4. Some Applications of first order linear differential

Size: px
Start display at page:

Download "4. Some Applications of first order linear differential"

Transcription

1

2

3 August 30, Some Applications of fist ode linea diffeential Equations The modeling poblem Thee ae seveal steps equied fo modeling scientific phenomena 1. Data collection (expeimentation) Given a cetain physical system, one has to un expeiments and get some idea of how the obseved data depend on time. 2. Setting up scientific law to descibe the time dependence This may involve diffeential o diffeence equations. The idea is to find the coect equations whose solutions give the obseved time dependence. 3. Analysis of solutions of appopiate equations to descibe obseved phenomena. We will descibe seveal known applications involving this pocess. Radioactive Decay It is known that cetain adioactive substances exhibit spontaneous decay. That is, if Q(t) epesents the amount of the substance at time t, then Q(t) satisfies the diffeential equation dq = Q(t) (1) dt whee is a positive eal numbe. This simply means that the ate of decay of the quantity at time t is popotional to the amount pesent at time t. We know that the geneal solution to (1) is Q(t) = Q(0)e t whee Q(0) is the amount pesent at time 0. We can use this to solve vaious questions elated to adio-active decay. 1. The element Thoium-234 (Th-234) exhibits adio-active decay. If 100 mg of Th-234 decays to mg in one week, find an expession fo

4 August 30, the amount at any time t. Also, find the half-life of the element (the amount of time it takes to decay to half its oiginal value). Let Q(t) denote the amount at time t. Let Q 0 = Q(0). Then, Q(t) = Q 0 e t. If t is measued in units of days, and Q(t) is measued in units of milligams (mg), then Q 0 = 100, Q(7) = 100e 7 = 82.04, e 7 = 82.04/100, So, = log(82.04/100) 7 = Q(t) = 100e t = 100e 0.028t. Let t h denote the half-life. Then, So, Q(t h ) = Q 0 e t h = Q = e t h, 2 = e t h. t h = log(2). (2)

5 August 30, Cabon Dating All living beings contain oughly the same concentation in cells of a cetain amount of the adio-active element Cabon-14, C 14. This substance decays at a cetain ate, but gets eplenished by living beings which beathe fom the atmosphee. When a being dies, it does not eplenish its Cabon-14, so the concentation which emains in the cells is smalle than that which was oiginally thee. Since the concentation satisfies Q(t) = Q 0 e t (3) fo some constants Q 0, > 0, and the half-life of C 14 is about 5730 yeas, one can use this fo dating achealogical objects. Let us take an example. Suppose that the emains of a cetain substance contains 20 % of its oiginal amount. How old is the substance? Fom fomula (2), we have o, 5730 = log(2) = log(2) 5730 We seek the time t 1 such that o o Q(t 1 ) = Q 0 5 = Q 0e t = e t 1 log(5) = t 1, t 1 t /(1.21 (10) 4 ) yeas

6 August 30, Compound inteest If inteest is compounded continuously, this gives an example of a model exhibiting exponential gowth. Let us eview inteest calculations. Suppose we ae given a cetain inital amount of money, called the pincipal amount P (0). If this is compounded annually at a ate of 5 % and P (t) denotes the amount of money available afte t yeas, we have P (1) = P (0) +.05 P (0) = P (0)(1 +.05) P (2) = P (1) +.05 P (1) = P (1)(1 +.05) = P (0)(1 +.05) 2 P (t) = P (0)(1 +.05) t Now, suppose the inteest is 5 % pe yea, but compounded monthly. The inteest pe month is 5/12 %. In t yeas, we compound 12t times. So, we get P (t) = P (0)(1 + (.05/12)) 12t. If the inteest is at the ate of %, we get P (t) = P (0)( )12t If the inteest is compounded n times pe yea, we get P (t) = P (0)( n )nt When n, we say we have inteest compounded continuously. What is P (t)? We take H def = n lim ( n )nt Taking logs we get log H = lim n nt log( n ) = lim n log(1 + 1 nt 100 n )

7 August 30, Fo small x, log(1 + x) x, so we get So, and we have log H = lim n 100 n 1 nt = t 100 H = exp( t 100 ), P (t) = P (0)e t 100. Mixing Poblems Suppose a tank contains a solution of Q 0 lbs. of salt dissolved in 100 gallons of wate. Assume that a solution containing 1 lb of salt/gal is poued 4 into the tank at a ate of gal/min. Assume that the solution mixes instantaneously and that the combined solution is dained fom the tank at the same ate of gal/min. 1. How much salt is thee in the tank at time t > 0? 2. Find the limiting amount Q L as t. 3. If = 3, and Q 0 = 2Q L, find the time T fo Q(T ) to be within 2% of Q L. 4. What must be fo T to be no lage than 45 minutes? Solution: Let Q(t) be the amount of salt in the tank at time t. We fist find Q(t). Then we will see that the othe questions can be answeed simply. Let Q in (t) denote the amount of salt that has flowed into the tank at time t, and Q out (t) denote the amount that has flowed out of the tank at time t. Since the numbe of gallons flowing into the tank equals the numbe of gallons flowing out of the tank. The total numbe of gallons emains fixed at 100.

8 August 30, Then, Q(t) = Q 0 + Q in Q out and Q (t) = Q in(t) Q out(t) Now, Q in = 4 lb/min and Q out = (amount of salt pe gallon) Hence, we get the d.e. (numbe of gallons flowing out pe minute) = Q(t) 100 o Q = 4 Q(t) 100, Q + Q(t) 100 = 4. This is a linea d.e., with solution obtained fom µ = e t 100 [ ] Q(t) = e t e t C Q(t) = 25 + Ce t 100 Q 0 = 25 + C, C = Q 0 25

9 August 30, Q L = 25. Q 0 = 2Q L Q 0 = 50, C = 25. Find T such that Q(T ) Q L < (.02)Q L. Plug into above and get Q(T ) < (1.02)25 Q(T ) = e 3T 100 < (1.02)25 Then, solve fo T. Obseve that if we had diffeent ates in of input and out of output, and we let V (t) be the volume in the tank at time t, then we would get the elations and V (t) = V (0) + t( in out ), and So, Q in = (amount of salt pe gal coming in) (numbe of gallons pe unit time coming in), Q out = (amount of salt pe gal going out) (numbe of gallons pe unit time going out), = Q(t) V (t) out.

10 August 30, Q = Q in Q out = (amount of salt pe gal coming in) in Q(t) V (t) out. Newton s Law of Cooling: Assume a solid body B with initial tempeatue Θ 0 (at time t = 0) is immesed in an ambient fluid whose tempeatue is kept at the constant value T. Let Θ(t) denote the tempeatue of the body at time t. Newton s law of cooling states that Θ (t) = k(θ(t) T ) fo some constant k. That is, the ate of change of the tempeatue of B at time t > 0 is popotional to the diffeence of the tempeatue of B and the tempeatue T of the ambient fluid. Let us solve this d.e. We have dθ dt = k(θ T ) dθ Θ T = kdt log(θ T ) = kt + c Θ T = Ce kt Θ = T + Ce kt = T + (Θ 0 T )e kt Have 3 paametes T, θ 0, k to detemine. Typical Poblem Suppose that an object whose tempeatue is 40 degees Celsius (40 C) is placed in a oom whose tempeatue is maintained at

11 August 30, degees Celsius (20 C). One minute late, the tempeatue of the object is 36 C. Assuming that Newton s law of cooling holds, what is the tempeatue of the object 10 minutes late? Hee we have Θ 0 = 40, T = 20. Then, letting t = 1, we have Now, plugging in T = 11 gives Θ(t) = Θ(1) = 20 + (40 20)e k 36 = e k = ek k = ln 4 5 Θ = e 11(ln 4 5 )

4. Some Applications of first order linear differential

4. Some Applications of first order linear differential September 9, 2012 4-1 4. Some Applications of first order linear differential Equations The modeling problem There are several steps required for modeling scientific phenomena 1. Data collection (experimentation)

More information

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects Pulse Neuton Neuton (PNN) tool logging fo poosity Some theoetical aspects Intoduction Pehaps the most citicism of Pulse Neuton Neuon (PNN) logging methods has been chage that PNN is to sensitive to the

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

The Substring Search Problem

The Substring Search Problem The Substing Seach Poblem One algoithm which is used in a vaiety of applications is the family of substing seach algoithms. These algoithms allow a use to detemine if, given two chaacte stings, one is

More information

9.2 Reaction rate and rate equation

9.2 Reaction rate and rate equation 9.2.1 Expession of eaction ate The ate () of a chemical eaction is defined as the concentation change of a eactant o a poduct pe unit time. mean ate [A] c c = t t t 2 1 2 1 c c 1 instantaneous ate: Physical

More information

F-IF Logistic Growth Model, Abstract Version

F-IF Logistic Growth Model, Abstract Version F-IF Logistic Gowth Model, Abstact Vesion Alignments to Content Standads: F-IFB4 Task An impotant example of a model often used in biology o ecology to model population gowth is called the logistic gowth

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Article : 8 Article : 8 Stress Field. and. Singularity Problem

Article : 8 Article : 8 Stress Field. and. Singularity Problem Aticle : 8 Aticle : 8 Stess Field and Singulaity Poblem (fatigue cack gowth) Repeated load cycles cack development Time (cycles) Cack length 3 Weakening due to gowing cacks Cack length stess concentation

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 2 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 2 Solutions MA 214 Calculus IV (Spring 2016) Section 2 Homework Assignment 2 Solutions 1 Boyce and DiPrima, p 60, Problem 2 Solution: Let M(t) be the mass (in grams) of salt in the tank after t minutes The initial-value

More information

CBE Transport Phenomena I Final Exam. December 19, 2013

CBE Transport Phenomena I Final Exam. December 19, 2013 CBE 30355 Tanspot Phenomena I Final Exam Decembe 9, 203 Closed Books and Notes Poblem. (20 points) Scaling analysis of bounday laye flows. A popula method fo measuing instantaneous wall shea stesses in

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

CHAPTER 3. Section 1. Modeling Population Growth

CHAPTER 3. Section 1. Modeling Population Growth CHAPTER 3 Section 1. Modeling Population Gowth 1.1. The equation of the Malthusian model is Pt) = Ce t. Apply the initial condition P) = 1. Then 1 = Ce,oC = 1. Next apply the condition P1) = 3. Then 3

More information

Problem 1: Multiple Choice Questions

Problem 1: Multiple Choice Questions Mathematics 102 Review Questions Poblem 1: Multiple Choice Questions 1: Conside the function y = f(x) = 3e 2x 5e 4x (a) The function has a local maximum at x = (1/2)ln(10/3) (b) The function has a local

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Math 1525 Excel Lab 3 Exponential and Logarithmic Functions Spring, 2001

Math 1525 Excel Lab 3 Exponential and Logarithmic Functions Spring, 2001 Math 1525 Excel Lab 3 Exponential and Logaithmic Functions 1 Math 1525 Excel Lab 3 Exponential and Logaithmic Functions Sping, 21 Goal: The goals of Lab 3 ae to illustate exponential, logaithmic, and logistic

More information

Downloaded from

Downloaded from Chapte Notes Subject: Chemisty Class: XI Chapte: Themodynamics Top concepts 1. The banch of science which deals with study of diffeent foms of enegy and thei inteconvesion is called themodynamics. 2. A

More information

EXAM NMR (8N090) November , am

EXAM NMR (8N090) November , am EXA NR (8N9) Novembe 5 9, 9. 1. am Remaks: 1. The exam consists of 8 questions, each with 3 pats.. Each question yields the same amount of points. 3. You ae allowed to use the fomula sheet which has been

More information

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8 5 CHAPTER Fundamentals When solving equations that involve absolute values, we usually take cases. EXAMPLE An Absolute Value Equation Solve the equation 0 x 5 0 3. SOLUTION By the definition of absolute

More information

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc.

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc. Numeical solution of diffusion mass tansfe model in adsoption systems Pof., D.Sc. Agenda Mass Tansfe Mechanisms Diffusion Mass Tansfe Models Solving Diffusion Mass Tansfe Models Paamete Estimation 2 Mass

More information

Pulse Neutron Neutron (PNN) tool logging for porosity

Pulse Neutron Neutron (PNN) tool logging for porosity Pulse Neuton Neuton (PNN) tool logging fo poosity Some theoetical aspects Hotwell Handelsges.m.b.H Oedenbuge Stasse 6 7013 Klingenbach, AUSTRIA Tel.: +43 (0) 687-48058 Fax: +43 (0) 687 48059 office@hotwell.at

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs.

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs. MAP4C1 Exam Review Exam Date: Time: Room: Mak Beakdown: Answe these questions on a sepaate page: 1. Which equations model quadatic elations? i) ii) iii) 2. Expess as a adical and then evaluate: a) b) 3.

More information

Three major steps in modeling: Construction of the Model Analysis of the Model Comparison with Experiment or Observation

Three major steps in modeling: Construction of the Model Analysis of the Model Comparison with Experiment or Observation Section 2.3 Modeling : Key Terms: Three major steps in modeling: Construction of the Model Analysis of the Model Comparison with Experiment or Observation Mixing Problems Population Example Continuous

More information

AMB111F Tut 10 Solutions

AMB111F Tut 10 Solutions AMB111F Tut 10 Solutions Question One 1.1 (a) Amount afte n yeas is A n = P (1 + the pincipal amount initially invested. When n = 6 yeas, A n = 9500, and = 8, then 9500 = P (1 + 8 )6. This implies P =

More information

Motithang Higher Secondary School Thimphu Thromde Mid Term Examination 2016 Subject: Mathematics Full Marks: 100

Motithang Higher Secondary School Thimphu Thromde Mid Term Examination 2016 Subject: Mathematics Full Marks: 100 Motithang Highe Seconday School Thimphu Thomde Mid Tem Examination 016 Subject: Mathematics Full Maks: 100 Class: IX Witing Time: 3 Hous Read the following instuctions caefully In this pape, thee ae thee

More information

6.1: Angles and Their Measure

6.1: Angles and Their Measure 6.1: Angles and Thei Measue Radian Measue Def: An angle that has its vetex at the cente of a cicle and intecepts an ac on the cicle equal in length to the adius of the cicle has a measue of one adian.

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs September 18 22, 2017 Mixing Problem Yuliya Gorb Example: A tank with a capacity

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

Analytical Solutions for Confined Aquifers with non constant Pumping using Computer Algebra

Analytical Solutions for Confined Aquifers with non constant Pumping using Computer Algebra Poceedings of the 006 IASME/SEAS Int. Conf. on ate Resouces, Hydaulics & Hydology, Chalkida, Geece, May -3, 006 (pp7-) Analytical Solutions fo Confined Aquifes with non constant Pumping using Compute Algeba

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Contol Systems Fequency Domain Analysis The fequency esponse of a system is defined as the steady-state esponse of the system to a sinusoidal (hamonic) input. Fo linea systems, the esulting steady-state

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Water flows through the voids in a soil which are interconnected. This flow may be called seepage, since the velocities are very small.

Water flows through the voids in a soil which are interconnected. This flow may be called seepage, since the velocities are very small. Wate movement Wate flows though the voids in a soil which ae inteconnected. This flow may be called seepage, since the velocities ae vey small. Wate flows fom a highe enegy to a lowe enegy and behaves

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles. Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation

More information

3.1 Random variables

3.1 Random variables 3 Chapte III Random Vaiables 3 Random vaiables A sample space S may be difficult to descibe if the elements of S ae not numbes discuss how we can use a ule by which an element s of S may be associated

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

MULTILAYER PERCEPTRONS

MULTILAYER PERCEPTRONS Last updated: Nov 26, 2012 MULTILAYER PERCEPTRONS Outline 2 Combining Linea Classifies Leaning Paametes Outline 3 Combining Linea Classifies Leaning Paametes Implementing Logical Relations 4 AND and OR

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER Jey N. Baham Anand B. Shetty Mechanical Kinesiology Laboatoy Depatment of Kinesiology Univesity of Nothen Coloado Geeley, Coloado Muscle powe is one

More information

Variables and Formulas

Variables and Formulas 64 Vaiales and Fomulas Vaiales and Fomulas DEFINITIONS & BASICS 1) Vaiales: These symols, eing lettes, actually epesent numes, ut the numes can change fom time to time, o vay. Thus they ae called vaiales.

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

LC transfer of energy between the driving source and the circuit will be a maximum.

LC transfer of energy between the driving source and the circuit will be a maximum. The Q of oscillatos efeences: L.. Fotney Pinciples of Electonics: Analog and Digital, Hacout Bace Jovanovich 987, Chapte (AC Cicuits) H. J. Pain The Physics of Vibations and Waves, 5 th edition, Wiley

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Nuclear Medicine Physics 02 Oct. 2007

Nuclear Medicine Physics 02 Oct. 2007 Nuclea Medicine Physics Oct. 7 Counting Statistics and Eo Popagation Nuclea Medicine Physics Lectues Imaging Reseach Laboatoy, Radiology Dept. Lay MacDonald 1//7 Statistics (Summaized in One Slide) Type

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Our Universe: GRAVITATION

Our Universe: GRAVITATION Ou Univese: GRAVITATION Fom Ancient times many scientists had shown geat inteest towads the sky. Most of the scientist studied the motion of celestial bodies. One of the most influential geek astonomes

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Absolute Specifications: A typical absolute specification of a lowpass filter is shown in figure 1 where:

Absolute Specifications: A typical absolute specification of a lowpass filter is shown in figure 1 where: FIR FILTER DESIGN The design of an digital filte is caied out in thee steps: ) Specification: Befoe we can design a filte we must have some specifications. These ae detemined by the application. ) Appoximations

More information

x 1 b 1 Consider the midpoint x 0 = 1 2

x 1 b 1 Consider the midpoint x 0 = 1 2 1 chapte 2 : oot-finding def : Given a function f(), a oot is a numbe satisfying f() = 0. e : f() = 2 3 = ± 3 question : How can we find the oots of a geneal function f()? 2.1 bisection method idea : Find

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

An Inventory Model for Two Warehouses with Constant Deterioration and Quadratic Demand Rate under Inflation and Permissible Delay in Payments

An Inventory Model for Two Warehouses with Constant Deterioration and Quadratic Demand Rate under Inflation and Permissible Delay in Payments Ameican Jounal of Engineeing Reseach (AJER) 16 Ameican Jounal of Engineeing Reseach (AJER) e-issn: 3-847 p-issn : 3-936 Volume-5, Issue-6, pp-6-73 www.aje.og Reseach Pape Open Access An Inventoy Model

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

APPLICATION OF MAC IN THE FREQUENCY DOMAIN

APPLICATION OF MAC IN THE FREQUENCY DOMAIN PPLICION OF MC IN HE FREQUENCY DOMIN D. Fotsch and D. J. Ewins Dynamics Section, Mechanical Engineeing Depatment Impeial College of Science, echnology and Medicine London SW7 2B, United Kingdom BSRC he

More information

Rewriting Equations and Formulas. Write original equation.

Rewriting Equations and Formulas. Write original equation. Page 1 of 7 1.4 Rewiting Equations and Fomulas What you should lean GOAL 1 Rewite equations with moe than one vaiale. GOAL Rewite common fomulas, as applied in Example 5. Why you should lean it To solve

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

FW Laboratory Exercise. Survival Estimation from Banded/Tagged Animals. Year No. i Tagged

FW Laboratory Exercise. Survival Estimation from Banded/Tagged Animals. Year No. i Tagged FW66 -- Laboatoy Execise uvival Estimation fom Banded/Tagged Animals Conside a geogaphically closed population of tout (Youngs and Robson 97). The adults ae tagged duing fall spawning, and subsequently

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Section 2.5 Mixing Problems. Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration

Section 2.5 Mixing Problems. Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration Section 2.5 Mixing Problems Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration The problems we will discuss are called mixing problems. They employ tanks and other receptacles

More information

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities Double-angle & powe-eduction identities Pat 5, Tigonomety Lectue 5a, Double Angle and Powe Reduction Fomulas In the pevious pesentation we developed fomulas fo cos( β) and sin( β) These fomulas lead natually

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

Multiple Experts with Binary Features

Multiple Experts with Binary Features Multiple Expets with Binay Featues Ye Jin & Lingen Zhang Decembe 9, 2010 1 Intoduction Ou intuition fo the poect comes fom the pape Supevised Leaning fom Multiple Expets: Whom to tust when eveyone lies

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Introduction and Vectors

Introduction and Vectors SOLUTIONS TO PROBLEMS Intoduction and Vectos Section 1.1 Standads of Length, Mass, and Time *P1.4 Fo eithe sphee the volume is V = 4! and the mass is m =!V =! 4. We divide this equation fo the lage sphee

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850) emal-fluids I Capte 7 Steady eat conduction D. Pimal Fenando pimal@eng.fsu.edu P: (850 40-633 Steady eat conduction Hee we conside one dimensional steady eat conduction. We conside eat tansfe in a plane

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

Goodness-of-fit for composite hypotheses.

Goodness-of-fit for composite hypotheses. Section 11 Goodness-of-fit fo composite hypotheses. Example. Let us conside a Matlab example. Let us geneate 50 obsevations fom N(1, 2): X=nomnd(1,2,50,1); Then, unning a chi-squaed goodness-of-fit test

More information

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012 Stanfod Univesity CS59Q: Quantum Computing Handout 8 Luca Tevisan Octobe 8, 0 Lectue 8 In which we use the quantum Fouie tansfom to solve the peiod-finding poblem. The Peiod Finding Poblem Let f : {0,...,

More information

1.5. Applications. Theorem The solution of the exponential decay equation with N(0) = N 0 is N(t) = N 0 e kt.

1.5. Applications. Theorem The solution of the exponential decay equation with N(0) = N 0 is N(t) = N 0 e kt. 6 Section Objective(s): The Radioactive Decay Equation Newton s Cooling Law Salt in a Water Tanks 151 Exponential Decay 15 Applications Definition 151 The exponential decay equation for N is N = k N, k

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Pola Coodinates Contempoay Calculus 9. POLAR COORDINATES The ectangula coodinate system is immensely useful, but it is not the only way to assign an addess to a point in the plane and sometimes it is

More information

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations 1. Linear Models SPS 2281 - Mathematical Methods Lecture #7 - Applications of First-order Differential Equations (a) Growth and Decay (b) Half-life of Radioactive (c) Carbon Dating (d) Newton s Law of

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information