arxiv:math/ v1 [math.co] 20 Jul 2006

Size: px
Start display at page:

Download "arxiv:math/ v1 [math.co] 20 Jul 2006"

Transcription

1 O asymptotcs, Stlg umbes, Gamma fucto ad axv:math/060754v [math.co] 0 Jul 006 polylogs Dael B. Gübeg MPI Bo, Vvatsgasse 7, 53 Bo, Gemay gubeg@mccme.u Dec 005 Abstact We apply the Eule Maclau fomula to fd the asymptotc expaso of the sums k= log kp /k q, k q log k p, log k p /k q, /k q log k p closed fom to abtay ode p, q N. The expessos ofte smplfy cosdeably ad the coeffcets ae ecogzable costats. The costat tems of the asymptotcs ae ethe ζ p ±q fst two sums, 0 thd sum o yeld ovel mathematcal costats fouth sum. Ths allows umecal computato of ζ p ±q faste tha ay cuet softwae. Oe of the costats also appeas the expaso of the fucto log s aoud the sgulaty at s = ; ths eques the asymptotcs of the complete gamma fucto. The mapulatos volve polylogs fo whch we fd a epesetato tems of Nelse tegals, as well as mysteous cojectues fo Beoull umbes. Applcatos clude the detemato of the asymptotc gowth of the Taylo coeffcets of z/ log z k. We also gve the asymptotcs of Stlg umbes of fst kd ad the fomula tems of hamoc umbes. To appea : Results Mathematcs.

2 Itoducto Ths pape s about cocete mathematcs. It gathes seveal esults about asymptotc theoy, half of whch ae obtaed fom the Eule Maclau fomula. A few by-poducts offe themselves, such as the asymptotcs of the complete gamma fucto, o the study of the complex fucto log s wth a sgulaty at s =, o epesetatos of polylogs tems of Nelse tegals, o popetes of Stlg umbes, o some dettes about Beoull umbes. We also summase thee ways of obtag the asymptotc gowth of the Taylo coeffcets of z/ log z k. Much of the cotets may ot be ew let aloe goud-beakg, but the teest of the pape les the way all these objects te the kot ad pop up by studyg a few smple poblems; t wll offe some supses to the cuous ad hads-o mathematca. To beg wth, we ecall the Eule Maclau fomula: fk = k=a a fxdx [f fa] + m k= k! [fk f k a] + eo whee the eo tem s O π m a fm x dx. The values of k! ae, 70, 3040,.... We shall be teested the lmt of lage, keepg a fxed. Whe odeg the tems deceasg odes of, the quatty m k= k! fk a wll cotbute to the costat tem. The costat tem wll be exact whe all odes have bee take to accout e. m. Sce ths meas addg always bgge chuks k k, we would ed up wth a fte value fo the costat tem. I pactce, the exact value of the costat tem has to be computed fom aothe appoach. Howeve, the fomal fte sum volvg Beoull umbes appeas most useful, as t behaves lealy: addg two such sums fom the asymptotcs of H ad H, say wll stad fo a costat whose exact value s the sum of the two exact values of the espectve costat tems. We shall use ths tck secto to wte dow the exact costats hdg behd fomal sums. They wll pove useful subsequet sectos to deve the coeffcets the asymptotc expasos fo lage of the fou sums that we cosde sectos 4,5,6,7 espectvely: k= log k p k q, k q log k p, k= k= log k p k q, k= k q log k p fo p, q N. We shall wte the asymptotcs closed fom to abtay ode of. I patcula, we ca wte dow ζ p ±q ad the Steltjes costats γ p as fomal sums ove atoal umbes. I ths fomal sese, γ p = p ζ p. The coeffcets the asymptotc expasos ofte cota Stlg umbes of the fst kd, o the close elatve whch we deote by S,s,t := sum ove all teges j such that s <... < t. Secto 3 expesses these umbes tems of hamoc umbes, whch allows a apd deducto of the asymptotcs to abtay ode. The fomula ca be veted to expess hamoc umbes tems of Stlg umbes.

3 The asymptotc expaso of the fou sums, peseted sectos 4,5,6,7, ca be easly deved fom the Eule Maclau fomula fo the fst two sums but volves tcate algeba fo the latte two. I those cases, the expaso was fst foud empcally usg the asymp k tck appedx. The coeffcets ae all atoal umbes except fo the costat tems ζ p ±q fo the fst two sums, ukow costats fo the fouth sum. Fo the thd sum, the costat tem vashes but ζ p q occus at hghe odes atoal. The asymp k tck gves us suffcet dgts of a coeffcet c; we the ca use the PARI softwae to fd a vashg tege lea combato of, c, ζ 7, say, f oe suspected thee was a ζ 7 hdg behd c. The pope lea combato eques ofte guesswok. As a applcato, kowg a lage umbe of tems of the asymptotc expaso of the fst two sums allows oe to compute the costat tem ζ p ±q to abtay pecso moe apdly tha ay cuet mathematcal softwae; the asymp k tck ca also ehace speed. As a applcato, we deve secto 8 the asymptotc gowth of the coeffcets the Taylo expaso of z/ log z k, va a covoluto fom the asatz at k = the latte kow to Pólya. The esult appeaed two othe cotexts [N-6] ad [FO-90] whch we ecaptulate fo the teested eade. As advetsed, the fouth sum secto 7 gves bth to a d-aay of ukow mathematcal costats, C p,q, that covege to the values of / q log p whe p, q ; oly C,0 ad C, have appeaed dectly befoe the lteatue. Secto 9 vefes that C,, whch occus k= k log k log log + C, + O log, also occus the costat tem of the asymptotc expaso of the followg complex fucto aoud ts sgulaty at s = : = log s logs + C, γ + O s log s as s. Ths volves the asymptotcs of the complete gamma fucto. I ode to pove the asymptotc expaso of the thd sum secto 6 va the Eule Maclau fomula, oe eeds to tack dow supsg cacellatos. The mapulatos volve a patcula epesetato of polylogs by Nelse tegals S,p x peseted secto 0: j log x L j x = ζj S,j x,! whee the tem wth ζ should be dopped. The geealsed polylogs L s,...,s k x := x s... s k sum k ove teges j wth > > k > 0 gve se to the Nelse tegals: S k,p x = L k+, px the subscpt p stads fo p tmes. Thus, the epesetato ca be ewtte as j L j x = L j L, jx L x, whee the tem wth L should be dopped. Povg the asymptotcs of the thd sum fo p = etals two cuous epesetatos of Nelse tegals, 0.9 ad 0.0, whch themselves bol dow

4 to the followg bzae dettes fo Beoull umbes: Fo a postve tege,, = B = B l l l= l = l l l= H l + + = H + H. Povg the asymptotcs fo hghe p, oe gets a futhe such detty, ad a whole towe ca be bult up. The fst detty s easy to pove, but the secod has essted ou best effots ad those of expets. Fomal sums of Beoull umbes ad zeta-values We stat wth fomal fte sums volvg Beoull umbes. The otato s fomal because the sums dvege k k. Nevetheless, they ae useful as oe ca ecogze costat tems fom the expessos k! c k the Eule Maclau fomula. We shall use such dvegg expessos to ecogze costats futue applcatos of the Eule Maclau fomula. Lemma.. I fomal otato: γ = + k. ζ = ζ3 = + k + ζ4 = k + k + ζ = + + k! 3 k +!! logπ = ζ 0 = kk ζ = 4 + kk k.7.8 ζ = 36! k...k ζ 3 = ! 3 k...k 4.0 B q+ q+ H q ζ q = q+ q k= q! H qh qk+ k! qk+! q q! k q + k...k q.

5 k = γ. k = ζ 0 + γ + = logπ + γ +.3 k = ζ + ζ 0 + γ +.4 k 3 = 3ζ 6ζ + 3ζ 0 + γ j k j = j + = j kk j = j + = j +j j +j ζ j + γ + H j j k= k, j 0.6 ζ j + H j, j.7 j k Bk = ζ3 ζ +.8 Bk k kk = γ 3 + logπ.9 H = log + γ + m k : H = ζ + m k + O m+ k! + k!! +k + O +m.0. Poof. The fst fve les ae the costat tems the asymptotc expaso of H, H, H 3, H 4, H. The ext fve les ae the costat tems the asymptotc expaso of k q log k q = 0,,, 3, the fst beg gve by the Stlg fomula fo log!. These ae the geealzed Glashe costats [F-03], see lemma 5.. The thd set of les s obtaed ecusvely by patal facto decomposto fom the pevous: kj = j! k...kj j +j j =0 k ; whle we used kkj = j k kj fo.7. Les.8 ad.9 ae mscellaeous lea combatos that we shall use. The last two les yeld the asymptotcs fo the geealzed hamoc umbes k= k, wth ζ.6 as t appeas the Eule Maclau fomula. Lemma.. k k+ k! = ζ + Bk k Bk k k k+3! = ζ ζ + kj k+j! = j + =.3.4 j j j+ j! ζ +, j.5 j j = ζ + c j,, j,.6 ζ + c j,, j,.7

6 wth ζ stadg fo Eule s γ the last two equatos. As to the costats, they ae computed ecusvely, j Z, : c j, = c j, c j,, hece c j, = + =3 c j+, c j+,, whch s useful fo the fouth le; whle c j, = c j+, c j,, hece c j, = =3 c j+, c j,, s useful fo the ffth le. The thd le ca be used fo values of c j, wth j. Fo ay j: c j, = j3. Fo stace: c, = 3, ad c 0, = 3, ad c, = H. Poof. These ae dect combatoal cosequeces of.6. I the lhs of the fouth le j, oe ca choose to exclude the few o-zeo tems at low values of k; that case s eplaced by j ad the oly chage les the costats: c j, = j3 j k= j k, ad the ecusos ema uchaged. 3 Stlg umbes ad the asymptotcs Fo futue use, we set S,s,t := s < < t, whch s 0 fo t < + s. Defe S 0,s,t := f t s ad S,s,t := 0 f < 0. These umbes elate to the Stlg umbes of the fst kd [ ] t ], defed by k x k := xx + x +, o to the sged Stlg umbes st,, defed by k s, kxk := xx x +, the followg way: S,,t = [ t+ +] /t! = +t st +, + /t!. The geeatg fucto fo these thee vesos ae: [ k! log + x = s, x!! log x = [ ] x!! log x = x S,,. Hee s the elato betwee Stlg umbes of the fst kd ad hamoc umbes. Deote by {} =... l l a patto of the tege to l dffeet pats, e = + + l l. The: S,, = {} l j j= The fst few cases ae S,, = H patto {}=, ad: j! H j j. 3. j S,, = H + H pattos {} =,. S 3,, = 3 H3 S 4,, = 4 H4 H H + 6 H3 pattos {3} = 3,, H3 H + 8 H 4 H H + 4 H4 pattos {4} = 4, 3,,, 4.

7 Ths ca be used, combato wth.0 ad., to compute the asymptotc gowth of the Stlg umbes to abtay ode. The tems cotbutg the most ae those wth hghest powe of H log : pattos {} =,, etc. Thus the asymptotc expaso stats as S,, =! log + γ! log + γ ζ! log +... fo fxed 3. Fo a alteatve poof of ths esult ad fo sheddg lght o the deceasg sequece of logathms, see ed of secto 6. Equato 3. s the ma esult of [W-93] ad was stegtheed [H-95]. As fo the asymptotc behavou whe gows as quckly as, say fo fxed, fomula 3. s helpless; but we ca easly fd the soluto by tuto:!s,, =,!S,, = + + = +/,!S,, = = = + = squae dag = [ + /4++/6] = + 3 /4 4 /8. Smlaly:!S 3,, = = = + 3= + 3 = 3! cube plae 3! + /3 ; ad geeal we wll have!s k,, k! + /k, that s: S,, = +... fo cost.!! These two asymptotc gowths agee wth the esults of [MW-58] obtaed by saddle-pot evaluato of the geeatg fucto tegal a method aleady used by Laplace two cetues ago fo Stlg umbes of secod kd. The same esults wee e-obtaed [KK-9] fom ecuso equatos usg the ay method fom optcs. Fomula 3., howeve, gves as may tems as desed fo the gowth wth fxed. Fomula 3. ca be veted to yeld H = {} + + l + + l!! l! S,, S l l,,. 4 Asymptotcs of sums volvg log k p /k q Lemma 4.. log k k= k = log [ H log γ] + γ + m H k k= k + O k, m+ wth γ = k H k. Poof. Wte the lhs as log log x + k=, f k x = k! H klog x log log + x k logk k. Fo fx := log x x, hee ae the gedets we eed: fx = k H k k log H k k. Thus the Eule Maclau fomula tells us that logk k= k =. The log tems yeld log k k, whch estmates log [H γ ] by.0. Wtg log [ H log γ] assues us that the emag tems ae vese powes of easly tactable ude the asymp k tck. The costat γ s by defto the fst Steltjes costat. Usg the same method of poof, we easly geealse. Lemma 4.. log k k= k = log O, m+ log k p k= log γ + log wth γ = H k H k k k. Smlaly, fo p 0: m = p+ log p+ + γ p + log p m log H k log +H k H k k= k + k k= p d p,k,log p k + O log p m+,

8 wth d p,k, = p! k p! S,,k ad γ p = p p! k>p/ k S p,,k. Hee, γ p s the p-th Steltjes costat by defto. Fo p = 0 we have S 0,s,t = ad γ 0 = γ though oe eeds to add to γ p ths case. Note that the last sum, we could dop the equemet k > p/, as S p,,k vashes fo k =,...,p/. We wll eglect ths futue. Note that the expessos we fd fo γ p ae exactly the same as those oe fds whe dectly aalytcally expadg the zeta fucto va the Eule Maclau fomula. Oe uses fx := x s wth f k x = ss + s + k x sk+ = k! k p=0 S p,,ks p x sk+ : ζs = lm N N = s = s + + M k= We also easly geealse aothe decto: ss + s + k + eos, M k! = s + B k k S p,,k s p. p 0 k>p/ }{{} p p! γ p Lemma 4.3. log k k= k = ζ + log [ H ζ ] + m H k k= + O k+, m+ wth ζ = H k. Smlaly, fo q : k= log k k q = ζ q + log [ H q ζq] q q + m k= q+k! H q+k H q k! q! + O q+k, q+m wth ζ q = q k+q! k! q! H k+q H q. The meta-geealsato egoups the two pevous esults: Lemma 4.4. Fo q ad p 0: log k p k q k= = p ζ p q p p!/p! q + log p q + log p m q k= p d p,q,k,log p q+k +O p log q+m wth d p,q,k, = k+q! p! k! q! p! S,q,k+q, ad p ζ p q = p! q + p p! k+q! p+ k! q! S p,q,k+q. log p Poof. Wte the lhs as + log k p q k= k. Fo fx := q fx = p p!log x p q + x q p!, f x = q+! x q+ q! log xp x q p S... = 0 fo >. Now smply apply the Eule Maclau fomula., hee ae the gedets we eed: + p! p! S,q,q+ log x p NB: Applcato to umecs of the ζ fucto. Note that ths fomula, togethe wth the asymp k tck, allows a vey apd umecal computato of ζ p q fo postve tege q, much moe effcet tha cuet mathematcal softwaes. Lemmas 5.3 o 6. povde a fomula fo egatve q.

9 5 Asymptotcs of sums volvg k q log k p Lemma 5.. Fo p we have: log k p = k= p m p! p! log p + log p +cost wth cost = p ζ p 0 = p p! + Lemma 5.. Fo q 0 we have: k= k q log k = q+ [ ] log q + q+ + q log + + cost + q q! m k= q + k...kq k= kk S p,,k. q q! k! qk+! k= p p! kk = p! S,,klog p k +O + O kq mq [ log + Hq H qk+ ] qk+ wth cost = ζ q + Bq+ q+ H q = q+ q q!h qh qk+ k= k! qk+! q q! k q + k...kq beg the geealzed Glashe costat of.. Fo odd q, t s udestood that the last tem of the sum q k=... wth k = q Bq+ ad depedet of, whch equals q+ H q, should ot be couted as t s aleady couted cost. Aga, the meta-geealsato egoups the two pevous esults: Lemma 5.3. Fo q 0 ad p we have: p k q log k p = q+ k= wth c p,q,k, := k! + cost + q! qk+! q p q+ + + q log p + c p,q,k, log p qk+ + p! log p p! m k= q + p! p! S,qk+,q k= p = d p,q,k,log p kq + O ad d p,q,k, := +q+ p!q! q k kq p! j=0 j S j,,q S j,,kq = p log mq ad cost = p ζ p q + Bq+ q+ p!s p,,q = p+ p! q+ p+ q k= c p,q,k,p k q + d p,q,k,p. Fo odd q, t s udestood that the last tem of the sum q k=... wth k = q ad = p, whch s costat ad equals Bq+ q+ p!s p,,q, should ot be couted as t s aleady couted cost. Poof. Wte the lhs as q log p + k= kq log k p. Fo fx := x q log x p, hee ae the gedets we eed: fx = f x = xq+ p p p! q+ + p! log xp ad x q q! p q! x q p Now smply apply the Eule Maclau fomula. p! p! log xp q!s,q+,q fo q, NB : S... = 0 fo > +q+ p! p! log x p q! q j=0 j S j,,q S j,,q fo > q, p log, m

10 6 Asymptotcs of sums volvg log k p / k q Lemma 6.. log k k= k = log + γlog ζ + m k B k k= k ζ k + O k. m+ Poof. Wte the lhs as log + logk log x k= k. The tegal of fx := x s: logxlog x L x, thus fx = log ζ + L. Note also that f log x x =! x + +! = I total: k= + / x + x, so that [f k x] = k! [ log+ k = logk k = log ζ + L + γ log + + j+ j j + B k k j +... k j k k + k ]. B k k +... k Now use.7 as well as the expasos log = log ad j = 0 Thee ae ce cacellatos so that oly ζ k suvves at powe k. Lemma 6.. Fo p we have: k= log k p k = log p+ + γlog p + m k= k B k k p c p, log p = p d p,,k log p p ζ p k = p + Olog k m+ j+. j+ wth c p, := p! p! ζ + ad d p,,k := p! p! S,,k. Hece, the costat tem s p p!ζp +. Poof. Wte the lhs as log p + k= log k p k log xp. Wth fx := x, we have: p fx = log x log xp + p! p! L+ x log xp = p fx = loglog p + p! p! L+ logp p p!l p+ = p = loglog p p! p! S, ζ + log p p p!l p+ = f log x p x =! x +! j /j p p! S,,jlog + x +j x j xp p! j= = k [f k x] = k! log p + k! j= whee we used the otato S, x := k= log k p k = j p j = fx + logp + γ logp k ± + j j B k p p! log p S,,0 p! k = k j + p! log p S,,j p! j S,, x fom secto 0. I total: p S p,,k k B k p p! log p S,,j p! k j = p S p,,kj k j p S p,,kj +... k j We have used: L x + L x = logx log x + ζ poof by devato.

11 The emade of the poof ae ce cacellatos, whch ae mpossble to pove the geeal case; we exhbt hee the case p = as a patte fo all othe cases. Fo p = we have: log k k = fx + log + k= k [fk x] = log 3 + log [S, ζ] [S, ζ3 + L3 ] + log + + γ log + ± + j j Now eplace j + k j + B k k B k log Hj k j j by γ j = B log + H k k cacel out due to log = log = 0.9 ad 0.0 to smplfy the est ad ave at + H kj +... k j ad set h j := j + k B k log H k + H k3 k H kj kj. The γ wll ad the squaed veso of t. Now use k= log k k = log 3 + γlog ζlog + ζ3 + [ k B k log H k k k k k ] h 3. k = k Use ζ q = B q+ q+ 3 q+ S,,q q k= k! q! S qk+!,qk+,q q q! k q + fom lemma 5.3 as well as the patal facto decomposto kkj = j = that h j := k j + k H kj k j = k kq H kqh q j! j! j j [ζ + = 3 ] k k to show o equvaletly: k = k h = ζ k + k. Ths completes the poof fo p =. The poofs 3 fo p 3 u smlaly. Lemma 6.3. Fo q we have: k= q log k k q = ζqlog wth C q := γ H q + q. = ζq Poof. Wte the lhs as log + k= log +Cq q q + m k= Hece, thee s o costat tem. k B k kk+q k+q q ζ k logk k q. Wth fx := log x x q, we have: fx = q log x x + log x q x q q q fx = q q log + = f q +! log x x = q! x +! q+ = q q q x = q q log q q +q q + x q+ x k [f k x] q + k! = log + k! q! = I total: k= log k k q = + k + q q +O k+q. k+q fx + log + log q + k! k! q! + B k k + q 3 B k k + q 4 q + + k q k q q q [ q+ B k k + ] +... q q k q kk [ ] + j+ q B k k j j + q +... q+j q + j k q q kk j j+ + j+ + k m+q k q

12 Now use.7,.5, as well as the expasos log = log ad j+. Thee ae ce cacellatos so that oly ζ k suvves at powe j+ 0 k. j = Note that wthout gog though the poof, oe ca empcally deteme the values of the C q just usg the asymp k tck: oe fst uses the tck to quckly deteme the 30 fst values of C q, the uses t aga to deteme the asymptotc gowth of those values up to O 6 ad ecogzes the gowth of hamoc umbes. Aga, the meta-geealsato egoups the two pevous esults: Lemma 6.4. Fo q ad p we have: k= log k p k q = ζqlog q p + m k= wth c p,, := p! ad d p,q, := p! k B k kk+q p! S,, p! = p = ζq whee D,q ae the atoal umbes D,q := p qp+ j= = c p,, log p + q q c p,k+q, log p p k+q q p d p,q, log p ζ p k p + Olog k+q m+q D,q p S,,q + S,,q γ + s= S s,,q ζs fo = 0,...,q s=q+ S s,,qζs fo = q,...,p case p q, qj S,,j Sp,,qj =0 S,,S p3,,qj j j + j = I patcula, thee s o costat tem the asymptotc expaso. Poof. Wte the lhs as log p + log k p log xp k= k. Wth fx := q x, we have: q q log xp fx = q x qj j q! q x qj j=0 [ fx = p k q p! + log xpk p k! k= j= p! p l q q p l! l=0 j S k,!q 3! j!q j +! ql S l,,q + j= x qj q x qj + k d q,l,j j + S l,,q log p l +p ] [ + S l,,q log L pl! p p! l=0 p j= j= + Sp,,q q S p,,q. S j,q q L kj+ x q ] S j,,q q Lpj+ q f q +! log x p p x = q! x q+ = p!log x p p!q! + j= j!q + j +! S,,j+ j + j +! x q+j+ x +j [f k x] = q + k! logp k k! j j p! log p q + k j! S q! q! j,,j p! j k j! j= = The total expesso fo log k p k= k q k! + q! kp j=0 p+j p!q + j! S q+j p,,kj k j j! fom the Eule Maclau fomula s too messy to wte out. As usual, cacellatos wll be had at wok ad the esult wll bol dow to the hs the lemma. The closed expesso fo the D,q was patculaly had to fd empcally.

13 Applcato to the asymptotcs of Stlg umbes. Had we ot kow the asymptotc gowth of Stlg umbes 3., we could easly fd t by ducto fom the leadg tems lemma 4. ad 6.. Assumg the empcal esult va the asymp k tck that the coeffcet of x log x p has leadg behavou plog p /, we pove: p +! x S p,, = log xp+ = log x p x log p p x x = x p log k p log k p + k k k= k= x p log p + log p = p + log p x, hece S p,, p! log p. The same ductve poof woks fo the ext-to-leadg tem of 3.. I that case, we also eed the ext-to-leadg tem of lemma 6.. Fo each subsequet tem that we wat to pove 3., we eed oe moe tem of lemma 6. whle the leadg tem of lemma 4. s eough. Oe thus sees how the sequece of deceasg logathms 3. s tmately elated to that of p = c p,log p lemma Asymptotcs of sums volvg /k q log k p Lemma 7.. Fo p we have: k= log k p = p! l wth c p, :=! p! ad d p,,k := p = The log-tegal s defed by lz := z 0 c p, log + C p,0 m log p k= k = d p,,k log +p + O k, m p+! kk p! S,,k, ad C p,0 s the costat tem. dt logt. Poof. Ths follows fom the Eule Maclau fomula wth fx := log x p ad p fx = p! lx x! p! log x = f x = p +! S,,! p! x = log x. +p Fom these, t s also staghtfowad to wte dow the exact expesso fo the costat C p,0, volvg a fomal fte sum ove Beoull umbes. We omt t as t s ot elghteg. Note that the secod sum o the hs s just the stat of the asymptotc expesso of the fst tem, sce l! log. So we mght eplace the two tems by p! p what oe obtas whe umecally lookg fo the asymptotcs of the lhs; the fst tem s! log. Ths s deed log p, ad coectly so. Yet sce ths asymptotc expaso dveges fo all values, the eplacemet would be dsastous fo umecal evaluato of the costat C p,0.

14 Lemma 7.. Fo p we have: k= k log k p = C p, wth d p,,k := k p log p m log p k= p+! p! S,,k, ad C p, s the costat tem. k d p,,k log +p k + O m+, Fo p =, the secod tem o the hs has to be eplaced by loglog whch becomes the leadg tem. Poof. Ths follows fom the Eule Maclau fomula wth fx := x log x p ad fx = p p log x p f x =! p +! S,, p! x + log x. +p Lemma 7.3. Fo p ad q we have: k= k q log k p = C p,q + q p p! E qlog wth c p,q, := qp! p! m k= ad d p,,k := k+q! k!q! k p q = d p,q,,k log +p c p,q, log q log p k+q + O, m+q p+! p! S,q,k+q, ad C p,q s the costat tem. The expoetal tegal fucto s defed by the pcple value of the tegal: Ex := e t x t dt. Poof. Ths follows fom the Eule Maclau fomula wth fx := x q log x p ad qp fx = E qlog x p! q p p! x q p! log x = f x = + q! p +! S,q,+q q! p! x +q log x. +p Aga, the thd tem o the hs s just the stat of the asymptotc expaso of the secod tem, sce Eq! q log. So we mght eplace both tems by the fte sum q p c p,q, log. But sce ths dveges fo all, the eplacemet s dsastous fo umecally computg the costat C p,q. Note that whe p, the pevous lemma makes sese also fo q =, ad oe ecoves the pecedg lemma sce q p vashes uless = p. Fo lage p o lage q, t s qute obvous that the ma cotbuto to the sum k= k q log k p comes fom the tem k = ad that the costats C p,q wll covege towads q log p. Just how quck they covege ca be empcally detemed: asymptotcally fo lage p o q, we have C p,q q log p + eapbq + e cpdq +..., wth a = , b =.0986, c = 0.366, d =.386. Of couse, these values ae othg but loglog 3, log 3, loglog 4, log 4, so as to obta 3 q log 3 p + 4 q log 4 p! So we come back fom whee we stated. Ths

15 comes as o supse whe C p,q = k= k q log k, but t s a supse whe the fte sum does ot p covege, e. whe C p,q s ot the leadg tem the asymptotcs, eg. whe q = 0 ad p becomes lage. C p,q q = p = : : : : : : q log p q = p = : : : : : : Table : Compaso betwee C p,q ad q log p. We may wat to add l =.045 to C,0 so as to obta the costat lm k= log k dx log x = Smlaly, we add loglog = to C,, so as to obta the costat lm k= klog k dx xlog x = Both values aleady occued [B-77], see also [F-03]. We wee ot able to ecogze a exact fom fo ethe of these two costats usg PARI fo tege lea combatos of othe costats, o usg Plouffe s vete o hs Maple code. 8 Asymptotcs of the Taylo coeffcets of z/ log z k We ow use lemma 7. to geealse a esult kow to Pólya [P-54] about the Taylo coeffcets of a ceta geeatg fucto. I 954, Pólya [P-54] oted that z a log fo fz = log z =: a z. 8. We shall be teested the asymptotcs of the a whe the geeatg fucto s ased to some powe k postve tege. Fo k =, the sees begs as x x... ad all coeffcets ae egatve except a 0. The a fo k = ae asymptotcally gve by the covoluto of those at k =, vz. a = log log. Sce ths sum makes oly sese fo ug fom to, we wte

16 the tems / log log / log twce sepaately. By symmety, we ca wte: a log + / = log log, whee the last sum, log log / ad. Fom lemma 7. we kow that / log = C log / + O log /, whee the costat C s fguatve, sce the quattes = / + / /log oly appoxmate the exact values of the Taylo coeffcets. Futhe, / / / log = O log. Oveall: a log + C log log 3 + O log 4 log Sce the sgulaty of fz at z = s of hghe ode tha that of fz, the decease of coeffcets should be stoge; hece the log tems have to cacel each othe ad so C = /. We ae left wth a log Oe smlaly obtas: k a log k+ + O log k+ z k. fo fz = 8. log z A ave attempt at justfyg Pólya s esult 8. would be to use Cauchy s fomula a = fz dz π C z + ad to compute the cotou tegal o the ut ccle, z = e θ. Note that loge θ = loge θ/ s θ. Thus we would have wogly a = π π 0 e θ dθ πθ log s θ c/ π 0 dθ logθ c/π log + O log whee we eplaced π 0 by c/ 0 sce fo lage, oly small values of θ wll cotbute substatally to the tegal. Ths appoxmato, howeve, does ot yeld the desed esult pesumably because oe caot eplace e θ by. Smlaly, had we used patal tegato wth f θ = we would have eded up wth π c/ 0 e θ dθ θlog θ c/π log e θ cot θ πθ log s θ,, aga wth the wog leadg tem. As the tegal s ot tactable by the Laplace method, the saddle pot method o ay othe tck descbed [db-58], we shall see the ext subsecto that the soluto les a cleve choce of the cotou of tegato. The esult 8. s ot ew, but was aleady obtaed by Nölud 96 usg combatocs of Beoull polyomals, ad edeved by Flajolet ad Odlyzko 990 by evaluatg the cotou tegal Cauchy s fomula. Fo completeess, we peset these two alteatve ad elegat paths below. 8. The Flajolet Odlyzko appoach I 990, Flajolet ad Odlyzko summesed the tasfe popetes of aalytc fuctos, vz. the behavou of the fucto at the fst sgulaty o the covegece adus s dectly eflected the behavou of the Taylo coeffcets. Oe of the esult s [FO-90]:

17 Theoem 8.3. Flajolet Odlyzko, 990 Let fz be aalytc z < + η except fo a sgulaty at z =, ad let fz = O z α log z γ as z α, γ R. The the coeffcets a fz = a z gow lke a = O log γ. α+ Poof. sketchy. It s comfotg to see that the poof bols dow to a mee applcato of the Cauchy fomula, e. a cotou tegal aoud the og, vz. a = fz dz π C z, but the cotou has to be + chose clevely as fgue. C 0 C Fgue : The cotou of tegato, excludg the sgulaty at z =. The cotou C wll be a ccle of adus +η wth a ty oudabout aoud the sgulaty; the ma cotbuto wll come fom ths lttle ea-ccle C of adus / aoud z =. Note that fo ay compact doma sde ou cotou C, thee s a costat K such that fz K z α logz γ. O the ccle C, we have z = e θ / ad the followg bouds: f K α sup loge θ γ = log γ O, as well as z + α + ad C dz π/. Hece the ma cotbuto to the cotou tegal ca be estmated by: a fz dz π C z = log γ +, as we wshed. α+ Ths esult was eadly obtaed, but s teacheous whe α s a o-egatve tege, say 0: the Taylo coeffcets of log z decease lke / ad ot lke log /, ad those of / log z decease lke /log ad ot lke /log. Fo ths case, t s useful to have a pecse asymptotc developmet, whose devato we sketch as follows see [FO-90] fo detals. Let fz be the fucto z α z logzγ. Chage to the vaable z = +t/ ad expad log/t γ = log γ γ 0 logt. log The cotou tegal ow cotas the pece G := π C t α logt e t dt, whose cotou ca be defomed to a well-kow tegal that smply yelds G = α fom the Cauchy fomula fo fz = a z s: a log γ α+ 0 Γα. Hece the ma cotbuto γ G log fo fz = z α z log zγ. 8.4 The fst tem of the sum, = 0, yelds Γα ad thus smply dops out whe α s a o-egatve tege whee Γα has a pole. Ths explas the above teachey. Fo α = 0 ad γ = k egatve tege, we have k = k+ ad g := α 0 Γα =, γ, 3γ + π,... =,,..., ad so obta

18 ou sought-fo asymptotcs: k+ g a log + = k log +... fo fz = z k. 8.5 log z 8. Nölud s appoach Most supsgly, 8.4 was aved at 0 yeas eale fom qute a dffeet agle, amely by Nölud [N- 6] who ecogzed the Taylo coeffcets a of fz as beg values of geealsed Beoull polyomals: z α z log zγ = 0 The Beoull polyomals of ode γ ae defed by t γe αt =: e t 0 z! B γ αt! B +γ+ α. 8.6 ad cocde wth the usual Beoull polyomals fo α = 0 ad thus yeld the Beoull umbes fo γ =. To ave at 8.6, use Cauchy s fomula Bγ α! = t γ e αt π e t dt, the substtute t = logz γ ad shft γ γ + + ; you thus obta the Cauchy fomula equvalet to 8.6. At α = ad γ 0, we ecove the Stlg umbes of fst kd: The polyomals satsfy B γ α = α+ α B +γ+ = [ + γ γ ]/ + γ =!γ! γ + γ S γ,,+γ B γ+ t dt ad B + α = α α α Hece we ca eadly obta a asymptotc expesso fo α = 0 ad γ = : B α =! = 0 0 Γ + α t Γ α tγ + dt αt Γ α t + O = α[ log Γ α = Γ α + α α = Γ α e tlog 0 log t Γ α t dt + O log whee we used Stlg s appoxmato! e log + logπ the secod step ad patal tegato the thd step. Futhe patal tegatos yeld B α α! = log + α Γ α + O =0 whee the devatve tem evaluated at α = s: α Γα = α 0 Γα =: g, wth g = 0,, γ, 3γ + π,... fo = 0,,.... Oveall: a = B! g log + fo fz = log + z log z. ]

19 Fom hee, t s staghtfowad va ducto to deduce the geeal case γ = k egatve tege: a = B k+! full ageemet wth 8.5 k+ g log + = k log +... fo fz = z log z k 9 Asymptotcs of the complete Gamma fucto Ths sectos exames whethe the costat C, met secto 7 also occus the costat tem of the the fucto = log. The aswe s yes, as the geeal theoy shows, but γ has to be subtacted s to obta the full costat tem. The esultg expaso s peseted 9., ad o the way we shall deve the followg temedate esult about the asymptotcs of the complete gamma fucto a s a abtay costat: Γs, as := as 9. Pelmaes t s e t dt = logas γ + s[ logas + a c ] + Os log 3 as as s 0. Recall the cocdece the costat tems of the followg asymptotc expasos: ζs = k k= k s s + γ γ s +... s k log + γ +... Ladau cofmed ths cocdece fo a boade class of Dchlet sees: suppose x h αx +... amog othe costats o h, the: fo some costat β, ad = x h s α s + β +... s + h α log x + β +... x. We shall be coceed wth a weake geealsato. Fst ecall the dscete patal tegato fomula fo some cotuous fucto φ ad some sequece a wth pmtve Ax := x a : b =a+ a φ = Axφx b b Axφ xdx. a Whe a, b Z ad a = wth Ax = x, the fomula educes to b φ = xφx b b x φ xdx + φa a =a = b a φ + b a a a x x φ + φa.

20 If φ s x s a sutable fucto depedg o a paamete s, lke φ s x = x s, the devatve the secod tegad wll esue that we may exchage the lmts b ad s sce x x s bouded. I othe wods, the fst tegal cotas the sgulaty as s, whle the secod tegal yelds meely a costat. Deote by φ the fucto φ s obtaed afte takg the lmt s ; we the pefom the patal tegato backwads: b a b x x φ = k=a k+ k b x kφ = φ k + k=a k+ k φ = Havg pevously take the lmt b, we obta ou desed geealsato: lm s φ s =a Fo stace, fo φ s x = x s ad a =, we have: a b φ s = lm φ k b k=a b lm ζs = lm H b log b = γ. s s b Fo φx = x log x s ad a =, we have by lemma 7.: lm s = log s dx b xlog x s = lm b = a b k=a+ φ. φ k b a φ. log loglog b + loglog = C, + loglog Gamma fucto asymptotcs I ode to fd the costat tem the asymptotcs of the fucto = log, we stll eed to s expad the coespodg tegal up to the costat tem. Ths wll clude fdg ts sgulaty at s =. Note fst that dx xlog x s = s s Γ s, s log = s s slog t s e t dt. The complete Gamma fucto s defed by Γz, s := t z e t dt. Hece d s ds Γ = Γ z dz ds + Γ s. To smplfy mattes, we shall fst study the behavou of Γs, s as s 0. Note that Γ0, s logs γ +... ad Γs, 0 s γ +..., so that the smultaeous lmt wll behave lke the weake of both, e lm s 0 Γs, s log s Equpped wth ths tuto, we poceed by expadg s Γs, s aoud s = 0 ad the tegatg the expaded esult. Now wth zs = s we have d Γs, s = ds [ Γ dz z ds + Γ ] = e s s s s z=s s t s e t log tdt. The fst pat s expaded as e s s s = s es+log s = s + log s ad gves us upo tegato the equed log s tem, so that the secod pat ca cota at most log-sgulates. Dffeetatg the latte gves us e s s s log s+ s t s e t log t dt, whch behaves as log s/s+...,

21 so that the ogal tegal behaves as log s + cost I geeal, s t s e t log t dt wll behave as + log s + cost +..., ad by bootstappg we obta: s s s t s e t dt = log s + c 0 + s[ log s + c ] +... t s e t log tdt = log s + c + s[ 3 log s3 + log s c ] [ t s e t log t dt = + log s+ + c + s + log s+ + +!! log s c + ] +... I ths way, we ca stat wth the -th le at ode Os ad ecusvely deteme the expaso of the fst le up to Os tems of the costats of tegato c 0,..., c. The latte ca be empcally detemed: c 0 = γ, c = , c =.8497, c 3 = , c 4 = 3.568, etc. We have computed the fst 300 of them ad t seems that the asymptotcs ae c = +! e 0.8 log It would be teestg to kow moe about these costats. I patcula, we obta ou desed expaso: Γs, s = log s γ + s[ log s + c ] + s [ 6 log s3 log s c ] +... s 0 Next, study Γs, as fo some costat a. Now d ds Γ = Γ z + Γ s a. Bootstappg yelds ow: as [ t s e t log t dt = + log s+ + c + s + log s+ + a wth the costats c takg the same values as befoe. I patcula, +!! log s c + ] +..., Γs, as = logasγ+s[ logas +ac ]+s [ 6 logas3 a logas+ c a 4 +a ]+... s 0 Thus we ca aswe the questo above: dx [ ][ ] xlog x s = + s logs +... logs log γ + s [ log s log + log c ] +... [ = logs γ + log log + s log s + log c γlogs + + log c ] + Os log 3 s Recallg 9., we deduce the costat tem the asymptotc developmet of the ogal fucto: log s logs + C, γ + O s log s s 9. = whee C, = was gve table. 0 A epesetato of polylogs ad of Nelse tegals I ths secto we peset a epesetato of polylogs tems of Nelse tegals whch we have come acoss whle embakg oto the poofs secto 6. Covesely, 0.9 ad 0.0 we gve epesetatos of Nelse tegals volvg Beoull umbes, whch bol dow to mysteous dettes

22 fo Beoull umbes ad hamoc umbes cojectue 0.. We oly teat the cases S, x ad S, x, but ae covced that smla fomulae hold fo all S,p x. Lemma 0.. L x = ζ + log x L 3 x = ζ3 ζ L 4 x = ζ4 ζ3 x x log x x + ζ x 0. H x + H x + log x H = + H x 0.3 H x = H + H + = H x 0.4 L j x = ζj ζj + j log x S 0,, x + ζj S j,, x j S,, Tj, x + j ζ S j3,, x + S j,, x 0.5 wth T j, := j3k sum ove all < < j3 ad k, k,..., j3 satsfyg the followg ecuso: T j, = = T j3, + Sj3,,. The last sum of 0.5 ca also be wtte as j S,jx log x! wth S,p x := S p,, x, that s x x S,p x = logxp p! fo p. Thus the above ca be ewtte as j j log x L j x = ζj S,j x! whee the tem wth ζ should be dopped. d 0.6 Poof. Show the ecuso d logx L j x = L j x usg the fact that j xs,j x log x! = logj x j j x j!! = 0 bomal fomula fo j. Note that log x! could be eplaced by Lx! o by L x, whee the geealsed polylog s defed by L s,...,s k x := > > k >0 x s... s k k. Thus the fomula could ead: j L j x = Lj L, jx L x, whee the tem wth L should be dopped. The S,p ae specal cases of so-called Nelse tegals fo k : S k,p x := k+p k!p! 0 dy y logk ylog p xy = We have used log x p = p! [ ] x 0 = p! p! 0 p 0 x =... otato ad coveto fom [GKP-89] S p,, k+ x = L k+, px, S p,, x whch s poved by expadg: lhs =

23 so that S k, x = L k x ad x x S k,p x = S k,p x. Also: S, x = L x, S,0 x = log x. As a coollay, equate the last tem of 0.4 wth the coespodg quatty 0.6 ad fd: H + H = H = H ; o, usg patal factos: = whch ca easly be geealsed: = H = = H + H, Lemma 0.7. Fo p : Poof. lhs = = H p = = = p j = p = j + p+ jj. p H p = j= = p = p j = j= H p+ j = + H p. p j = hs, usg the patal factos Lemma 0.8. Wth b := B =, we have fo x < : B S, x = L x = S, x = x b x x H x = B H x b x [H + L x] x Poof. The fst equato s equvalet to a detty fo Beoull umbes: = B whch the secod sum equals l = l l l= l= l l = l=0 l l = =. Thus the equato bols dow to the well-kow detty fo Beoull umbes: B = B o memotechcally: B + = B upo eplacg B k by B k. o The secod equato s equvalet to p = B p = Note also that p l p H l l p l l= B p l p l p l l= l= p = H l = p = p+ p + l H l = l B l l l p = H p p l= B p + H p l=0 p p l p = H p l l whee the secod equalty follows by ducto, whle the fst comes fom lhs = p p pl p+ pl l=0 Hl = p[ x p+ log x x ] + H p p x p = p = H p p p pl p. l p l Hece the secod equalty s equvalet to the followg cojectue, whch has essted the autho s best effots. l=0

24 Cojectue 0.. Fo p a postve tege: Cocluso p = B p p l l l= H l + + = H p p + p H p. Though a applcato of the Eule Maclau fomula s othg dstgushed, t tus out that ts use fo the fou sums of sectos 4,5,6,7 esp. bgs alog a wealth of by-poducts about Stlg umbes, the elato to hamoc umbes, the asymptotcs, about mathematcal costats ad the epesetato as fomal dvegg sums ove atoal Beoull umbes, about moe geeal asymptotcs of complex fuctos cl. complete gamma fuctos, as well as algebac mapulatos o polylogs ad Nelse tegals. All ths eseach was oly possble because we used the asymp k tck ad umecal mathematcs. Extesos of ths pape would be dog the same fo othe sums cotag logathms, foemost k q /log k p, k q log k p, but we do ot expect ay ew popety. Pehaps oly moe ukow mathematcal costats would come to lght. Othewse, the costats C p,q of secto 7 stll awat a exact fom. Futhe, oe could attempt to pove cojectue 0. o wte dow the smla ad moe complex dettes that oe obtas whe caefully gog though the poof of lemma 6.. Pehaps eve moe bzae dettes would show up by caefully aalyzg what happes the poofs of lemmas 6.3 ad 6.4. Ackowledgmets It s a pleasue to ackowledge futful dscussos wth Johaes Blümle, Kal Dlche, Steve Fch, Phlppe Flajolet, Hebet Gagl, Hse-Kue Hwag, Pete Moee, Bos Mooz, Robet Osbu, Yas Petds, Smo Plouffe, Zh-We Su, Nco Temme ad Do Zage. Ths poject was suppoted by the Max-Plack-Isttute Bo. A The asymp k tck Assume we ae gve umecally the fst hudeds of tems of a covegg sequece s, N, ad that ts asymptotc expaso goes vese powes of, e. s := c 0 + c + c Goal: deteme the coeffcet c 0. Tck by Do Zage: apply the opeato k! k k o s k N to fd c 0 + k c k+ k + l ck+l + + k+l k+ l k+l +... Hece ths gves k moe dgts of pecso fo c 0, as log as k s ot too bg e. the bomals ot too bg. Call ths opeato asymp k. I pactce, the opeato s the dffeece opeato s := s + s.

25 To deteme c, subtact c 0, multply by ad apply asymp k o: dffeetate e. take successve dffeeces ad multply by. The cucal pot the success of ths tck s that the eos geeated by the dffeece opeato o a moomal ae themselves moomals of lowe powes: j = + j j = j j+ + jj+/ j+ +. These wll be swept away at the ext applcatos of. The same would ot be tue f the opeato acted o tems lke log j. NB: we ca see whethe the k decmals ae coect by checkg the covegece of the sees: f we have 400 tems, say, wte evey 80th tem a colum e. 5 tems total ad see how quckly the dgts agee. Refeeces [db-58] N.G. de Buj, Asymptotc methods Aalyss, Noth-Hollad Publ. 958, Amstedam. [B-77] R.P. Boas, Gowth of Patal Sums of dveget Sees, Math.Comp , [F-03] S. Fch, Mathematcal Costats, Ecy. of Math. ad ts Applc., CUP 003. [FO-90] P. Flajolet, A. Odlyzko, Sgulaty aalyss of geeatg fuctos. SIAM J. Dscete Math , o., [GKP-89] R. Gaham, D. Kuth, O. Patashk, Cocete Mathematcs, Addso-Wesley 989. [H-95] Hse-Kue Hwag, Asymptotc expasos fo the Stlg umbes of the fst kd, J. Comb. Theoy Se. A 7 995, [KK-9] C. Kessl, J. Kelle, Stlg Numbe Asymptotcs fom Recuso Equatos Usg the Ray Method, Stud.Appl.Math , [MW-58] L. Mose, M. Wyma, Stlg umbes of fst kd, J.Lodo Math.Soc , [N-6] N.E. Nölud, Su les valeus asymptotques des ombes et des polyômes de Beoull, Cc. Mat. Palemo, 0 96, o., 7 44, [P-54] G. Pólya, Iducto ad Aalogy Mathematcs, PUP 954, Pceto, NJ. [W-93] H. Wlf, The asymptotc behavo of the Stlg umbes of the fst kd, J. Comb. Theoy Se. A ,

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

Generalized Delta Functions and Their Use in Quasi-Probability Distributions

Generalized Delta Functions and Their Use in Quasi-Probability Distributions Geealzed Delta Fuctos ad The Use Quas-Pobablty Dstbutos RA Bewste ad JD Faso Uvesty of Maylad at Baltmoe Couty, Baltmoe, MD 5 USA Quas-pobablty dstbutos ae a essetal tool aalyzg the popetes of quatum systems,

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS Bud Satoso ABSTRACT APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Appoxmate aalytc

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

21(2007) Adílson J. V. Brandão 1, João L. Martins 2

21(2007) Adílson J. V. Brandão 1, João L. Martins 2 (007) 30-34 Recuece Foulas fo Fboacc Sus Adílso J. V. Badão, João L. Mats Ceto de Mateátca, Coputa cão e Cog cão, Uvesdade Fedeal do ABC, Bazl.adlso.badao@ufabc.edu.b Depataeto de Mateátca, Uvesdade Fedeal

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Module Title: Business Mathematics and Statistics 2

Module Title: Business Mathematics and Statistics 2 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Semeste Eamatos 009/00 Module Ttle: Busess Mathematcs ad Statstcs Module Code: STAT 6003 School: School of Busess ogamme Ttle: Bachelo of

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

The Geometric Proof of the Hecke Conjecture

The Geometric Proof of the Hecke Conjecture The Geometc Poof of the Hecke Cojectue Kada Sh Depatmet of Mathematc Zhejag Ocea Uvety Zhouha Cty 6 Zhejag Povce Cha Atact Begg fom the eoluto of Dchlet fucto ug the e poduct fomula of two fte-dmeoal vecto

More information

Phys 332 Electricity & Magnetism Day 13. This Time Using Multi-Pole Expansion some more; especially for continuous charge distributions.

Phys 332 Electricity & Magnetism Day 13. This Time Using Multi-Pole Expansion some more; especially for continuous charge distributions. Phys 33 Electcty & Magetsm Day 3 Mo. /7 Wed. /9 Thus / F., / 3.4.3-.4.4 Multpole Expaso (C 7)..-..,.3. E to B; 5..-.. Loetz Foce Law: felds ad foces (C 7) 5..3 Loetz Foce Law: cuets HW4 Mateals Aoucemets

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Phys 2310 Fri. Oct. 23, 2017 Today s Topics. Begin Chapter 6: More on Geometric Optics Reading for Next Time

Phys 2310 Fri. Oct. 23, 2017 Today s Topics. Begin Chapter 6: More on Geometric Optics Reading for Next Time Py F. Oct., 7 Today Topc Beg Capte 6: Moe o Geometc Optc eadg fo Next Tme Homewok t Week HW # Homewok t week due Mo., Oct. : Capte 4: #47, 57, 59, 6, 6, 6, 6, 67, 7 Supplemetal: Tck ee ad e Sytem Pcple

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point Mapulato smatc Jot Revolute Jot Kematcs Base Lks: movg lk fed lk Ed-Effecto Jots: Revolute ( DOF) smatc ( DOF) Geealzed Coodates Opeatoal Coodates O : Opeatoal pot 5 costats 6 paametes { postos oetatos

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

Noncommutative Solitons and Quasideterminants

Noncommutative Solitons and Quasideterminants Nocommutatve Soltos ad Quasdetemats asas HNK Nagoya Uvesty ept. o at. Teoetcal Pyscs Sema Haove o eb.8t ased o H ``NC ad's cojectue ad tegable systems NP74 6 368 ep-t/69 H ``Notes o eact mult-solto solutos

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot Moto ad Flow II Sce fom Moto Passve Navgato ad Sce fom Moto = + t, w F = zˆ t ( zˆ ( ([ ] =? hesystemmoveswth a gd moto wth aslat oal velocty t = ( U, V, W ad atoalvelocty w = ( α, β, γ. Scee pots R =

More information

Pattern Avoiding Partitions, Sequence A and the Kernel Method

Pattern Avoiding Partitions, Sequence A and the Kernel Method Avalable at http://pvamuedu/aam Appl Appl Math ISSN: 93-9466 Vol 6 Issue (Decembe ) pp 397 4 Applcatos ad Appled Mathematcs: A Iteatoal Joual (AAM) Patte Avodg Pattos Sequece A5439 ad the Keel Method Touf

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

Application Of Alternating Group Explicit Method For Parabolic Equations

Application Of Alternating Group Explicit Method For Parabolic Equations WSEAS RANSACIONS o INFORMAION SCIENCE ad APPLICAIONS Qghua Feg Applcato Of Alteatg oup Explct Method Fo Paabolc Equatos Qghua Feg School of Scece Shadog uvesty of techology Zhagzhou Road # Zbo Shadog 09

More information

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Strategy 3. Prelmary theorem 4. Proof 5. Expla 6. Cocluso. Itroduce The P vs. NP problem s a major usolved problem computer scece. Iformally, t asks whether

More information

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr CE 56 Letue otes Set 3 Optmal Tmg of Ivestmet Case A- C s ost. ost st y, beefts stat at the ed of st y C b b b3 0 3 Case B- Cost. s postpoed by oe yea C b b3 0 3 (B-A C s saved st yea C C, b b 0 3 Savg

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials A Algothm of a Logest of Rus Test fo Vey Log equeces of Beoull Tals Alexade I. KOZYNCHENKO Faculty of cece, Techology, ad Meda, Md wede Uvesty, E-857, udsvall, wede alexade_kozycheko@yahoo.se Abstact A

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

Quasi-Rational Canonical Forms of a Matrix over a Number Field

Quasi-Rational Canonical Forms of a Matrix over a Number Field Avace Lea Algeba & Matx Theoy, 08, 8, -0 http://www.cp.og/joual/alamt ISSN Ole: 65-3348 ISSN Pt: 65-333X Qua-Ratoal Caocal om of a Matx ove a Numbe el Zhueg Wag *, Qg Wag, Na Q School of Mathematc a Stattc,

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information