex. Hybridization, fluorescent labeling, etc.,). Currently, experiments with modified electrode patterns are in progress for efficient particle transport and particle trapping. Further, utilization of this unique technique for on-chip droplet mixing and integration with droplet-pcr is explored. ACKNOWLEDGEMENTS The authors acknowledge the support provided by the University of Calgary in the form of International fellowship abroad grant and the National Science and Engineering Research Council of Canada (NSERC). The authors also acknowledge the Nanofab staff (Univ. of Alberta, Edmonton) for their guidance in fabrication. REFERENCES 1. Pellat, H., Mesure de la force agissant sur les dielectriques liquides non electrises places dans un champ elitrique. C. R. Acad. Sci. Paris, 1895(119): p Jones, T.B. and J.R. Melcher, Dynamics of electromechanical flow structures. Phys. Fluids, 1973(16): p Melcher, J.R., M. Hurwitz, and R. Fax, Dielectric liquid expulsion. J. Spacecr. Rockets, 1969(6): p Jones, T.B., et al., Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, (2): p Jones, T.B., K.L. Wang, and D.J. Yao, Frequency-dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis. Langmuir, (7): p Jones, T.B., Dynamics of Dielectrophoretic Liquid Microactuation. Proceedings of 4th Int'l Conference on Applied Electrostatics, Dalin, China, Ahmed, R., et al., Dispensing picoliter droplets using dielectrophoretic (DEP) microactuation. Microscale Thermophysical Engineering, (3): p

7 8. Kanagasabathi, T., C.J. Backhouse, and K. Kaler. Dielectrophoresis (DEP) of cells and microparticles in PDMS microfluidic channels. in Nanotech Boston, MA. 9. Private communication with Rajib Ahmed, Univ of Rochester, 2004 Parent liquid droplet ( ε liq ) liquid finger dielectric film ( ε d ) Insulating substrate Fig. 1A Fig. 1 Dynamics of liquid actuation. Fig. 1A Schematic side-view of actuation; Fig. 1B Cross-sectional view of the finger. w g Fig. 1B Parent droplet with heterogeneous mixture of cells 4 Fig. 2 Schematics scheme for integrating L-DEP and P-DEP structures

8 3(A) 3(B) 3(C) 3(D) Fig. 3 Time sequence response of liquid actuation at an applied AC voltage of 220 V RMS and frequency 100 khz; 3(A) Initial parent droplet before applying voltage; 3(B) Liquid rivulet projecting from the parent droplet; 3(C) Rivulet traveling to the end of the structure to balance the hydrodynamic equilibrium; 3(D) Breaking-up to form a droplet at the second bump Droplets missing the first bump were considered due to the fairly larger bump size compared to the rivulet radius. Fig. 6A Fig. 6B Fig. 6 +ve and ve DEP response of yeast cells; Fig. 6A +ve DEP of yeast cells at an applied voltage of 2.47 V RMS and frequency 500 khz; Fig. 6B - ve DEP of yeast cells under the same experimental conditions with the AC field frequency changed to 10 MHz

Microdevices for Continuous Sized Based Sorting by AC Dielectrophoresis

Microdevices for Continuous Sized Based Sorting by AC Dielectrophoresis Microdevices for Continuous Sized Based Sorting by AC Dielectrophoresis Emre ALTINAGAC 1,*, Yavuz GENC 1, Huseyin KIZIL 2, Levent TRABZON 3, Ali BESKOK 4 * Corresponding author: Tel.: +9 (0)5462591989;

More information

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics A. Salari, C. Dalton Department of Electrical & Computer Engineering, University

More information

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2018 Supporting Information Railing Cells along 3D Microelectrode Tracks for a Continuous-Flow

More information

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Honeyeh Matbaechi Ettehad *, Subhajit Guha, Christian Wenger IHP, Im Technologiepark 25, 15236 Frankfurt

More information

NANOPARTICLE MANIPULATION BY DIELECTROPHORESIS

NANOPARTICLE MANIPULATION BY DIELECTROPHORESIS Physica Macedonica 61, (1) p. 39-44 ISSN 149-7168 NANOPARTICLE MANIPULATION BY DIELECTROPHORESIS A. Neculae, R. Giugiulan and M. Lungu West University of Timisoara, Faculty of Physics, Blv. V. Parvan no.4,

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Effect of Electric Field Distortion on Particle-Particle Interaction under DEP

Effect of Electric Field Distortion on Particle-Particle Interaction under DEP Effect of Electric Field Distortion on Particle-Particle Interaction under DEP Yu Zhao 1, Johnie Hodge 1, Jozef Brcka 3, Jacques Faguet 3, Eric Lee 3, Guigen Zhang 1,2,4* 1 Department of Bioengineering,

More information

Electrostatics and the Laboratory on a Chip. Collaborators

Electrostatics and the Laboratory on a Chip. Collaborators Electrostatics and the Laboratory on a Chip T. B. Jones Department of Electrical & Computer Engrg. University of Rochester Rochester, NY (USA) 1 Collaborators M. Gunji & M. Washizu, Kyoto University and

More information

T. B. Jones / University of Rochester 1

T. B. Jones / University of Rochester 1 1 T. B. Jones / University of Rochester 1 Electromechanical interpretation of electrowetting & relationship to liquid dielectrophoresis 18 July 2007 T. B. Jones University of Rochester Rochester, NY (USA)

More information

On the Design and Optimization of Micro-Fluidic Dielectrophoretic Devices: A Dynamic Simulation Study

On the Design and Optimization of Micro-Fluidic Dielectrophoretic Devices: A Dynamic Simulation Study Biomedical Microdevices 6:4, 289 295, 2004 C 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. On the Design and Optimization of Micro-Fluidic Dielectrophoretic Devices: A Dynamic Simulation

More information

A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform Electric Field

A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform Electric Field Proceedings of the 4th International Middle East Power Systems Conference (MEPCON ), Cairo University, Egypt, December 9-,, Paper ID 8. A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform

More information

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente drops in motion the physics of electrowetting and its applications Frieder Mugele Physics of Complex Fluids niversity of Twente 1 electrowetting: the switch on the wettability voltage outline q q q q q

More information

Frequency-Dependent Electromechanics of Aqueous Liquids: Electrowetting and Dielectrophoresis

Frequency-Dependent Electromechanics of Aqueous Liquids: Electrowetting and Dielectrophoresis Langmuir 2004, 20, 2813-2818 2813 Frequency-Dependent Electromechanics of Aqueous Liquids: Electrowetting and Dielectrophoresis T. B. Jones* and K.-L. Wang Department of Electrical & Computer Engineering,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/10/e1600964/dc1 Supplementary Materials for Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels

More information

Analysis and Measurement of Forces in an Electrowetting-Driven Oscillator

Analysis and Measurement of Forces in an Electrowetting-Driven Oscillator Mater. es. Soc. Symp. Proc. Vol. 15 8 Materials esearch Society 15-DD8-1 Analysis and Measurement of Forces in an Electrowetting-Driven Oscillator Nathan Brad Crane 1, Alex A Volinsky 1, Vivek amadoss

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

NONCONTACT PARALLEL MANIPULATION WITH MESO- AND MICROSCALE PARTICLES USING DIELECTROPHORESIS

NONCONTACT PARALLEL MANIPULATION WITH MESO- AND MICROSCALE PARTICLES USING DIELECTROPHORESIS NONCONTACT PARALLEL MANIPULATION WITH MESO- AND MICROSCALE PARTICLES USING DIELECTROPHORESIS Jiří ZEMÁNEK, Zdeněk HURÁK Department of Control Engineering, Faculty of Electrical Engineering (FEL), Czech

More information

Comparing ODEP and DEP Forces for Micro/Nano Scale Manipulation: A Theoretical Analysis

Comparing ODEP and DEP Forces for Micro/Nano Scale Manipulation: A Theoretical Analysis Proceedings of the 1 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems January -3, Xiamen, China Comparing O and Forces for Micro/Nano Scale Manipulation: A Theoretical Analysis

More information

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2)

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2) 600 Electrowetting and hence a reduced flow rate in the pressure-drop direction. This reduced flow rate seems to suggest that the liquid have an apparent higher viscosity. The apparent viscosity is called

More information

Design and Simulation of a Novel Dielectrophoresis based Device to Separate Breast Normal and Cancerous Cells

Design and Simulation of a Novel Dielectrophoresis based Device to Separate Breast Normal and Cancerous Cells 2011 International Conference on Nanotechnology and Biosensors IPCBEE vol.25(2011) (2011) IACSIT Press, Singapore Design and Simulation of a Novel Dielectrophoresis based Device to Separate Breast Normal

More information

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis M. Kathryn Thompson Mechanical Engineering Dept, MIT John M. Thompson, PhD Consulting Engineer Abstract Among

More information

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL D. Wijesinghe 1, and D. Nawarathna *1 1 Department of Electrical and Computer Engineering, North Dakota State

More information

AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes

AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2008 AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes

More information

Large-area travelling-wave dielectrophoresis particle separator

Large-area travelling-wave dielectrophoresis particle separator J. Micromech. Microeng. 7 (1997) 65 70. Printed in the UK PII: S0960-1317(97)81249-1 Large-area travelling-wave dielectrophoresis particle separator H Morgan, N G Green, M P Hughes, W Monaghan and TCTan

More information

Electrocoalescence a multi-disiplinary arena

Electrocoalescence a multi-disiplinary arena Electrocoalescence a multi-disiplinary arena Electrical Engineering SINTEF Chemistry ELECTRO- COALESCENCE Physics NTNU CNRS Fluid Dynamics 1 Electrocoalescence project Need for smaller working equipment

More information

Role of Magnus effect in cell separation using dielectrophoresis. Saeed Izadi, Shibabrat Naik, Rafael V. Davalos May 10, 2013.

Role of Magnus effect in cell separation using dielectrophoresis. Saeed Izadi, Shibabrat Naik, Rafael V. Davalos May 10, 2013. Role of Magnus effect in cell separation using dielectrophoresis Saeed Izadi, Shibabrat Naik, Rafael V. Davalos May 1, 213 Abstract The dielectrophoretic cell separation and the underlying electro-hydrodynamics

More information

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot Mun Mun Nahar, Govindraj Shreyas Bindiganavale, Jagath Nikapitiya and Hyejin Moon University of Texas at Arlington 10/20/2015

More information

AC Electrokinetics forces and torques. AC electrokinetics. There are several forces and torques which fall under this category.

AC Electrokinetics forces and torques. AC electrokinetics. There are several forces and torques which fall under this category. AC lectrokinetics forces and torques AC electrokinetics There are several forces and torques which fall under this category. Dielectrophoretic force force on a polarisable particle in a non-uniform field

More information

INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS

INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS David Pei With special thanks to my advisor: Wei Lu Abstract This semester, I induced different nanoparticles with electric fields to observe their behavior under

More information

Forces and movement of small water droplets in oil due to applied electric field

Forces and movement of small water droplets in oil due to applied electric field Nordic Insulation Symposium Tampere, June 3, 23 Forces and movement of small water droplets in oil due to applied electric field A. Pedersen E. Ildstad A. Nysveen Norwegian University of Norwegian University

More information

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Chung, Jae-Hyun, Mechanical Engineering, University of Washington Liu, Wing Kam, Mechanical Engineering, Northwestern University Liu,

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

Dielectrophoretic Separation of Cells Using 3-D Microelectrode

Dielectrophoretic Separation of Cells Using 3-D Microelectrode Pertanika J. Sci. & Technol. 17 (2): 389 398 (2009) ISSN: 0128-7680 Universiti Putra Malaysia Press Dielectrophoretic Separation of Cells Using 3-D Microelectrode Zurina Zainal Abidin 1, Zalini Yunus 2

More information

Electrohydrodynamic Micropumps

Electrohydrodynamic Micropumps Electrohydrodynamic Micropumps Antonio Ramos Dept. Electrónica y Electromagnetismo Universidad de Sevilla Avda. Reina Mercedes s/n 41012 Sevilla. Spain 1. Introduction Microfluidics deals with the pumping,

More information

Table of Contents Preface List of Contributors xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1

Table of Contents Preface List of Contributors xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1 Table of Contents Preface List of Contributors v xix Chapter 1. Microfluidics: Fundamentals and Engineering Concepts 1 1. Introduction 1 2. Essentials of Fluidic Transport Phenomena at Small Scales 3 2.1.

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

ESS 5855 Surface Engineering for. MicroElectroMechanicalechanical Systems. Fall 2010

ESS 5855 Surface Engineering for. MicroElectroMechanicalechanical Systems. Fall 2010 ESS 5855 Surface Engineering for Microelectromechanical Systems Fall 2010 MicroElectroMechanicalechanical Systems Miniaturized systems with integrated electrical and mechanical components for actuation

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker Micro-Flow in a bundle of micro-pillars A. Keißner, Ch. Brücker Institute of Mechanics and Fluid Dynamics, University of Freiberg, TU Freiberg, Germany, Email: armin.keissner@imfd.tu-freiberg.de Abstract

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Ac electrokinetics: a review of forces in microelectrode structures

Ac electrokinetics: a review of forces in microelectrode structures J. Phys. D: Appl. Phys. 31 (1998) 2338 2353. Printed in the UK PII: S0022-3727(98)90250-9 Ac electrokinetics: a review of forces in microelectrode structures A Ramos, H Morgan, N G Green and A Castellanos

More information

Capillarity of Rectangular Micro Grooves and Their Application to Heat Pipes

Capillarity of Rectangular Micro Grooves and Their Application to Heat Pipes Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 249 255 (2005) 249 Capillarity of Rectangular Micro Grooves and Their Application to Heat Pipes Horng-Jou Wang, Hsin-Chang Tsai, Hwang-Kuen

More information

JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS

JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS Clemson University TigerPrints All Theses Theses 5-2011 JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS Sriram Sridharan Clemson University, srirams@g.clemson.edu Follow

More information

ON-CHIP DOUBLE EMULSION DROPLET ASSEMBLY USING ELECTROWETTING-ON-DIELECTRIC AND DIELECTROPHORESIS

ON-CHIP DOUBLE EMULSION DROPLET ASSEMBLY USING ELECTROWETTING-ON-DIELECTRIC AND DIELECTROPHORESIS ON-CHIP DOUBLE EMULSION DROPLET ASSEMBLY USING ELECTROWETTING-ON-DIELECTRIC AND DIELECTROPHORESIS W. WANG, a T. B. JONES, a * and D. R. HARDING b a University of Rochester, Department of Electrical and

More information

Electrohydromechanical analysis based on conductivity gradient in microchannel

Electrohydromechanical analysis based on conductivity gradient in microchannel Vol 17 No 12, December 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(12)/4541-06 Chinese Physics B and IOP Publishing Ltd Electrohydromechanical analysis based on conductivity gradient in microchannel

More information

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications Polarizability-Dependent Induced-Charge Electroosmotic Flow of Dielectric Particles and Its Applications by Fang Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Lab-on-a-chip microdevices for manipulation and separation of microparticles using dielectrophoresis

Lab-on-a-chip microdevices for manipulation and separation of microparticles using dielectrophoresis University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2013 Lab-on-a-chip microdevices for manipulation and separation of microparticles

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

TOWARDS THERMAL CHARACTERIZATION OF PICO-LITER VOLUMES USING THE 3OMEGA METHOD

TOWARDS THERMAL CHARACTERIZATION OF PICO-LITER VOLUMES USING THE 3OMEGA METHOD Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition IMECE2013 November 13-21, 2013, San Diego, California, USA IMECE2013-66428 TOWARDS THERMAL CHARACTERIZATION OF PICO-LITER

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

Basic Concepts and Applications Gas Flows Liquid Flows Particulate Flows Moving Domains and Applications

Basic Concepts and Applications Gas Flows Liquid Flows Particulate Flows Moving Domains and Applications NSF 2002 Summer School (Urbana-Champaign) Microfluidics George Em Karniadakis Brown University Basic Concepts and Applications Gas Flows Liquid Flows Particulate Flows Moving Domains and Applications Reference:

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis J. Barman a, A. K. Nagarajan b and K. Khare a* a Department of Physics, Indian Institute of Technology

More information

Dielectrophoretic On-chip Manipulation and Assembly of Nanoparticles, Microparticles and Droplets

Dielectrophoretic On-chip Manipulation and Assembly of Nanoparticles, Microparticles and Droplets Dielectrophoretic On-chip Manipulation and Assembly of Nanoparticles, Microparticles and Droplets Orlin D. Velev Department of Chemical Engineering North Carolina State University Ketan H. Bhatt, Shalini

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Experiment and Simulation on Liquid Film Motor and its Application

Experiment and Simulation on Liquid Film Motor and its Application Experiment and Simulation on Liquid Film Motor and its Application Author:Gong zhenyan Adviser:Fang dexin, Tang Ping, Zhao Min Shanghai No.2 High School Experiment and simulation on liquid film motor and

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Drug Delivery Systems

Drug Delivery Systems Introduction to BioMEMS & Medical Microdevices Drug Delivery Systems Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Star Tribune

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

Micro/nano and precision manufacturing technologies and applications

Micro/nano and precision manufacturing technologies and applications The 4th China-American Frontiers of Engineering Symposium Micro/nano and precision manufacturing technologies and applications Dazhi Wang School of Mechanical Engineering Dalian University of Technology

More information

Resonant Oscillations of Liquid Marbles

Resonant Oscillations of Liquid Marbles Resonant Oscillations of Liquid Marbles Glen McHale*, Stephen J. Elliott*, Michael I. Newton*, Dale L. Herbertson* and Kadir Esmer $ *School of Science & Technology, Nottingham Trent University, UK $ Department

More information

Research strategy for Micro and complex fluids

Research strategy for Micro and complex fluids Research strategy for Micro and complex fluids Introduction Presently there is a strong trend towards miniaturizing equipment for chemical analysis and synthesis. This is made possible by development of

More information

A second look at electrokinetic phenomena in boiling

A second look at electrokinetic phenomena in boiling A second look at electrokinetic phenomena in boiling Trevor J. Snyder School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164 John B. Schneider School of

More information

Numerical Simulation of a Novel Electroosmotic Micropump for Bio-MEMS Applications

Numerical Simulation of a Novel Electroosmotic Micropump for Bio-MEMS Applications Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Numerical Simulation of a Novel Electroosmotic Micropump for Bio-MEMS Applications 1 Alireza Alishahi, 2 Reza Hadjiaghaie

More information

Development and Characterization of High Frequency Bulk Mode Resonators

Development and Characterization of High Frequency Bulk Mode Resonators Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Development and Characterization of High Frequency Bulk Mode Resonators Hossein Pakdast 1*, Zachary James Davis 1 1 DTU Nanotech, Technical

More information

Predicting Breakup Characteristics of Liquid Jets Disturbed by Practical Piezoelectric Devices

Predicting Breakup Characteristics of Liquid Jets Disturbed by Practical Piezoelectric Devices ILASS Americas 2th Annual Conference on Liquid Atomization and Spray Systems, Chicago, IL, May 27 Predicting Breakup Characteristics of Liquid Jets Disturbed by Practical Piezoelectric Devices M. Rohani,

More information

Some Commonly Neglected Issues Affect DEP Applications

Some Commonly Neglected Issues Affect DEP Applications Some Commonly Neglected Issues Affect DEP Applications Vandana Pandian 1, Jozef Brcka 3, Jacques Faguet 3, Eric Lee 3, Guigen Zhang 1,2,4 * 1 Department of Bioengineering, Clemson University, Clemson,

More information

Cruz, J., Hooshmand Zadeh, S., Wu, Z., Hjort, K. (2016) Inertial focusing of microparticles and its limitations. In: (pp. 1-6).

Cruz, J., Hooshmand Zadeh, S., Wu, Z., Hjort, K. (2016) Inertial focusing of microparticles and its limitations. In: (pp. 1-6). http://www.diva-portal.org This is the published version of a paper presented at MME 2016, 27th Micromechanics and Microsystems Europe workshop, August 28-30th 2016, Cork, Irland. Citation for the original

More information

Effects and applications of surface tension for fluidic MEMS components

Effects and applications of surface tension for fluidic MEMS components Effects and applications of surface tension for fluidic MEMS components Ryan T. Marinis and Ryszard J. Pryputniewicz NEST NanoEngineering, Science and Technology CHSLT Center for Holographic Studies and

More information

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel Proceedings of the 3 rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy June 8 10, 2017 Paper No. HTFF 159 ISSN: 2369-8136 DOI: 10.11159/htff17.159 Interfacial Flows

More information

Supplementary information for

Supplementary information for Supplementary information for Transverse electric field dragging of DNA in a nanochannel Makusu Tsutsui, Yuhui He, Masayuki Furuhashi, Rahong Sakon, Masateru Taniguchi & Tomoji Kawai The Supplementary

More information

Development of a Dielectrophoretic Chip. for Single Cell Electrorotation. Iniyan Soundappa Elango

Development of a Dielectrophoretic Chip. for Single Cell Electrorotation. Iniyan Soundappa Elango Development of a Dielectrophoretic Chip for Single Cell Electrorotation by Iniyan Soundappa Elango A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved

More information

Dielectrophoresis in microfluidics technology

Dielectrophoresis in microfluidics technology 2410 Barbaros C- etin 1,2 Dongqing Li 3 1 Mechanical Engineering, Middle East Technical University, Northern Cyprus Campus, Güzelyurt, Turkey 2 Mechanical Engineering Department, Bilkent University, Ankara,

More information

Using Microfluidic Device to Study Rheological Properties of Heavy Oil

Using Microfluidic Device to Study Rheological Properties of Heavy Oil Using Microfluidic Device to Study Rheological Properties of Heavy Oil Kiarash Keshmiri a, Saeed Mozaffari a, b, Plamen Tchoukov a, Haibo Huang c, Neda Nazemifard a, * a Department of Chemical and Materials

More information

Fabrication and Characterization of High Performance Micro Impedance Inclinometer

Fabrication and Characterization of High Performance Micro Impedance Inclinometer Fabrication and Characterization of High Performance Micro Impedance Inclinometer Chia-Yen Lee Department of Vehicle Engineering National Pingtung University of Science and Technology, Pingtung, Taiwan

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

Geometry Induced Microparticle Separation in Passive Contraction Expansion Straight Channels

Geometry Induced Microparticle Separation in Passive Contraction Expansion Straight Channels Geometry Induced Microparticle Separation in Passive Contraction Expansion Straight Channels Mustafa Yilmaz, Meral Cengiz, Huseyin Kizil Dept. of Metallurgical and Materials Eng. Istanbul Technical University

More information

Bioassay on a Robust and Stretchable Extreme Wetting. Substrate through Vacuum-Based Droplet Manipulation

Bioassay on a Robust and Stretchable Extreme Wetting. Substrate through Vacuum-Based Droplet Manipulation Supporting Information for A Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation Heetak Han, Jung Seung Lee, Hyunchul Kim,

More information

Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device

Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device Lin Gan 07/17/2015 1 Motivation Photo credit: (1) commons.wikimedia.org (2) h-a-y-s-t-a-c-k.net (3) joshmayo.com 2 Motivation

More information

Molecular dynamics study of the lifetime of nanobubbles on the substrate

Molecular dynamics study of the lifetime of nanobubbles on the substrate Molecular dynamics study of the lifetime of nanobubbles on the substrate - Links of Hierarchies KOHNO Shunsuke Division of Physics and Astronomy, Graduate School of Science, Kyoto University Outline Introduction

More information

C. Rosales, K.M. Lim and B.C. Khoo

C. Rosales, K.M. Lim and B.C. Khoo Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in octupolar cell traps. C. Rosales, K.M. Lim and B.C. Khoo Institute

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/eaao3530/dc1 Supplementary Materials for Topological liquid diode Jiaqian Li, Xiaofeng Zhou, Jing Li, Lufeng Che, Jun Yao, Glen McHale, Manoj K. Chaudhury,

More information

University of Central Florida. Roxana Shabani University of Central Florida. Doctoral Dissertation (Open Access) Electronic Theses and Dissertations

University of Central Florida. Roxana Shabani University of Central Florida. Doctoral Dissertation (Open Access) Electronic Theses and Dissertations University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Three-phase Contact Line Phenomena In Droplets On Solid And Liquid Surfaces: Electrocapillary, Pinning,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Molecular structures of functional materials involved in our SGOTFT devices. Supplementary Figure 2 Capacitance measurements of a SGOTFT device. (a) Capacitance

More information

Micro and Nanorobotic Assembly Using Dielectrophoresis

Micro and Nanorobotic Assembly Using Dielectrophoresis Robotics: Science and Systems 005 Cambridge, MA, USA, June 8-11, 005 Micro and Nanorobotic Assembly Using Dielectrophoresis Arunkumar Subramanian, Barmeshwar Vikramaditya, Lixin Dong, Dominik Bell, and

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Scattering and attenuation of surface acoustic waves in droplet actuation

Scattering and attenuation of surface acoustic waves in droplet actuation Scattering and attenuation of surface acoustic waves in droplet actuation Author Jiao, Z, Huang, X, Nguyen, N-T Published 2008 Journal Title Journal of physics. A, Mathematical and theoretical DOI https://doi.org/10.1088/1751-8113/41/35/355502

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-5 Transducers with cylindrical Geometry For a cylinder of radius r centered inside a shell with with an inner radius

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Statement of the Problem Studied 2

Statement of the Problem Studied 2 TABLE OF CONTENTS Statement of the Problem Studied I. Experimental 3 Ia. Materials and Methods 3 Ib. Fabrication of planar gold electrodes 3 Summary of the Most Important Results 4 II. Exploring colloidal

More information

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information)

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information) Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective DNA Translocation into Nanochannels (Supplementary information) Chao Wang 1, Robert L. Bruce, Elizabeth A. Duch, Jyotica V. Patel,

More information

Self-Assembly. Lecture 7 Lecture 7 Dynamical Self-Assembly

Self-Assembly. Lecture 7 Lecture 7 Dynamical Self-Assembly Self-Assembly Lecture 7 Lecture 7 Dynamical Self-Assembly Dynamic Self-Assembly The biological example of writing information on a small scale has inspired me to think of something that should be possible.

More information

Design of Electrostatic Actuators for MOEMS Applications

Design of Electrostatic Actuators for MOEMS Applications Design of Electrostatic Actuators for MOEMS Applications Dooyoung Hah 1,, Hiroshi Toshiyoshi 1,3, and Ming C. Wu 1 1 Department of Electrical Engineering, University of California, Los Angeles Box 951594,

More information

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS

MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS 8 th International Machine Design and Production Conference 427 September 9-11, 1998 Ankara TURKEY ABSTRACT MECHANICAL CHARACTERISTICS OF STARCH BASED ELECTRORHEOLOGICAL FLUIDS E. R. TOPCU * and S. KAPUCU

More information

ME381 Introduction to MEMS

ME381 Introduction to MEMS ME381 Introduction to MEMS Term Project Dynamic Wettability Switching by Surface Roughness Effect Bo He Hang Cheng Hongzhou Jiang December 6 th, 2002 1 TABLE OF CONTENTS Abstract........1 Introduction......1

More information

Electrokinetic Phenomena

Electrokinetic Phenomena Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 2 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Electrokinetic

More information

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials Supporting Online Material On-Chip Dielectrophoretic Co-Assembly of Live Cells and Particles into esponsive Biomaterials Shalini Gupta, ossitza G. Alargova, Peter K. Kilpatrick and Orlin D. Velev* Description

More information