Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Size: px
Start display at page:

Download "Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München"

Transcription

1 Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010

2 Lecture 16 IP = PSPACE

3 3 Goal and Plan Goal IP = PSPACE Plan 1. PSPACE IP by showing QBF IP 2. IP PSPACE by computing optimal prover strategies in polynomial space

4 4 Agenda arithmetization of Boolean formulas arithmetization of quantified formulas by linearization interactive protocol for QBF Tomorrow optimal prover strategy to show IP PSPACE a note on grpah isomorphism summary: interactive proofs incl further reading and context outlook: approximation and PCP theorem evaluation

5 5 Proof Idea Show that QBF IP. This implies PSPACE IP because QBF is PSPACE-complete IP closed under polynomial reductions Technique Turn formulas into polynomials, similar to reduction from 3SAT to ILP: arithmetization.

6 6 Setting let Φ = Q 1 x 1... Q n x n ϕ(x 1,..., x n ) be a quantified boolean formula, where ϕ is in 3CNF with m clauses Φ is either true or false running example: Φ = = x y (x y) (x y), where the body is written ϕ = deciding truth value of Φ is PSPACE-complete

7 Observation x y is satisfiable iff x y = 1 for x, y {0, 1} x is satisfiable iff 1 x = 1 x y is satisfiable iff x + y 1 note that x y x y x y x y x y is satisfiable iff x + y xy = 1

8 8 Arithmetization of Boolean formulas For Boolean formula ϕ(x 1,..., x n ) we define ari ϕ (x 1,..., x n ) such that ϕ(x 1,..., x n ) is satisfiable iff ari ϕ (x 1,..., x n ) is 1 for satisfying assignment of x i to true/false and the corresponding x i.

9 9 Arithmetization of Boolean formulas ari xi (x 1,..., x n ) = x i ari ϕ (x 1,..., x n ) = 1 ari ϕ (x 1,..., x n ) ari ϕ1 ϕ 2 (x 1,..., x n ) = ari ϕ1 (x 1,..., x n ) ari ϕ2 (x 1,..., x n ) ari ϕ1 ϕ 2 (x 1,..., x n ) = ari ϕ1 (x 1,..., x n ) + ari ϕ2 (x 1,..., x n ) ari ϕ1 (x 1,..., x n ) ari ϕ2 (x 1,..., x n ) Example ari ϕ= (x, y) = (x + (1 y) x(1 y)) ((1 x) + y (1 x)y) = (1 y + xy) (1 x + xy) = 1 x y + 3xy xy 2 x 2 y + x 2 y 2 =: f = (x, y)

10 10 Observation degree of arithmetization is 3m crucial for polynomial representation of formulas

11 What about quantification? Intuition universal quantification corresponds to conjunction corresponds to multiplication existential quantification corresponds to disjunction corresponds to addition ari xi.ϕ(x 1,..., x i,..., x n ) equals ari ϕ (x 1,..., 0,..., x n ) ari ϕ (x 1,..., 1,..., x n ) ari xi.ϕ(x 1,..., x i,..., x n ) equals ari ϕ (x 1,..., 0,..., x n ) + ari ϕ (x 1,..., 1,..., x n ) ari ϕ (x 1,..., 0,..., x n ) ari ϕ (x 1,..., 1,..., x n )

12 12 Running Example Example ari Φ= (x, y) = ari y.ϕ= (0, y) ari y.ϕ= (1, y) = (f = (0, 0) + f = (0, 1) f = (0, 0)f = (0, 1))... =... = 1

13 13 Lessons learnt Φ = is true degree of polynomial might get exponential in m coefficients too Rescue over {0, 1} we have x c = x gives rise to linearization to get rid of large coefficients: compute over some sufficiently small finite field

14 Agenda arithmetization of Boolean formulas arithmetization of quantified formulas by linearization interactive protocol for QBF

15 15 Linearization Linearization means reducing all exponents in polynomial to 1. L y (f(x, y)) = f(x, 1) y + f(x, 0) (1 y) L y (f(x, y) is linear in y L y (f(x, y)) is equivalent to f(x, y) over {0, 1} 2 Example L y (f = (x, y)) = L y (1 x y + 3xy xy 2 x 2 y + x 2 y 2 ) = (1 y)(1 x) + y ( x + 3x x x 2 + x 2 ) = 1 x y + 2xy

16 16 General form L j (f(x 1,..., x j,..., x n )) = f(x 1,..., 1,..., x k )x j + f(x 1,..., 0,..., x k )(1 x j ) Arithmetization 1. arithmetize Boolean body of formula 2. linearize all variables 3. for innermost quantifier apply ari x (resp. ari x) 4. linearize all but x 5. repeat from 3.

17 17 Recursive definition of general arithmetization f n,n (x 1,..., x n ) := ari ϕ (x 1,..., x n ) f i,i (x 1,..., x i ) := f i+1,0 (x 1,..., x i, 0)f i+1,0 (x 1,..., x i, 1) if x i+1 universal f i,i (x 1,..., x i ) := f i+1,0 (x 1,..., x i, 0) + f i+1,0 (x 1,..., x i, 1) f i+1,0 (x 1,..., x i, 0)f i+1,0 (x 1,..., x i, 1) if x i+1 existential f i,j (x 1,..., x i ) = L j+1 (f i,j+1 (x 1,..., x i ))

18 18 Observations there are O(n 2 ) functions f, functions f n, have degree at most 3m all other functions have degree of each variable at most 2 f 0,0 = 1 iff Φ QBF

19 19 Agenda arithmetization of Boolean formulas arithmetization of quantified formulas by linearization interactive protocol for QBF

20 20 Protocol intuition V accepts if f 0,0 = 1 P needs to convince V of that fact by iterating over all f i,j V challenges P by choosing random values from a finite field P inserts these values into polynomials and return linear function V checks that functions adhere to recursive scheme

21 Initialization verifier and prover agree on prime p such that 12 Φ 2 < p 24 Φ 2 all polynomials will be computed in Z/pZ this is a range, where linear functions can be polynomially represented and evaluated start: P sends f 0,0, the prime and the primality proof if f 0,0 = 1 then iterate from i = 1 and j = 0 until both reach n; otherwise reject O(n 2 ) rounds

22 Quantor case j = 0 V asks for f i,0 (r 1,..., r i 1, x i ) P sends f i,0 (r 1,..., r i 1, x i ) if x i is universally quantified, V checks whether f i,0 (r 1,..., r i 1, 0)f i,0 (r 1,..., r i 1, 1) p f i 1,i 1 (r 1,..., r i 1 ) if x i is existentially quantified, V checks f i,0 (r 1,..., r i 1, 0) + f i,0 (r 1,..., r i 1, 1) f i,0 (r 1,..., r i 1, 0)f i,0 (r 1,..., r i 1, 1) p f i 1,i 1 (r 1,..., r i 1 ) V picks random number r i Z/pZ and set j to 1

23 23 Linearization case j > 0 V asks fo f i,j (r 1,..., x j,..., r i ) P sends f i,j (r 1,..., x j,..., r i ) V checks (1 r j )f i,j (r 1,..., 0,..., r i )+ r j f i,j (r 1,..., 1,..., r i ) p f i,j 1 (r 1,..., r i ) V picks r j at random and increases j (or sets j to 0 and increases i)

24 Finally... P tests whether ari ϕ (r 1,..., r n ) p f n,n (r 1,..., r n )

25 25 Observations P only sends linear functions total message length still polynomial V can compute linear functions in Z/pZ if Φ QBF P can always convince V by sending correct polynomials perfect completeness we have public coins

26 26 What if Φ QBF? An honest prover admits this fact. A cheating prover can try to send forged polynomials g i,j (x) instead of f i,j (x 1,..., x,..., x i ). For soundness P must fail to convince V with high probability.

27 Soundness P can cheat in round (i,j) iff f i,j (x 1,..., x,..., x i ) g i,j (x) p 0 that is: iff V by chance picks a root r k of a polynomial probability to do so in round (i, j) is q i,j deg(f i,j )/p since polynomials of degree n have at most n roots f n, have degree at most 3m f i<n, have degree at most 2 there are (n + 1)(n + 2)/2 polynomials, n + 1 large ones Pr[P cheats] Σ n i=1 Σi j=0 q i,j 3m(n+1) p 4 Φ 2 p + n(n+1) p 1/3

28 28 Agenda arithmetization of Boolean formulas arithmetization of quantified formulas by linearization interactive protocol for QBF Tomorrow optimal prover strategy to show IP PSPACE a note on grpah isomorphism summary: interactive proofs incl further reading and context outlook: approximation and PCP theorem evaluation

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 4 NP-completeness Recap: relations between classes EXP PSPACE = NPSPACE conp NP conp

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 2 Lecture 15 Public Coins and Graph (Non)Isomorphism 3 Intro Goal and Plan Goal understand

More information

Interactive Proofs 1

Interactive Proofs 1 CS294: Probabilistically Checkable and Interactive Proofs January 24, 2017 Interactive Proofs 1 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Mariel Supina 1 Pspace IP The first proof that Pspace

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses.

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 17 March 31, 2010 Scribe: Jonathan Ullman 1 Interactive Proofs ecall the definition of NP: L NP there exists a polynomial-time V and polynomial

More information

Lecture : PSPACE IP

Lecture : PSPACE IP IITM-CS6845: Theory Toolkit February 16, 2012 Lecture 22-23 : PSPACE IP Lecturer: Jayalal Sarma.M.N. Scribe: Sivaramakrishnan.N.R. Theme: Between P and PSPACE 1 Interactive Protocol for #SAT In the previous

More information

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the Lecture 11 IP, PH, and PSPACE May 4, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 11.1 IP and PH Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the predicate

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 5 NP-completeness (2) 3 Cook-Levin Teaser A regular expression over {0, 1} is defined

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

Lecture 26. Daniel Apon

Lecture 26. Daniel Apon Lecture 26 Daniel Apon 1 From IPPSPACE to NPPCP(log, 1): NEXP has multi-prover interactive protocols If you ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you will already

More information

Lecture 17: Interactive Proof Systems

Lecture 17: Interactive Proof Systems Computational Complexity Theory, Fall 2010 November 5 Lecture 17: Interactive Proof Systems Lecturer: Kristoffer Arnsfelt Hansen Scribe: Søren Valentin Haagerup 1 Interactive Proof Systems Definition 1.

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Lecture 14: IP = PSPACE

Lecture 14: IP = PSPACE IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 14: IP = PSPACE David Mix Barrington and Alexis Maciel August 3, 2000 1. Overview We

More information

198:538 Complexity of Computation Lecture 16 Rutgers University, Spring March 2007

198:538 Complexity of Computation Lecture 16 Rutgers University, Spring March 2007 198:538 Complexity of Computation Lecture 16 Rutgers University, Spring 2007 8 March 2007 In this lecture we discuss Shamir s theorem that PSPACE is the set of languages that have interactive proofs with

More information

MTAT Complexity Theory December 8th, Lecture 12

MTAT Complexity Theory December 8th, Lecture 12 MTAT.07.004 Complexity Theory December 8th, 2011 Lecturer: Peeter Laud Lecture 12 Scribe(s): Ilya Kuzovkin Introduction On the previous lecture we had a look onto interactive proofs, where the system consists

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 19 Hardness of Approximation 3 Recap Recap: optimization many decision problems we

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 6 conp Agenda conp the importance of P vs. NP vs. conp neither in P nor NP-complete:

More information

1 The Low-Degree Testing Assumption

1 The Low-Degree Testing Assumption Advanced Complexity Theory Spring 2016 Lecture 17: PCP with Polylogarithmic Queries and Sum Check Prof. Dana Moshkovitz Scribes: Dana Moshkovitz & Michael Forbes Scribe Date: Fall 2010 In this lecture

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

The Proof of IP = P SP ACE

The Proof of IP = P SP ACE The Proof of IP = P SP ACE Larisse D. Voufo March 29th, 2007 For a long time, the question of how a verier can be convinced with high probability that a given theorem is provable without showing the whole

More information

Time and space classes

Time and space classes Time and space classes Little Oh (o,

More information

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )).

B(w, z, v 1, v 2, v 3, A(v 1 ), A(v 2 ), A(v 3 )). Lecture 13 PCP Continued Last time we began the proof of the theorem that PCP(poly, poly) = NEXP. May 13, 2004 Lecturer: Paul Beame Notes: Tian Sang We showed that IMPLICIT-3SAT is NEXP-complete where

More information

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation Lecture 20: PSPACE November 15, 2016 CS 1010 Theory of Computation Recall that PSPACE = k=1 SPACE(nk ). We will see that a relationship between time and space complexity is given by: P NP PSPACE = NPSPACE

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Instance Compression for the Polynomial Hierarchy and Beyond

Instance Compression for the Polynomial Hierarchy and Beyond Instance Compression for the Polynomial Hierarchy and Beyond Chiranjit Chakraborty Rahul Santhanam School of Informatics, University of Edinburgh, UK Abstract. We define instance compressibility ([1],

More information

IP = PSPACE using Error Correcting Codes

IP = PSPACE using Error Correcting Codes Electronic Colloquium on Computational Complexity, Report No. 137 (2010 IP = PSPACE using Error Correcting Codes Or Meir Abstract The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir,

More information

Approximate Verification

Approximate Verification Approximate Verification Michel de Rougemont Université de Paris-II Ekaterinenburg-April 2014 i ii Contents 1 Probabilistic Classes 3 1.1 Probabilistic decision classes...................................

More information

IP=PSPACE. Adi Shamir. Applied Mathematics Department The Weizmann Institute of Science Rehovot, Israel

IP=PSPACE. Adi Shamir. Applied Mathematics Department The Weizmann Institute of Science Rehovot, Israel P=PSPACE Abstract n this paper we prove that when both randomization and interaction are allowed, the proofs which can be verified in polynomial time are exactly those proofs which can be generated with

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

CSE 555 HW 5 SAMPLE SOLUTION. Question 1.

CSE 555 HW 5 SAMPLE SOLUTION. Question 1. CSE 555 HW 5 SAMPLE SOLUTION Question 1. Show that if L is PSPACE-complete, then L is NP-hard. Show that the converse is not true. If L is PSPACE-complete, then for all A PSPACE, A P L. We know SAT PSPACE

More information

Lecture 8: Complete Problems for Other Complexity Classes

Lecture 8: Complete Problems for Other Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 8: Complete Problems for Other Complexity Classes David Mix Barrington and Alexis Maciel

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS276: Cryptography Handout N25 Luca Trevisan April 23, 2009 Notes for Lecture 25 Scribed by Alexandra Constantin, posted May 4, 2009 Summary Today we show that the graph isomorphism protocol

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Interactive Proofs John E. Savage Brown University April 20, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity April 20, 2009

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Introduction to Interactive Proofs & The Sumcheck Protocol

Introduction to Interactive Proofs & The Sumcheck Protocol CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017 Introduction to Interactive Proofs & The Sumcheck Protocol Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

More information

Real Interactive Proofs for VPSPACE

Real Interactive Proofs for VPSPACE Brandenburgische Technische Universität, Cottbus-Senftenberg, Germany Colloquium Logicum Hamburg, September 2016 joint work with M. Baartse 1. Introduction Blum-Shub-Smale model of computability and complexity

More information

Lecture 16 November 6th, 2012 (Prasad Raghavendra)

Lecture 16 November 6th, 2012 (Prasad Raghavendra) 6.841: Advanced Complexity Theory Fall 2012 Lecture 16 November 6th, 2012 (Prasad Raghavendra) Prof. Dana Moshkovitz Scribe: Geng Huang 1 Overview In this lecture, we will begin to talk about the PCP Theorem

More information

1 Recap: Interactive Proofs

1 Recap: Interactive Proofs Theoretical Foundations of Cryptography Lecture 16 Georgia Tech, Spring 2010 Zero-Knowledge Proofs 1 Recap: Interactive Proofs Instructor: Chris Peikert Scribe: Alessio Guerrieri Definition 1.1. An interactive

More information

6.896 Quantum Complexity Theory 30 October Lecture 17

6.896 Quantum Complexity Theory 30 October Lecture 17 6.896 Quantum Complexity Theory 30 October 2008 Lecturer: Scott Aaronson Lecture 17 Last time, on America s Most Wanted Complexity Classes: 1. QMA vs. QCMA; QMA(2). 2. IP: Class of languages L {0, 1} for

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

Lecture Notes 20: Zero-Knowledge Proofs

Lecture Notes 20: Zero-Knowledge Proofs CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Lecture Notes 20: Zero-Knowledge Proofs Reading. Katz-Lindell Ÿ14.6.0-14.6.4,14.7 1 Interactive Proofs Motivation: how can parties

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

Notes on Complexity Theory Last updated: October, Lecture 6

Notes on Complexity Theory Last updated: October, Lecture 6 Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACE-Completeness As in our previous study of N P, it is useful to identify

More information

Lecture Hardness of Set Cover

Lecture Hardness of Set Cover PCPs and Inapproxiability CIS 6930 October 5, 2009 Lecture Hardness of Set Cover Lecturer: Dr. My T. Thai Scribe: Ying Xuan 1 Preliminaries 1.1 Two-Prover-One-Round Proof System A new PCP model 2P1R Think

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

Lecture 26: Arthur-Merlin Games

Lecture 26: Arthur-Merlin Games CS 710: Complexity Theory 12/09/2011 Lecture 26: Arthur-Merlin Games Instructor: Dieter van Melkebeek Scribe: Chetan Rao and Aaron Gorenstein Last time we compared counting versus alternation and showed

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Worst-Case Upper Bound for (1, 2)-QSAT

Worst-Case Upper Bound for (1, 2)-QSAT Worst-Case Upper Bound for (1, 2)-QSAT Minghao Yin Department of Computer, Northeast Normal University, Changchun, China, 130117 ymh@nenu.edu.cn Abstract. The rigorous theoretical analysis of the algorithm

More information

Definition 1. NP is a class of language L such that there exists a poly time verifier V with

Definition 1. NP is a class of language L such that there exists a poly time verifier V with Lecture 9: MIP=NEXP Topics in Pseudorandomness and Complexity Theory (Spring 2017) Rutgers University Swastik Kopparty Scribe: Jinyoung Park 1 Introduction Definition 1. NP is a class of language L such

More information

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3 6.841/18.405J: Advanced Complexity Wednesday, February 12, 2003 Lecture Lecture 3 Instructor: Madhu Sudan Scribe: Bobby Kleinberg 1 The language MinDNF At the end of the last lecture, we introduced the

More information

Quantified Boolean Formulas Part 1

Quantified Boolean Formulas Part 1 Quantified Boolean Formulas Part 1 Uwe Egly Knowledge-Based Systems Group Institute of Information Systems Vienna University of Technology Results of the SAT 2009 application benchmarks for leading solvers

More information

CSC 2429 Approaches to the P versus NP Question. Lecture #12: April 2, 2014

CSC 2429 Approaches to the P versus NP Question. Lecture #12: April 2, 2014 CSC 2429 Approaches to the P versus NP Question Lecture #12: April 2, 2014 Lecturer: David Liu (Guest) Scribe Notes by: David Liu 1 Introduction The primary goal of complexity theory is to study the power

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Lecture 11: Proofs, Games, and Alternation

Lecture 11: Proofs, Games, and Alternation IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 11: Proofs, Games, and Alternation David Mix Barrington and Alexis Maciel July 31, 2000

More information

Maximum 3-SAT as QUBO

Maximum 3-SAT as QUBO Maximum 3-SAT as QUBO Michael J. Dinneen 1 Semester 2, 2016 1/15 1 Slides mostly based on Alex Fowler s and Rong (Richard) Wang s notes. Boolean Formula 2/15 A Boolean variable is a variable that can take

More information

CS154, Lecture 18: 1

CS154, Lecture 18: 1 CS154, Lecture 18: 1 CS 154 Final Exam Wednesday December 12, 12:15-3:15 pm STLC 111 You re allowed one double-sided sheet of notes Exam is comprehensive (but will emphasize post-midterm topics) Look for

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism E0 4 Computational Complexity Theory Indian Institute of Science, Bangalore Fall 04 Department of Computer Science and Automation Lecture : Oct 9, 04 Lecturer: Chandan Saha

More information

Lecture 15: Interactive Proofs

Lecture 15: Interactive Proofs COM S 6830 Cryptography Tuesday, October 20, 2009 Instructor: Rafael Pass Lecture 15: Interactive Proofs Scribe: Chin Isradisaikul In this lecture we discuss a new kind of proofs that involves interaction

More information

Lecture 3: Interactive Proofs and Zero-Knowledge

Lecture 3: Interactive Proofs and Zero-Knowledge CS 355 Topics in Cryptography April 9, 2018 Lecture 3: Interactive Proofs and Zero-Knowledge Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu So far in the class, we have only covered basic cryptographic

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

x 2 +2 x 2 x 3 2x 2 +2x +1 (mod 5).

x 2 +2 x 2 x 3 2x 2 +2x +1 (mod 5). A DETAILED PROOF THAT IP=PSPACE B.J. MARES Abstract. I will define IP, the class of interactive proofs, and present a thorough proof that IP=PSPACE, assuming minimal prior knowledge. Such a presentation

More information

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Rational Proofs with Multiple Provers Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Outline of the Talk RATIONAL INTERACTIVE PROOFS with MULTI-PROVERs Interactive Proofs [GMR,

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

From Secure MPC to Efficient Zero-Knowledge

From Secure MPC to Efficient Zero-Knowledge From Secure MPC to Efficient Zero-Knowledge David Wu March, 2017 The Complexity Class NP NP the class of problems that are efficiently verifiable a language L is in NP if there exists a polynomial-time

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms First-Order Logic 1 Syntax Domain of Discourse The domain of discourse for first order logic is FO structures or models. A FO structure contains Relations Functions Constants (functions of arity 0) FO

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction

More information

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ}

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ} 6.841 Advanced Complexity Theory February 28, 2005 Lecture 8 Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya 1 A New Theme In the past few lectures, we have concentrated on non-uniform types of computation

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

P = k T IME(n k ) Now, do all decidable languages belong to P? Let s consider a couple of languages:

P = k T IME(n k ) Now, do all decidable languages belong to P? Let s consider a couple of languages: CS 6505: Computability & Algorithms Lecture Notes for Week 5, Feb 8-12 P, NP, PSPACE, and PH A deterministic TM is said to be in SP ACE (s (n)) if it uses space O (s (n)) on inputs of length n. Additionally,

More information

Complexity Theory Final Exam

Complexity Theory Final Exam Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky Complexity Theory Final Exam Please note : If not stated otherwise,

More information

Interactive proof and zero knowledge protocols

Interactive proof and zero knowledge protocols Interactive proof and zero knowledge protocols Zero-knowledge: definition Probabilistic complexity classes and Interactive proofs Graph isomorphism and PCP Some zero knowledge protocols: Feige-Fiat-Shamir

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 10, 5/9/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Logical Agents Chapter 7

More information

Database Theory VU , SS Complexity of Query Evaluation. Reinhard Pichler

Database Theory VU , SS Complexity of Query Evaluation. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2018 5. Complexity of Query Evaluation Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 17 April, 2018 Pichler

More information

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete 9. PSPACE PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

Reasoning with Quantified Boolean Formulas

Reasoning with Quantified Boolean Formulas Reasoning with Quantified Boolean Formulas Martina Seidl Institute for Formal Models and Verification Johannes Kepler University Linz 1 What are QBF? Quantified Boolean formulas (QBF) are formulas of propositional

More information

COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II , Max 80, Time 2 hr. Name Entry No. Group

COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II , Max 80, Time 2 hr. Name Entry No. Group COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II 2015-16, Max 80, Time 2 hr Name Entry No. Group Note (i) Write your answers neatly and precisely in the space provided with

More information

arxiv: v1 [cs.cc] 30 Apr 2015

arxiv: v1 [cs.cc] 30 Apr 2015 Rational Proofs with Multiple Provers Jing Chen Stony Brook University jingchen@cs.stonybrook.edu Shikha Singh Stony Brook University shiksingh@cs.stonybrook.edu Samuel McCauley Stony Brook University

More information

Computational Complexity Theory

Computational Complexity Theory Computational Complexity Theory Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Assumed Background Preliminaries Turing Machine (TM) Deterministic Turing Machine (DTM) NonDeterministic

More information

CS 6505, Complexity and Algorithms Week 7: NP Completeness

CS 6505, Complexity and Algorithms Week 7: NP Completeness CS 6505, Complexity and Algorithms Week 7: NP Completeness Reductions We have seen some problems in P and NP, and we ve talked about space complexity. The Space Hierarchy Theorem showed us that there are

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

Answers to the CSCE 551 Final Exam, April 30, 2008

Answers to the CSCE 551 Final Exam, April 30, 2008 Answers to the CSCE 55 Final Exam, April 3, 28. (5 points) Use the Pumping Lemma to show that the language L = {x {, } the number of s and s in x differ (in either direction) by at most 28} is not regular.

More information

Homework 3 Solutions

Homework 3 Solutions 5233/IOC5063 Theory of Cryptology, Fall 205 Instructor Prof. Wen-Guey Tzeng Homework 3 Solutions 7-Dec-205 Scribe Amir Rezapour. Consider an unfair coin with head probability 0.5. Assume that the coin

More information

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006 Introduction to Complexity Theory Bernhard Häupler May 2, 2006 Abstract This paper is a short repetition of the basic topics in complexity theory. It is not intended to be a complete step by step introduction

More information