Homework 3 Solutions

Size: px
Start display at page:

Download "Homework 3 Solutions"

Transcription

1 5233/IOC5063 Theory of Cryptology, Fall 205 Instructor Prof. Wen-Guey Tzeng Homework 3 Solutions 7-Dec-205 Scribe Amir Rezapour. Consider an unfair coin with head probability 0.5. Assume that the coin is tossed 000 times independently. (a) Compute exactly the probability that at least two thirds of tosses are head. P r(x > 667) = 000 i=667 ( 000 ) i 0.5 i i = (b) Use the Chebyshev s inequality to estimate the probability that at least two thirds of tosses are head. Let S i be the random variable of the event that the i-th toss is head. We have E(S i ) = 0.5 and V (S i ) = = Let S = 000 i= S i. We have E(S) = np = 50 and V (S) = np( p) = By the Chebyshev s inequality, we have Pr[ S 50 57] Pr[S 667] = = (c) Use the Hoeffding s inequality to estimate the probability that at least two thirds of tosses are head. By the Hoeffding s inequality, we have Pr[S 667] = Pr[S ( ) 000] e = This problem is about proof of knowledge of x about given (n, y), where n = pq is a Blum integer, gcd(e, φ(n)) =, and y = x e mod n. -

2 (a) Give a (basic) zero-knowledge proof system for it. You need to show its completeness, soundness and zero-knowledge formally. Let P be the prover and V be the verifier. The basic zero-knowledge proof system is as follows i. Commitment P V A = r e mod n, where r R Z n. ii. Challenge V P h R Z 2. iii. Response P V B = x h r mod n. V accepts P if and only if B e y h A (mod n). Correctness of the zero-knowledge proof system is as follows Completeness If P knows y = x e mod n, he always convinces V by the protocol. Soundness Without knowing y = x e mod n, P can convince V by guessing V s challenge with probability 2 as follows i. Choose h R Z 2 and B R Z n, and compute A = B e /y h mod n. ii. Interact with V(A ) = h. iii. If h = h, respond B to convince V. If P convinces V with probability more than 2, we can extract the knowledge y = x e mod n by rewinding P to obtain two different accepting transcripts with the same commitment. For such two accepting transcripts (A, h, B) and (A, h, B ), we have { B e y h A (mod n) B e y h A (mod n) (B/B ) e y h h (mod n) y /e = (B/B ) h h mod n Since h h = ±, we can compute y /e = (B/B ) h h mod n. However, extracting the knowledge y = x e mod n implies solving the RSA problem, which contradicts the RSA assumption. Therefore, P without the knowledge m = c /e mod n cannot convince V with probability more than 2. Zero-Knowledge Define the accepting transcript function tr P,V (m) = {(A, h, B) Z n Z 2 Z n B e y h A (mod n)}. For any accepting transcript (A, h, B) tr P,V (m), we have Pr [tr P,V (m) = (A, h, B)] = Pr[V(A) = h] φ(n) On the other hand, we construct the probabilistic polynomial-time simulator S to simulate the accepting transcript tr P,V (m) by tr S,V (m) as follows i. Choose h R Z 2 and B R Z n, and compute A = B e /y h mod n. -2

3 ii. Invoke V(A ) = h. iii. If h = h, return (A, h, B ) as an accepting transcript. Otherwise, repeat the step i. For any accepting transcript (A, h, B ) tr S,V (m), we have Pr [ tr S,V (m) = (A, h, B ) ] = Pr[V(A ) = h ] 2 φ(n) The expected execution time of simulator S is t S = 2(t E + t V ), where t E is the execution time of the step i. and step iii., and t V is the execution time of verifier V. S is in polynomial time and the probability distributions of tr P,V (m) and tr S,V (m) are indistinguishable. Therefore, the proof system is zero-knowledge. (b) How to reduce the cheating probability by the prover? The cheating probability by P in the basic zero-knowledge proof system is 2. V can reduce the cheating probability to by asking P to prove himself for k 2 k times sequentially, where k is bounded by a polynomial of the security parameter. Let ZKPoK(P, V) denote the basic zero-knowledge proof system. The enhanced zero-knowledge proof system is as follows for (i=0; i<k; ++i) if (!ZKPoK(P, V)) return false; return true; (c) Give an (efficient) honest-verifier interactive zero-knowledge proof system for it. Let P be the prover and V be the verifier. The honest-verifier interactive zeroknowledge proof system is as follows i. Commitment P V A = r e mod n, where r R Z n. ii. Challenge V P h R Z n. iii. Response P V B = x h r mod n. V accepts P if and only if B e y h A (mod n). The challenge h is chosen randomly from Z n, although the group size is φ(n). 2 Therefore, P guesses h with probability at most φ(n). For honest verifier V, he chooses h R Z n as the definition of protocol. Therefore, the simulator S can choose h for himself and simulate in polynomial time without changing the probability distribution of accepting transcripts tr S,V (x). (d) Design a digital signature scheme based on the above honest-verifier interactive zero-knowledge proof system. 2-3

4 Fiat-Shamir gives a standard method for converting an interactive zero-knowledge proof system to a digital signature scheme. In doing so, we need to eliminate the communication between prover and verifier. We substitute the challenge part by a collision-resistance hash function which is publicly available to both prover and verifier. Let H {0, } Z n be such a secure hash function. The digital signature scheme is as follows i. KeyGen(π) = (sk, pk) Choose two safe primes p and q of π bits, and compute the RSA modulus n = pq. Choose e R Z φ(n), and compute d = e mod φ(n). Choose c R Z n, and compute k = c d mod n. Then sk = (n, d, k) and pk = (n, e, c). ii. Sign(sk, m) = (b, h) Compute a = r e mod n, h = H(n e c a m), and b = rk h mod n, where r R Z n. iii. Verify(pk, m, b, h) = {0, } Compute a = b e /c h mod n. Signature (m, b, h) is valid if and only if h = H(n e c a m). 3. Given (p, g, y, z, z 2 ), it is either log g y = log g z ( mod p) or log g y = log g z 2 ( mod p), but not both. (a) Assume that P knows x = log g y = log g z ( mod p). Give a zero-knowledge of proof P(x ), V of this knowledge without revealing which z i that y has the same exponent with. Show its completeness, soundness and zero-knowledge. Let P be the prover and V be the honest verifier. The honest-verifier zeroknowledge proof of knowledge of either x = log g z mod p or x 2 = log g z 2 mod p is as follows { i. Commitment P V A = g r mod p A 2 = g B 2 c 2, where (r, B 2 mod p 2, c 2 ) R (Z p ) 3. ii. Challenge V P c R Z { p iii. Response P V (c, B ) = (c c 2, c x + r) mod (p ). (c 2, B 2 ) c + c 2 c (mod (p )) V accepts P if and only if g B c A (mod p) g B 2 c 2 2 A 2 (mod p) Correctness of the above honest-verifier zero-knowledge proof system is as follows Completeness If P knows x = log g z mod p, he always convinces V by the above protocol. Soundness Without knowing x = log g z mod p and x 2 = log g z 2 mod p, P can convince V by guessing V s challenge with probability p as follows i. Choose (c, c 2, B, B 2 ) R (Z p ) 4 and compute A = gb c mod p and A 2 = gb 2 2 c 2 mod p. ii. Interact with V (A, A 2 ) = c. -4

5 iii. If c + c 2 = c, respond (c, c 2, B, B 2 ) to convince V. If P convinces V with probability more than p, there exists some commitments such that P can convince V for at least two different challenges with the same commitment. For such two accepting transcripts (A, A 2, c, c, c 2, B, B 2 ) and (A, A 2, c, c, c 2, B, B 2 ), i {, 2} such that c i c i ( c + c 2 c c c + c 2 (mod p )). Therefore, we can extract the knowledge x i = log g z i mod p for some i {, 2} as follows { g B i c i i A i (mod p) g B i i c i Ai (mod p) g B i B i i c i c i (mod p) B i B i c g i c i i (mod p) log g z i = B i B i c i c i mod (p ) However, extracting the knowledge x i = log g z i mod p implies solving the discrete logarithm problem, which contradicts the discrete logarithm assumption. Therefore, P without the knowledge x = log g z mod p and x 2 = log g z 2 mod p cannot convince V with probability more than p. Zero-Knowledge Suppose that V is an honest verifier. Define the accepting transcript function tr P,V (x i ) = {(A, A 2, c, c, c 2, B, B 2 ) (Z p) 2 (Z p ) 5 c + c 2 c (mod (p )), g B c A (mod p), g B 2 c 2 2 A 2 (mod p)}. For any accepting transcript (A R Z p, A 2 = g B 2 c 2 2, c R Z p, c = c c 2, c 2 R Z p, B = c x + r, B 2 R Z p ) tr P,V (x ), we have Pr [tr P,V (x ) = (A, A 2, c, c, c 2, B, B 2 )] = (p ) 4 For any accepting transcript (A = g B c, A 2 R Z p, c R Z p, c R Z p, c 2 = c c, B R Z p, B 2 = c 2 x 2 + r) tr P,V (x 2 ), we have Pr [tr P,V (x 2 ) = (A, A 2, c, c, c 2, B, B 2 )] = (p ) 4 Therefore, the zero-knowledge proof systems P (x ), V and P (x 2 ), V have the same distribution of transcripts. We construct the probabilistic polynomial-time simulator S to simulate the accepting transcript tr P,V (x i ) by tr S,V (x i ) as follows i. Choose (c, c 2, B, B 2 ) R (Z p ) 4. ii. Compute A = g B c mod p, A 2 = g B 2 c 2 2 mod p, and c = c + c 2 mod (p ). iii. Return (A, A 2, c, c, c 2, B, B 2 ) as an accepting transcript. For any accepting transcript (A, A 2, c, c, c 2, B, B 2 ) tr S,V (x i ), we have Pr [tr S,V (x i ) = (A, A 2, c, c, c 2, B, B 2 )] = (p ) 4-5

6 The expected execution time of simulator S is t S poly(k), where k is the security parameter. S is in polynomial time and the probability distributions of tr P,V (x i ) and tr S,V (x i ) are indistinguishable. Therefore, the honestverifier proof system is zero-knowledge. (b) Assume that P knows x 2 = log g y = log g z 2 ( mod p). Give a zero-knowledge of proof P(x 2 ), V of this knowledge without revealing which z i that y has the same exponent with. Let P be the prover and V be the honest verifier. The honest-verifier zeroknowledge proof of knowledge of either x = log g z mod p or x 2 = log g z 2 mod p is as follows { i. Commitment P V A = g B c mod p A 2 = g r, where (r, B mod p, c ) R (Z p ) 3. ii. Challenge V P c R Z { p iii. Response P V (c, B ) (c 2, B 2 ) = (c c, c 2 x 2 + r) mod (p ). c + c 2 c (mod (p )) V accepts P if and only if g B c A (mod p) g B 2 c 2 2 A 2 (mod p) (c) Show that the distributions of transcripts of P(x ), V and P(x 2 ), V are identical. Define the accepting transcript function tr P,V (x i ) = {(A, A 2, c, c, c 2, B, B 2 ) (Z p) 2 (Z p ) 5 c +c 2 c (mod (p )), g B c A (mod p), g B 2 2 c 2 A 2 (mod p)}. For any accepting transcript (A R Z p, A 2 = g B 2 /y 2 c 2, c, c = c c 2, c 2 R Z p, B = c x + r, B 2 R Z p ) tr P,V (x ), we have Pr [tr P,V (x ) = (A, A 2, c, c, c 2, B, B 2 )] = (p ) 4 For any accepting transcript (A = g B c, A 2 R Z p,, c R Z p, c 2 = c c, B R Z p, B 2 = c 2 x 2 + r) tr P,V (x 2 ), we have Pr [tr P,V (x 2 ) = (A, A 2, c, c, c 2, B, B 2 )] = (p ) 4 Therefore, the zero-knowledge proof systems P (x ), V and P (x 2 ), V have the same distribution of transcripts. -6

7 4. We consider the multi-authority secure electronic voting scheme without a trusted center, discussed in classes. How does the authority A i assures A j that the sent share s i,j = f i (x j ) is indeed consistent with all other shares sent to the other authorities? Let p = kq + be a large prime, where q is also a large prime, and G q = g be a cyclic multiplicative group of order q. Suppose that (A, A 2,, A n ) are the n authorities and any t-out-of-n authorities can tally votes. Each authority A i selects x i and a (t )-degree polynomial f i (x) = t k=0 b i,kx k with f i (0) = x i and publishes h i = g x i and B i,k = g b i,k for 0 k t. Then the public key is h = t i= h i and the secret key is x = t i= x i = t i= f i(0) = f(0), where f(x) = t i= f i(x). Each A i sends s i,j = f i (j) to A j via a secure channel. Each A j checks whether g s i,j t k=0 (B i,k) jk (mod p) and computes share s j = t i= s i,j = t i= f i(j) = f(j). -7

Cryptology. Vilius Stakėnas autumn

Cryptology. Vilius Stakėnas autumn Cryptology Vilius Stakėnas 2010 autumn 2.22 Cryptographic protocols 2 Key distribution............................................ 3 Zero-knowledge proofs...................................... 4 ZKP concept.............................................

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Lecture 22. We first consider some constructions of standard commitment schemes. 2.1 Constructions Based on One-Way (Trapdoor) Permutations

Lecture 22. We first consider some constructions of standard commitment schemes. 2.1 Constructions Based on One-Way (Trapdoor) Permutations CMSC 858K Advanced Topics in Cryptography April 20, 2004 Lecturer: Jonathan Katz Lecture 22 Scribe(s): agaraj Anthapadmanabhan, Ji Sun Shin 1 Introduction to These otes In the previous lectures, we saw

More information

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu MTAT.07.003 Cryptology II Zero-knowledge Proofs Sven Laur University of Tartu Formal Syntax Zero-knowledge proofs pk (pk, sk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) (pk,sk)? R

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

An Identification Scheme Based on KEA1 Assumption

An Identification Scheme Based on KEA1 Assumption All rights are reserved and copyright of this manuscript belongs to the authors. This manuscript has been published without reviewing and editing as received from the authors: posting the manuscript to

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

Practical Verifiable Encryption and Decryption of Discrete Logarithms

Practical Verifiable Encryption and Decryption of Discrete Logarithms Practical Verifiable Encryption and Decryption of Discrete Logarithms Jan Camenisch IBM Zurich Research Lab Victor Shoup New York University p.1/27 Verifiable encryption of discrete logs Three players:

More information

PAPER An Identification Scheme with Tight Reduction

PAPER An Identification Scheme with Tight Reduction IEICE TRANS. FUNDAMENTALS, VOL.Exx A, NO.xx XXXX 200x PAPER An Identification Scheme with Tight Reduction Seiko ARITA, Member and Natsumi KAWASHIMA, Nonmember SUMMARY There are three well-known identification

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Lecture 10: Zero-Knowledge Proofs

Lecture 10: Zero-Knowledge Proofs Lecture 10: Zero-Knowledge Proofs Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Some of these slides are based on note by Boaz Barak. Quo vadis? Eo Romam

More information

Lecture 3: Interactive Proofs and Zero-Knowledge

Lecture 3: Interactive Proofs and Zero-Knowledge CS 355 Topics in Cryptography April 9, 2018 Lecture 3: Interactive Proofs and Zero-Knowledge Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu So far in the class, we have only covered basic cryptographic

More information

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics F. Prost Frederic.Prost@ens-lyon.fr Ecole Normale Supérieure de Lyon July 2015 F. Prost Frederic.Prost@ens-lyon.fr (Ecole

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

A Note on the Cramer-Damgård Identification Scheme

A Note on the Cramer-Damgård Identification Scheme A Note on the Cramer-Damgård Identification Scheme Yunlei Zhao 1, Shirley H.C. Cheung 2,BinyuZang 1,andBinZhu 3 1 Software School, Fudan University, Shanghai 200433, P.R. China {990314, byzang}@fudan.edu.cn

More information

Statistically Secure Sigma Protocols with Abort

Statistically Secure Sigma Protocols with Abort AARHUS UNIVERSITY COMPUTER SCIENCE MASTER S THESIS Statistically Secure Sigma Protocols with Abort Author: Anders Fog BUNZEL (20112293) Supervisor: Ivan Bjerre DAMGÅRD September 2016 AARHUS AU UNIVERSITY

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Cryptographic Protocols FS2011 1

Cryptographic Protocols FS2011 1 Cryptographic Protocols FS2011 1 Stefan Heule August 30, 2011 1 License: Creative Commons Attribution-Share Alike 3.0 Unported (http://creativecommons.org/ licenses/by-sa/3.0/) Contents I Interactive Proofs

More information

Threshold Undeniable RSA Signature Scheme

Threshold Undeniable RSA Signature Scheme Threshold Undeniable RSA Signature Scheme Guilin Wang 1, Sihan Qing 1, Mingsheng Wang 1, and Zhanfei Zhou 2 1 Engineering Research Center for Information Security Technology; State Key Laboratory of Information

More information

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification Lecture 10 Public Key Cryptography: Encryption + Signatures 1 Identification Public key cryptography can be also used for IDENTIFICATION Identification is an interactive protocol whereby one party: prover

More information

III. Authentication - identification protocols

III. Authentication - identification protocols III. Authentication - identification protocols Definition 3.1 A cryptographic protocol is a distributed algorithm describing precisely the interaction between two or more parties, achieving certain security

More information

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University Session 4: Efficient Zero Knowledge Yehuda Lindell Bar-Ilan University 1 Proof Systems Completeness: can convince of a true statement Soundness: cannot convince for a false statement Classic proofs: Written

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1 Cryptography CS 555 Topic 23: Zero-Knowledge Proof and Cryptographic Commitment CS555 Topic 23 1 Outline and Readings Outline Zero-knowledge proof Fiat-Shamir protocol Schnorr protocol Commitment schemes

More information

Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh

Analysis - Post-Quantum Security of Fiat-Shamir by Dominic Unruh Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh Bruno Produit Institute of Computer Science University of Tartu produit@ut.ee December 19, 2017 Abstract This document is an analysis

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

Entity Authentication

Entity Authentication Entity Authentication Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie? α k The

More information

Lecture Notes 20: Zero-Knowledge Proofs

Lecture Notes 20: Zero-Knowledge Proofs CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Lecture Notes 20: Zero-Knowledge Proofs Reading. Katz-Lindell Ÿ14.6.0-14.6.4,14.7 1 Interactive Proofs Motivation: how can parties

More information

Augmented Black-Box Simulation and Zero Knowledge Argument for NP

Augmented Black-Box Simulation and Zero Knowledge Argument for NP Augmented Black-Box Simulation and Zero Knowledge Argument for N Li Hongda, an Dongxue, Ni eifang The Data Assurance and Communication Security Research Center, School of Cyber Security, University of

More information

Non-Interactive Zero-Knowledge from Homomorphic Encryption. Ivan Damgård (Aarhus Universitet) Nelly Fazio, Antonio Nicolosi (NYU)

Non-Interactive Zero-Knowledge from Homomorphic Encryption. Ivan Damgård (Aarhus Universitet) Nelly Fazio, Antonio Nicolosi (NYU) Non-Interactive Zero-Knowledge from Homomorphic Encryption Ivan Damgård (Aarhus Universitet) Nelly Fazio, Antonio Nicolosi (NYU) January 27th, 2006 NYU Crypto Reading Group Zero-Knowledge and Interaction

More information

1 Recap: Interactive Proofs

1 Recap: Interactive Proofs Theoretical Foundations of Cryptography Lecture 16 Georgia Tech, Spring 2010 Zero-Knowledge Proofs 1 Recap: Interactive Proofs Instructor: Chris Peikert Scribe: Alessio Guerrieri Definition 1.1. An interactive

More information

Lecture 17: Constructions of Public-Key Encryption

Lecture 17: Constructions of Public-Key Encryption COM S 687 Introduction to Cryptography October 24, 2006 Lecture 17: Constructions of Public-Key Encryption Instructor: Rafael Pass Scribe: Muthu 1 Secure Public-Key Encryption In the previous lecture,

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL

ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL 1 ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL GIOVANNI DI CRESCENZO Telcordia Technologies, Piscataway, NJ, USA. E-mail: giovanni@research.telcordia.com IVAN VISCONTI Dipartimento di Informatica

More information

Introduction to Cryptography Lecture 13

Introduction to Cryptography Lecture 13 Introduction to Cryptography Lecture 13 Benny Pinkas June 5, 2011 Introduction to Cryptography, Benny Pinkas page 1 Electronic cash June 5, 2011 Introduction to Cryptography, Benny Pinkas page 2 Simple

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

Tightly-Secure Signatures From Lossy Identification Schemes

Tightly-Secure Signatures From Lossy Identification Schemes Tightly-Secure Signatures From Lossy Identification Schemes Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi 2 École normale supérieure {michel.abdalla,pierre-alain.fouque,vadim.lyubashevsky}@ens.fr

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

Extracting Witnesses from Proofs of Knowledge in the Random Oracle Model

Extracting Witnesses from Proofs of Knowledge in the Random Oracle Model Extracting Witnesses from Proofs of Knowledge in the Random Oracle Model Jens Groth Cryptomathic and BRICS, Aarhus University Abstract We prove that a 3-move interactive proof system with the special soundness

More information

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol Non-Interactive ZK: The Feige-Lapidot-Shamir protocol April 20, 2009 Remainders FLS protocol Definition (Interactive proof system) A pair of interactive machines (P, V ) is called an interactive proof

More information

Impossibility and Feasibility Results for Zero Knowledge with Public Keys

Impossibility and Feasibility Results for Zero Knowledge with Public Keys Impossibility and Feasibility Results for Zero Knowledge with Public Keys Joël Alwen 1, Giuseppe Persiano 2, and Ivan Visconti 2 1 Technical University of Vienna A-1010 Vienna, Austria. e9926980@stud3.tuwien.ac.at

More information

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties Vitaly Shmatikov slide 1 Reminder: Oblivious Transfer b 0, b 1 i = 0 or 1 A b i B A inputs two bits, B inputs the index

More information

Lecture 9 and 10: Malicious Security - GMW Compiler and Cut and Choose, OT Extension

Lecture 9 and 10: Malicious Security - GMW Compiler and Cut and Choose, OT Extension CS 294 Secure Computation February 16 and 18, 2016 Lecture 9 and 10: Malicious Security - GMW Compiler and Cut and Choose, OT Extension Instructor: Sanjam Garg Scribe: Alex Irpan 1 Overview Garbled circuits

More information

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem CS 276 Cryptography Oct 8, 2014 Lecture 11: Non-Interactive Zero-Knowledge II Instructor: Sanjam Garg Scribe: Rafael Dutra 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian

More information

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses.

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 17 March 31, 2010 Scribe: Jonathan Ullman 1 Interactive Proofs ecall the definition of NP: L NP there exists a polynomial-time V and polynomial

More information

Lecture 3,4: Universal Composability

Lecture 3,4: Universal Composability 6.897: Advanced Topics in Cryptography Feb 5, 2004 Lecture 3,4: Universal Composability Lecturer: Ran Canetti Scribed by: Yael Kalai and abhi shelat 1 Introduction Our goal in these two lectures is to

More information

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004 CMSC 858K Advanced Topics in Cryptography February 24, 2004 Lecturer: Jonathan Katz Lecture 9 Scribe(s): Julie Staub Avi Dalal Abheek Anand Gelareh Taban 1 Introduction In previous lectures, we constructed

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2 Contents 1 Recommended Reading 1 2 Public Key/Private Key Cryptography 1 2.1 Overview............................................. 1 2.2 RSA Algorithm.......................................... 2 3 A Number

More information

Interactive Zero-Knowledge with Restricted Random Oracles

Interactive Zero-Knowledge with Restricted Random Oracles Interactive Zero-Knowledge with Restricted Random Oracles Moti Yung 1 and Yunlei Zhao 2 1 RSA Laboratories and Department of Computer Science, Columbia University, New York, NY, USA. moti@cs.columbia.edu

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

CMSC 858K Introduction to Secure Computation October 18, Lecture 19

CMSC 858K Introduction to Secure Computation October 18, Lecture 19 CMSC 858K Introduction to Secure Computation October 18, 2013 Lecturer: Jonathan Katz Lecture 19 Scribe(s): Alex J. Malozemoff 1 Zero Knowledge Variants and Results Recall that a proof-of-knowledge (PoK)

More information

Probabilistically Checkable Arguments

Probabilistically Checkable Arguments Probabilistically Checkable Arguments Yael Tauman Kalai Microsoft Research yael@microsoft.com Ran Raz Weizmann Institute of Science ran.raz@weizmann.ac.il Abstract We give a general reduction that converts

More information

Lecture 13: Seed-Dependent Key Derivation

Lecture 13: Seed-Dependent Key Derivation Randomness in Cryptography April 11, 2013 Lecture 13: Seed-Dependent Key Derivation Lecturer: Yevgeniy Dodis Scribe: Eric Miles In today s lecture, we study seeded key-derivation functions (KDFs) in the

More information

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives S C I E N C E P A S S I O N T E C H N O L O G Y Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives David Derler, Christian Hanser, and Daniel Slamanig, IAIK,

More information

14 Diffie-Hellman Key Agreement

14 Diffie-Hellman Key Agreement 14 Diffie-Hellman Key Agreement 14.1 Cyclic Groups Definition 14.1 Example Let д Z n. Define д n = {д i % n i Z}, the set of all powers of д reduced mod n. Then д is called a generator of д n, and д n

More information

Group Undeniable Signatures

Group Undeniable Signatures Group Undeniable Signatures YUH-DAUH LYUU Department of Computer Science & Information Engineering and Department of Finance National Taiwan University No 1, Sec 4, Roosevelt Rd, Taipei, Taiwan lyuu@csie.ntu.edu.tw

More information

On The (In)security Of Fischlin s Paradigm

On The (In)security Of Fischlin s Paradigm On The (In)security Of Fischlin s Paradigm Prabhanjan Ananth 1, Raghav Bhaskar 1, Vipul Goyal 1, and Vanishree Rao 2 1 Microsoft Research India prabhanjan.va@gmail.com,{rbhaskar,vipul}@microsoft.com 2

More information

Notes for Lecture 16

Notes for Lecture 16 COS 533: Advanced Cryptography Lecture 16 (11/13/2017) Lecturer: Mark Zhandry Princeton University Scribe: Boriana Gjura Notes for Lecture 16 1 Lattices (continued) 1.1 Last time. We defined lattices as

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

Lecture 15: Interactive Proofs

Lecture 15: Interactive Proofs COM S 6830 Cryptography Tuesday, October 20, 2009 Instructor: Rafael Pass Lecture 15: Interactive Proofs Scribe: Chin Isradisaikul In this lecture we discuss a new kind of proofs that involves interaction

More information

Lecture Notes. (electronic money/cash) Michael Nüsken b-it. IPEC winter 2008

Lecture Notes. (electronic money/cash) Michael Nüsken b-it. IPEC winter 2008 Lecture Notes ee (electronic money/cash) Michael Nüsken b-it (Bonn-Aachen International Center for Information Technology) IPEC winter 2008 c 2008 Michael Nüsken Workshop

More information

On the Security of Classic Protocols for Unique Witness Relations

On the Security of Classic Protocols for Unique Witness Relations On the Security of Classic Protocols for Unique Witness Relations Yi Deng 1,2, Xuyang Song 1,2, Jingyue Yu 1,2, and Yu Chen 1,2 1 State Key Laboratory of Information Security, Institute of Information

More information

Lecture 18: Zero-Knowledge Proofs

Lecture 18: Zero-Knowledge Proofs COM S 6810 Theory of Computing March 26, 2009 Lecture 18: Zero-Knowledge Proofs Instructor: Rafael Pass Scribe: Igor Gorodezky 1 The formal definition We intuitively defined an interactive proof to be

More information

CS 355: Topics in Cryptography Spring Problem Set 5.

CS 355: Topics in Cryptography Spring Problem Set 5. CS 355: Topics in Cryptography Spring 2018 Problem Set 5 Due: June 8, 2018 at 5pm (submit via Gradescope) Instructions: You must typeset your solution in LaTeX using the provided template: https://crypto.stanford.edu/cs355/homework.tex

More information

Cryptographic Protocols. Steve Lai

Cryptographic Protocols. Steve Lai Cryptographic Protocols Steve Lai This course: APPLICATIONS (security) Encryption Schemes Crypto Protocols Sign/MAC Schemes Pseudorandom Generators And Functions Zero-Knowledge Proof Systems Computational

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols

The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols Mihir Bellare and Adriana Palacio Dept. of Computer Science & Engineering, University of California, San Diego 9500 Gilman Drive,

More information

Cryptanalysis of Threshold-Multisignature Schemes

Cryptanalysis of Threshold-Multisignature Schemes Cryptanalysis of Threshold-Multisignature Schemes Lifeng Guo Institute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, P.R. China E-mail address:

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Commitment Schemes and Zero-Knowledge Protocols (2011)

Commitment Schemes and Zero-Knowledge Protocols (2011) Commitment Schemes and Zero-Knowledge Protocols (2011) Ivan Damgård and Jesper Buus Nielsen Aarhus University, BRICS Abstract This article is an introduction to two fundamental primitives in cryptographic

More information

Lecture 15 - Zero Knowledge Proofs

Lecture 15 - Zero Knowledge Proofs Lecture 15 - Zero Knowledge Proofs Boaz Barak November 21, 2007 Zero knowledge for 3-coloring. We gave a ZK proof for the language QR of (x, n) such that x QR n. We ll now give a ZK proof (due to Goldreich,

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 2 Lecture 15 Public Coins and Graph (Non)Isomorphism 3 Intro Goal and Plan Goal understand

More information

Cryptographic Protocols Notes 2

Cryptographic Protocols Notes 2 ETH Zurich, Department of Computer Science SS 2018 Prof. Ueli Maurer Dr. Martin Hirt Chen-Da Liu Zhang Cryptographic Protocols Notes 2 Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang) About the notes:

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Notes 23 (rev. 1) Professor M. J. Fischer November 29, 2005 1 Oblivious Transfer Lecture Notes 23 In the locked

More information

1 Rabin Squaring Function and the Factoring Assumption

1 Rabin Squaring Function and the Factoring Assumption COMS W461 Introduction to Cryptography October 11, 005 Lecture 11: Introduction to Cryptography Lecturer: Tal Malkin Scribes: Kate McCarthy, Adam Vartanian Summary In this lecture we will prove that Rabin

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

How many rounds can Random Selection handle?

How many rounds can Random Selection handle? How many rounds can Random Selection handle? Shengyu Zhang Abstract The construction of zero-knowledge proofs can be greatly simplified if the protocol is only required be secure against the honest verifier.

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

From Secure MPC to Efficient Zero-Knowledge

From Secure MPC to Efficient Zero-Knowledge From Secure MPC to Efficient Zero-Knowledge David Wu March, 2017 The Complexity Class NP NP the class of problems that are efficiently verifiable a language L is in NP if there exists a polynomial-time

More information

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay Digital Signatures Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 24, 2018 1 / 29 Group Theory Recap Groups Definition A set

More information

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs.

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs. COS 533: Advanced Cryptography Lecture 9 (October 11, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Udaya Ghai Notes for Lecture 9 1 Last Time Last time, we introduced zero knowledge proofs

More information

Some ZK security proofs for Belenios

Some ZK security proofs for Belenios Some ZK security proofs for Belenios Pierrick Gaudry CNRS, INRIA, Université de Lorraine January 30, 2017 The purpose of this document is to justify the use of ZK proofs in Belenios. Most of them are exactly

More information

Pseudorandom Generators

Pseudorandom Generators Principles of Construction and Usage of Pseudorandom Generators Alexander Vakhitov June 13, 2005 Abstract In this report we try to talk about the main concepts and tools needed in pseudorandom generators

More information

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today:

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today: Today: Introduction to the class. Examples of concrete physical attacks on RSA A computational approach to cryptography Pseudorandomness 1 What are Physical Attacks Tampering/Leakage attacks Issue of how

More information

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures CS 7810 Graduate Cryptography October 30, 2017 Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis 1 Topic Covered. Trapdoor Permutations.

More information

Constant-round Leakage-resilient Zero-knowledge from Collision Resistance *

Constant-round Leakage-resilient Zero-knowledge from Collision Resistance * Constant-round Leakage-resilient Zero-knowledge from Collision Resistance * Susumu Kiyoshima NTT Secure Platform Laboratories, Tokyo, Japan kiyoshima.susumu@lab.ntt.co.jp August 20, 2018 Abstract In this

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 19 November 8, 2017 CPSC 467, Lecture 19 1/37 Zero Knowledge Interactive Proofs (ZKIP) ZKIP for graph isomorphism Feige-Fiat-Shamir

More information

Non-Conversation-Based Zero Knowledge

Non-Conversation-Based Zero Knowledge Non-Conversation-Based Zero Knowledge JOËL ALWEN Università di Salerno 84084 Fisciano (SA) ITALY jfa237@nyu.edu GIUSEPPE PERSIANO Università di Salerno 84084 Fisciano (SA) ITALY giuper@dia.unisa.it Submission

More information

Interactive proof and zero knowledge protocols

Interactive proof and zero knowledge protocols Interactive proof and zero knowledge protocols Zero-knowledge: definition Probabilistic complexity classes and Interactive proofs Graph isomorphism and PCP Some zero knowledge protocols: Feige-Fiat-Shamir

More information

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange ENEE 457: Computer Systems Security 10/3/16 Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Boaz Barak November 27, 2007 Quick review of homework 7 Existence of a CPA-secure public key encryption scheme such that oracle

More information

Batch Range Proof For Practical Small Ranges

Batch Range Proof For Practical Small Ranges Batch Range Proof For Practical Small Ranges Kun Peng and Feng Bao dr.kun.peng@gmail.com Institute for Inforcomm Research (I 2 R), Singapore 1 Agenda 1. Introduction 2. Range proof 3. Batch proof 4. Extended

More information

Pairing-Based Identification Schemes

Pairing-Based Identification Schemes Pairing-Based Identification Schemes David Freeman Information Theory Research HP Laboratories Palo Alto HPL-2005-154 August 24, 2005* public-key cryptography, identification, zero-knowledge, pairings

More information

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture:

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture: University of Tokyo: Advanced Algorithms Summer 2010 Lecture 6 27 May Lecturer: François Le Gall Scribe: Baljak Valentina As opposed to prime factorization, primality testing is determining whether a given

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Round-Efficient Multi-party Computation with a Dishonest Majority

Round-Efficient Multi-party Computation with a Dishonest Majority Round-Efficient Multi-party Computation with a Dishonest Majority Jonathan Katz, U. Maryland Rafail Ostrovsky, Telcordia Adam Smith, MIT Longer version on http://theory.lcs.mit.edu/~asmith 1 Multi-party

More information