Nonsynchronous covariation process and limit theorems

Size: px
Start display at page:

Download "Nonsynchronous covariation process and limit theorems"

Transcription

1 Sochac Procee ad her Applcao 121 (211) Noychroou covarao proce ad lm heorem Takak Hayah a,, Nakahro Yohda b a Keo Uvery, Graduae School of Bue Admrao, Hyoh, Yokohama , Japa b Uvery of Tokyo, Graduae School of Mahemacal Scece, Komaba, Meguro-ku, Tokyo 153, Japa Receved 3 Aprl 29; receved reved form 11 December 21; acceped 13 December 21 Avalable ole 22 December 21 Abrac A aympoc drbuo heory of he oychroou covarao proce for couou emmargale preeed. Two couou emmargale are ampled a oppg me a oychroou maer. Thoe amplg me pobly deped o he hory of he ochac procee ad hemelve. The oychroou covarao proce coverge o he uual quadrac covarao of he emmargale a he maxmum ze of he amplg erval ed o zero. We deal wh he cae where he lmg varao proce of he ormalzed approxmao error radom ad prove he covergece o mxed ormaly, or covergece o a codoal Gaua margale. A cla of coe emaor for he aympoc varao proce baed o kerel propoed, whch wll be ueful for acal applcao o hgh-frequecy daa aaly face. A a llurave example, a Poo amplg cheme wh radom chage po dcued. c 21 Elever B.V. All rgh reerved. Keyword: Dcree amplg; Hgh-frequecy daa; Margale ceral lm heorem; Noychrocy; Quadrac varao; Realzed volaly; Sable covergece; Semmargale 1. Iroduco Suppoe ha X ad Y are wo Iô emmargale. A obvouly kow, he mple quadrac form of creme U(I) = (X X 1 )(Y Y 1 ) coverge probably o he quadrac covarao [X, Y ] whe are deermc ad max{ 1 } alog a equece of paro I = ( ) of he erval [, ]. I alo kow ha b 1(U(I) [X, Y ]) coverge ably o a mxure of Gaua margale a for ome deermc calg Correpodg auhor. E-mal addre: akak@kb.keo.ac.p (T. Hayah) /$ - ee fro maer c 21 Elever B.V. All rgh reerved. do:1.116/.pa

2 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) coa b whe he equece I afe cera regulary codo; for example, he mple cae I = (/). Two aural queo are abou he weak covergece of uch a quadrac form. The fr oe doe he ame weak covergece ake place whe I co of oppg me? The ecod oe whe he creme X ( ) X ( 1 ) ad Y ( ) Y ( 1 ) are gve for wo dffere paro I = ( ) ad J = ( ) of [, ], poble o coruc a quadrac form U(I, J ) of hee creme ha perform lke U(I), apar from he dagoal quadrac form? A a mple maer o how, he awer o he fr oe egave geeral whou pug codo o he oppg me. Though U(I) eem o be a quadrac form of creme, o a real quadrac form becaue kerel 1 2 ( 1, ] pobly a fuco of X ad Y ad he U(I) ca poe a aure compleely dffere from he quadrac form. Really, o dcrmae bewee real quadrac form ad uperfcal oe, we eed a rog predcably codo for oppg me. The ecod queo more dffcul o awer. I requre a ew ype of fucoal of oychroou creme. Eve f we cofe our aeo o quadrac form, he coruco of he kerel o clear. Ideed, he ychrozao echque fal o gve a correc kerel; ee [9] for deal. The am of h arcle o awer hee bac queo. We wll coder a quadrac fucoal of oychroou creme, whch wa roduced by he auhor prevouly, ad prove he able covergece o a radom mxure of Gaua margale uder adardzao. Emao of he covarace rucure of he dffuo ype proce uder amplg oe of he fudameal problem he heory of acal ferece for ochac procee. Th problem had bee vegaed heorecally by may mahemacal aca each cocevable eg. There already a log hory of ude, bu amog hem we ca l [3, 21,22,26,18,2,5], ad alo refer he reader o he book by Prakaa Rao [23] for more referece. The amplg procedure reaed before had bee ychroou cheme he ee ha he compoe of he proce are oberved alog a gle equece of amplg me commoly, for all compoe. The ac codered here wa relaed o U(I) by he local rvaly of he ochac dffereal equao ad he ychrocy. The ychroou cheme f well o he adard formulao of ochac aaly. Theorecal udy of oychrocy eem o have almo bee lef behd. Mallav ad Maco [19] propoed a Fourer aalyc approach o h problem. Th a mpora work ha gve heorecal coderao o oychrocy. The curre auhor preeed a oychroou quadrac form [9]. 1 Th quadrac form, f regarded a a acal emaor, free from ay ug parameer becaue volve o erpolao ad o cu-off umber for a fe ere. Compuao eay ce he umber of erm he ummao of he ame order a he umber of he creme. Alo, he maxmum lkelhood emaor a bac eg ad hece aa hgh effcecy; ee [13]. The quadrac ype fucoal ha we wll vegae clude he oychroou covarace emaor. Thu, he lm heorem preeed below ca apply emao of covarace rucure baed o oychroou daa. Our udy amg a lm heorem whch gve a eeal exeo of he heory of acal ferece for ochac procee, o he ream decrbed above. However, a a mmedae applcao, our udy hould corbue o he rece red (or he revval wh ew 1 The auhor ackled he covarace emao problem by he ue of raday, hgh-frequecy daa, where wo ae prce are recorded rregularly ad oychroouly. Such a eup ha bee kow o be problemac; ee, e.g., [4]. Accordg o Google, our emaor referred o a he Hayah Yohda covarace emaor.

3 2418 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) obec) of reearch o he covarace emao problem, whch are que ofe dcued hgh-frequecy facal daa aaly. We wll gve ome comme o h maer Seco 9. Le u go back o our prmary queo. I h arcle, we wll defe a quadrac varao proce ad vegae he aympoc from probablc apec. To decrbe he depedecy of he radom amplg cheme, we wll aocae hem wh cera po procee, ad how he aympoc mxed ormaly, amely, a covergece of he ormalzed emao error of he oychroou covarao proce o a codoal Gaua margale. I hould be oed ha our reame of radom amplg cheme ew eve he ychroou cae of X = Y ad I = J. I [11], he auhor prevouly proved a CLT for he ame ac whe he amplg cheme are depede of he procee X ad Y. Sarg wh local margale a he uderlyg procee, Seco 3, we wll gve a ochac egral repreeao for he approxmao error. Oce he covergece of he quadrac covarao aumed, gve u he lm heorem (Propoo 3.1) whou ay rercve codo. Th work f he amplg cheme rval, uch a he hg me of a mple, parcular rucure; 2 however far from gvg a geeral oluo o he problem. The quadrac varao of he repreeg margale ll volve opoal ochac egral whch are ur egraed by a predcable egraor. We replace he opoal obec by predcable couerpar va Codo [B2]. If he predcable approxmao ufed, gve u Propoo 3.3. Thak o Codo [B2], he covergece of he quadrac varao of he ac verfed va ha of he emprcal drbuo fuco of he amplg me, ad o become a ba of praccal applcao; h reduco dcued Seco 4. Toward a geeral oluo, eeal o coruc a framework whch he real quadrac form ca be comprehevely reaed; a rog predcably codo wa roduced by Hayah ad Yohda [1] for h purpoe. Bede, Seco 5 aer Propoo 5.1 ha he rog predcably Codo [A2] eure Codo [B2], whch aoher mer of he rog predcably. The ma reul of h arcle wll be preeed Seco 6 for emmargale a well a local margale. The reader ca ump o h eco drecly f he/he whe o avod echcale a he fr readg. Seco 7 roduce he emprcal oychroou covarao proce ad prove lm heorem. Seco 8 wll be devoed o acal apec. We wll dcu Sudezao ad kerel emao for he radom aympoc varace. A llurave example wh radom chage po wll be preeed. Comme o facal applcao wll be provded Seco 9. Mo of he proof wll be pu Seco Obervao po procee ad he oychroou covarace proce Gve a ochac ba B = (Ω, F, F = (F ) R+, P), we coder wo couou local margale X = (X ) R+ ad Y = (Y ) R+, ad wo equece of oppg me (S ) Z+ ad (T ) Z+ ha are creag a.., S ad T, ad S =, T =. 2 For example, we ca coder a couou margale ampled whe quadrac varao croe po o a grd. A Browa moo oberved whe h grd po alo a example. More geerally, eay o rea he hg me a grd po for a rog Markov proce f we have uffce kowledge of he drbuo of he erval bewee hoe oppg me.

4 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) We wll regard he amplg cheme a a po proce. Accordg o h dea, we wll ue he followg ymbol hroughou he paper o decrbe radom erval: I = [S 1, S ), J = [T 1, T ), I = 1 [S 1,S ) (), J I () = [S 1, S ), r () = up I () up J (). N N = 1 [T 1,T ) (), J () = [T 1, T ), Here, deoe he Lebegue meaure, ad N = {1, 2,...}. I he precedg paper, he procee X ad Y were mplcly aumed o be obervable a ome fxed ermal me T. Th dfferece o eeal becaue caue o dfferece up o he fr-order aympoc reul. I alo poble o remove he aumpo ha boh ochac procee are oberved a =, whle we wll o purue h vero here for he ame reao. We wll refer o (I ) N ad (J ) N, or equvalely o (S ) Z+ ad (T ) Z+, a he amplg deg (or mply he deg) for X ad Y. Alo, he amplg deg opped a me, (I ()) N ad (J ()) N, may be referred o a he radom paro of [, ). For mplcy, whe we ay par () overlap wll mea eher I () J () (.e., he wo erval I ad J overlap by me ), or I J (.e., hey overlap by ay me), depedg o he uao. For procee V ad W, V W deoe he egral (eher ochac or ordary) of V wh repec o W f ex. Whe he egraor W couou, alway rue ha V W = V W, where V := lm V. For a ochac proce V ad a erval I, le V (I ) = 1 I ()dv. Wre I () = I [, ) for erval I, ad defe he proce V (I ) by V (I ) = V (I ()). The quay of ere he quadrac covarao [X, Y ], ad we wll vegae, a ample couerpar, he followg quay: Defo 2.1 (Hayah ad Yohda [9,1]). The oychroou covarao proce of X ad Y aocaed wh amplg deg I = (I ) N ad J = (J ) N he proce {X, Y ; I, J } = X (I ) Y (J ) 1 {I () J () }, R +. =1 The proce {X, Y ; I, J } o obervable from a acal po of vew. See Seco 7 for a ac correpodg o h proce. We wll wre mply a {X, Y } f here o fear of cofuo over amplg deg. I wa proved [9,6] ha for each R +, {X, Y } p [X, Y ] a provded r () p. I lgh of h reul, he auhor emphaze ha {X, Y } regarded a a geeralzao, he coex of oychroou amplg cheme, of he adard defo of he quadrac covarao proce for emmargale ochac aaly. For Iô procee X ad Y, we ca oba he ame coecy reul; ee he above paper for deal. 3. Sable covergece of he emao error The emao error of {X, Y } gve by M = {X, Y } [X, Y ] = L, (3.1)

5 242 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) = 1 {I () J () } = (I X) (J Y ) + (J Y ) (I X). Here he ) [X, Y ] = [X, Y ], a well a he defo of he quadrac covarao or Iô formula, ca be ued. We alo roduce he ymbol R () := S 1 T 1 ad R () := S T. L a couou local margale ha equal for R (), ar varyg a = R (), ad where equaly (I J ad L ay a he value L S T afer = S T. I ca vary, regardle of wheher he par () overlap. Lemma 3.1. L. Proof. Recall ha L couou. o +1 a = R () whe he par () overlap. So, L L = for R (). a ep fuco arg from a = ad ump = L R (). However, Now, he egrao by par of (3.1) ogeher wh Lemma 3.1 yeld M = L, (3.2) ad parcular, M a couou local margale wh V := [M, M ] = K [L, L ]. (3.3) Le V X, =,, X (I ) [X, Y ](J ) + Y (J ) [X, X](I ) ad V Y, = X (I ) [Y, Y ](J ) + Y (J ) [X, Y ](I ). I vew of he adard margale ceral lm heorem, we formally coder he followg codo. Deoe by (b ) a equece of pove umber edg o a. [A1 ] There ex a F-adaped, odecreag, couou proce (V ) R+ uch ha b 1 V p V a for every. [B1] b 1 2 V X, p ad b 1 2 V Y, p a for every. We deoe by C(R + ) he pace of couou fuco o R + equpped wh he locally uform opology, ad by D(R + ) he pace of càdlàg fuco o R + equpped wh he Skorokhod opology. A equece of radom eleme X defed o a probably pace (Ω, F, P) ad o coverge ably law o a radom eleme X defed o a approprae exeo (Ω, F, P) of (Ω, F, P) f E[Y g(x )] E[Y g(x)] for ay F-meaurable ad bouded radom varable Y ad ay bouded ad couou fuco g. We he wre X d X. A equece (X ) of ochac procee ad o coverge o a proce X uformly o compac probably (abbrevaed ucp) f, for each >, up X X p a.

6 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) We coder he followg codo: [W] There ex a F-predcable proce w uch ha V = w2 d. A am of h paper o prove he followg aeme: [SC] b 1 2 M d M C(R + ) a, where M = w d W ad W a oe-dmeoal Weer proce (defed o a exeo of B) depede of F. Propoo 3.1. Suppoe ha [A1 ], [B1] ad [W] are fulflled. The [SC] hold. Proof. Noce ha [M, X] = V X, ad [M, Y ] = V Y,. Sce [M, N] = for ay bouded margale N (o B) orhogoal o (X, Y ), we oba he able covergece of b 1/2 M from [15]. More precely, we apply Theorem 2-1 () here ogeher wh a characerzao of he F-codoal Gaua margale meoed (b) he proof of Propoo 1-1. I our uao, boh B ad G Theorem 2-1 vah. Therefore, he M-ba erm u dm (1.4) of h paper vahe ce u = M -a.e. from u d M = for all. Each expreo for V, V X, ad V Y, raher abrac; may be of lle help for explcly calculag he quadrac varao/covarao ad defyg he lmg drbuo of M. I h regard, aural he followg o purue a more cocree vero, epecally of V. Le V = (I I (J ) [X, X] J ) [Y, Y ] + (I J ) [X, Y ] (I J ) [X, Y ] (3.4) ad e V := V. 3 V deged o approxmae [L, L ] whe he erval legh I, I, J, ad J are uffcely mall, a wll be aed [B2] below. Throughou he re of he dcuo h eco, we wll poulae he followg hypohe. [B2] For every R +, b 1 (,, a. K ) [L, L ] = b 1 ( K ) V,, + o P (1) (3.5) Recall ha he lef-had de of (3.5) equal b 1V. A uffce codo for [B2] wll be provded Seco 5. Wre [X] = [X, X] ad [Y ] = [Y, Y ] a uual. Le V = [X](I ())[Y ](J ()) [X, Y ]((I J )()) 2. + [X, Y ](I ()) 2 + [X, Y ](J ()) 2 The followg propoo wll be ued for defyg he lm of he quadrac varao. I eable u o work wh V, a more racable proce ha b 1,, ( K ) V [B2]. See Seco 1 for a proof. 3 Sce [X, X] ow couou, I I ca be replaced by I I, for example.

7 2422 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Propoo 3.2. Suppoe [B2] hold. The V = V + o p (b ) a. We modfy [A1 ]. [A1] There ex a F-adaped, odecreag, couou proce (V ) R+ uch ha b 1 V p V a for every. By Propoo 3.2, we ca rephrae Propoo 3.1 a follow. Propoo 3.3. Suppoe ha [A1], [B1], [B2], ad [W] for V [A1] are afed. The [SC] hold rue. Sce he varace proce V much more covee o hadle ha V, Propoo 3.3 eeally mprove Propoo 3.1. However, Propoo 3.3 o he way o our goal. Fr, preferable o decrbe he lmg eergy proce V lgh of he amplg cheme elf. I Seco 4, we roduce cera amplg meaure o do h, followg Hayah ad Yohda [1]. Secod, Codo [B2] ll echcal. Ideed, h codo avod oe of he key ep o he awer. The HY emaor, or ay quadrac ype emaor, really quadrac oly whe he radom kerel of he quadrac form afe a kd of predcably codo. Oherwe, lm heorem wll fal. The auhor roduced a rog predcably codo o gve a ceral lm heorem [1] by verfyg [B2] uder mld regulary codo o he procee. Though he am of h paper o oba mxed ormal lm heorem, wll ur ou Seco 5 ha he ame rog predcably codo erve well for our purpoe. I ll rema o check he aympoc orhogoaly Codo [B1] a praccal eg. However, we wll how ha he ame kd of ak a olvg [B2], ad o addoal dffculy occur o do wh. 4. Covergece of he amplg meaure ad a repreeao of V I [8], he auhor roduced emprcal drbuo fuco of he amplg me gve by H 1 () = I () 2, H 2 () = J () 2, H 1 2 () = (I J )() 2, H 1 2 () = I () J (), where he Lebegue meaure. Clearly, he four fuco are (F )-adaped, odecreag, pecewe-quadrac couou fuco, whoe graph coa kk a he obervao oppg me. [A1 ] There ex pobly radom, odecreag, fuco H 1, H 2, H 1 2 ad H 1 2 uch ha each H k = hk d for ome radom proce hk, ad uch ha b 1 H k() p H k () a for every R + ad k = 1, 2, 1 2, 1 2. The, a exeo of Theorem 2.2 of [8] gve a follow. Propoo 4.1. Suppoe ha [A1 ], [B1] ad [B2] are fulflled, ad ha each [X], [Y ] ad [X, Y ] aboluely couou wh a càdlàg dervave. The [SC] vald wh w gve by w = [X] [Y ] h1 2 + ([X, Y ] )2 (h 1 + h2 h1 2 ). (4.1)

8 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Remark. I he cae of perfec ychrocy (I J ), {X, Y } ohg more ha he realzed covarace baed o all he daa. I h cae, ce H 1 H 2 H 1 2 H 1 2 (=: H), he lmg varao proce reduce o V = [X] [Y ] + ([X, Y ] )2 H(d). Proof of Propoo 4.1. Lemma 4.1 below defe he lmg varao proce V Codo [A1] by (4.1). Thu Propoo 3.3 mple he aero. Lemma 4.1. Suppoe ha [X], [Y ], ad [X, Y ] are aboluely couou wh a càdlàg dervave. The [A1 ] mple ha () b 1 [X, Y ](I ()) 2 p ([X, Y ] )2 H 1 (d), () b 1 [X, Y ](J ()) 2 p ([X, Y ] )2 H 2 (d), () b 1 [X, Y ]((I J )()) 2 p ([X, Y ] )2 H 1 2 (d), (v) b 1 [X](I ())[Y ](J ()) p [X] [Y ] H 1 2 (d), a for every. The proof Seco Srog predcably ad Codo [B2] We preeed bac lm heorem, Propoo 3.1, 3.3 ad 4.1. They hold whou addoal codo for uch amplg cheme a he oe gve by cera hg me of he procee. I Propoo 3.3 ad 4.1, we aumed Codo [B2] Seco 3. Uder more geeral amplg cheme, however, Codo [B2] ll echcal. I h eco, we are gog o roduce a more racable codo o he amplg cheme o eure [B2]. Such a codo called rog predcably of he amplg me. I wa roduced [1], ad a movao for ha he fuure amplg me deermed wh delay praccal uao, e.g., ha caued whle a rader akg he broker o rade a facal marke. Le ξ ad ξ be coa afyg 4 5 ξ < ξ < 1. [A2] For every, N, S ad T are G () -oppg me, where G () = (G () ) R+ he flrao gve by G () = F ξ (b ) for R +. For real-valued fuco x o R +, he modulu of couy o [, T ] deoed by w(x; δ, T ) = up{ x() x() ;, [, T ], δ} for T, δ >. Wre H = up [,] H for a proce H. [A3] [X], [Y ], [X, Y ] are aboluely couou, ad for he dey procee f = [X], [Y ] ad [X, Y ], w( f ; h, ) = O p h 1 λ 2 a h for every, λ (, ), ad f < a.. [A4] r () = o p (b ξ ) for every R +. The followg he key aeme o he ma reul Seco 6. Propoo 5.1. [B2] hold rue uder [A2] [A4]. We gve a proof of Propoo 5.1 Seco 12.

9 2424 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Lm heorem for emmargale: ma reul I he prevou eco we focued o he cae where X ad Y are couou local margale. I h eco, we coder wo couou emmargale ad pree he ma reul of h arcle. Suppoe ha X = A X + M X ad Y = A Y + M Y are couou emmargale, where A X ad A Y are fe varao par, ad M X ad M Y are couou local margale par. Eve h cae, he oychroou covarao proce of X ad Y aocaed wh (I ) ad (J ) defed exacly by Defo 2.1. To go furher, we eed he wo addoal codo below. [A5] A X ad A Y are aboluely couou, ad w( f ; h, ) = O P (h 2 1 λ ) a h for every R + ad ome λ (, 1/4), for he dey procee f = (A X ) ad (A Y ). [A6] For each R +, b 1 a. I () 2 + b 1 J () 2 = O p (1) (6.1) Remark 6.1. Codo [A5] lghly roger ha (C4 ) of [7]. Codo [A1] doe o mply [A6]. Ideed, poble o coruc a amplg cheme ogeher wh procee (X, Y ) uch ha clude [ 7/1 ] erval of 4/5 legh, ha [X] ad [Y ] do o creae o he uo of hoe erval, ad ha [A1] hold. However [A6] break for b = 1 h example. O he oher had, [A1 ] mple [A6]. The Poo amplg cheme codered [7] a example. Here our ma reul. Theorem 6.1. Suppoe ha X ad Y are couou emmargale. (a) If [A1] [A6] ad [W] are afed, he [SC] hold. (b) If [A1 ], [A2] [A5] are afed, he [SC] hold for w gve by (4.1). I worhy of remark ha eher [A5] or [A6] eceary for local margale. Theorem 6.2. Suppoe ha X ad Y are couou local margale. (a) If [A1] [A4] ad [W] are afed, he [SC] hold. (b) If [A1 ], [A2] [A4] are afed, he [SC] hold for w gve by (4.1). Theorem 6.1 ad 6.2 are proved Seco Emprcal oychroou covarao proce The quay {X, Y } o alway obervable he acal coex, whch ceraly a dracg feaure from he vewpo of praccal applcao. The argume here a regard how o amed uch a mor flaw perag o he prevou coruco Defo 2.1. Defo 7.1. The emprcal oychroou covarao proce of X ad Y aocaed wh amplg deg I = (I ) N ad J = (J ) N he proce {X, Y } = =1 S T X (I )Y (J )1 {I J } R +.

10 Obvouly, T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) {X, Y } = =1 S T X (I ) Y (J ) 1 {I () J () }. Th he pecewe coa, càdlàg vero of he oychroou covarao proce ad {X, Y } = {X, Y } a (S ) (T ). Oherwe hey do o cocde geeral; however he dfferece eglgble. Suppoe ha X ad Y are he couou emmargale gve Seco 6. For M = {X, Y } [X, Y ], we wll how: [SCE] b 1 2 M d M D(R + ) a, where M = w d W ad W a oedmeoal Weer proce (defed o a exeo of B) depede of F. We oba he followg reul correpodg o Theorem 6.1 ad 6.2. See Seco 14 for he proof. Theorem 7.1. Suppoe ha X ad Y are couou emmargale. (a) If [A1] [A6] ad [W] are afed, he [SCE] hold. (b) If [A1 ], [A2] [A5] are afed, he [SCE] hold for w gve by (4.1). Theorem 7.2. Suppoe ha X ad Y are couou local margale. (a) If [A1] [A4] ad [W] are afed, he [SCE] hold. (b) If [A1 ], [A2] [A4] are afed, he [SCE] hold for w gve by (4.1). 8. Sacal applcao ad example 8.1. Sochac dffereal equao Suppoe ha X 1 ad X 2 are Iô emmargale decrbed by he ochac dffereal equao dx k = µ k d + σ k dw k (k = 1, 2) (8.1) where µ k are F-adaped procee, ad σ k are rcly pove, (F )-adaped, couou procee, k = 1, 2. The F-adaped Browa moo W k are correlaed wh d[w 1, W 2 ] = ρ d, where ρ a F-adaped proce. Th a ochac volaly model he face leraure. We coue o ue he ame ymbol I = (I ) N ad J = (J ) N a prevouly, for he amplg deg aocaed wh X 1 ad X 2, repecvely. [A3 ] () For every λ > ad R +, w( f ; h, ) = O p h 1 2 λ a h for f = σ 1, σ 2 ad ρ. () For ome λ (, 1/4) ad ay R +, w( f ; h, ) = O p h 1 2 λ a h for f = µ k, k = 1, 2.

11 2426 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Now, defe he drbuo fuco aocaed wh he amplg deg I ad J by H 1 () = I 2, H 2 () = J 2, :S :T H 1 2 () = : I J 2, H 1 2 () = : I J, S T S T where = 1 {I J }. They are all obervable a ay. [A1 ] There ex pobly radom, odecreag, fuco H 1, H 2, H 1 2 ad H 1 2 uch ha each H k () = hk d for ome dey hk, ad ha b 1 H k () p H k () a for every R + ad k = 1, 2, 1 2, 1 2. The equvalece bewee [A1 ] ad [A1 ] ca be proved. Ideed, H k () H k () H k () + 2r () 2, for all [, ], k = 1, 2, 1 2, 1 2. We coder he cae k = 1 2 oly, for all he oher are raghforward. The fr equaly obvou by coruco. Moreover, for ay, wh, () H 1 2 () I () J(I )() I (J )() J () 2r () 2, H 1 2 where (, ) a uque par () uch ha [S 1, S ) ad [T 1, T ). Therefore up H 1 2 () H 1 2 () 2r () 2. [,] Hece, he ecod equaly alo hold. Sce b 1r () 2 p uder [A4] for example, we have aceraed ha he covergece of b 1 H 1 2 equvale o ha of b 1 H 1 2. The by he applcao of Theorem 7.1 we have: Theorem 8.1. Suppoe ha X ad Y are couou emmargale. Suppoe ha eher [A1 ] or [A1 ], ad alo [A2], [A3 ] ad [A4] are afed. The, for M = {X, Y } ρ σ 1σ 2d ad M = {X, Y } ρ σ 1σ 2 d, [SC] ad [SCE] hold for w gve by w = (σ 1σ 2)2 h ρ σ 1σ 2 2 (h 1 + h 2 h1 2 ). (8.2) We hall brefly dcu Sudezao. Coder w gve (8.2). I our coex, w o obervable ce coa ukow quae uch a ρ σ 1σ 2; eher w2 d. Suppoe we have a ac d uch ha w2 w 2d p w 2 d a. The, he able covergece aed Theorem 8.1 mple ha, for every >, b 2 1 {X 1, X 2 } ρ σ 1σ 2d d N(, 1) w2 d a wheever w2 d > a..

12 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Coruco of w2 d: a kerel-baed approach Le K (u) be a kerel fuco uch ha K (u)du = 1 ad K (u) for all u. K aumed o be aboluely couou wh dervave K afyg K () d <. For h >, le K h (u) = h 1 K (h 1 u). For every R +, le {X 1, X 2 } h = {X 1, X 2 } K h ( ) d, X k h = X k, X k h, k = 1, 2. Moreover, le w 2d = + Th quay obervable. {X 1 } h X 2 h b1 {X 1, X 2 } h b1 H 1 2 (d) H 1 + H 2 H 1 2 (d). Propoo 8.1. Uder he aumpo Theorem 8.1, w 2 ucp d w 2 d a, provded ha b 1 2 h 1. Proof. Le M = {X 1, X 2 } X 1, X 2 ; he clearly afe 1 b 2 Thu, by he egrao by par formula, {X 1, X 2 } h = [X 1, X 2 ] + M K h ( )d = [X 1, X 2 ] K h ( ) = + [X 1, X 2 ] K h( )d + O p b 1 2 K h ( ) d = ρ σ 1 σ 2 + w(ρσ 1 σ 2 ; h, ) + O p b 1 2 h 1 M up [,] = O p (1). uformly [, ] for ay >. Th ca be realzed by choog h uch ha b 1 2 h 1. Smlarly, {X k } h = (σ k )2 + w((σ k ) 2 ; h, ) + O p b 1 2 h 1 uformly [, ] for ay >. Therefore, obag he aero of he propoo mmedae.

13 2428 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) A pecal cae of he kerel-baed approach he followg aïve oe. For ay > ad h >, we may ue {X 1, X 2 } h = 1 {X h 1, X 2 } X 1, X 2, h {X k } h = X k, X kh, k = 1, 2, provded b 1 2 h 1. We wll refer he reader o [12] Poo amplg wh a radom chage po A a llurao for Seco 8.1, we hall dcu a Poo amplg wh a radom chage po. Th a mple model for ock prce, for ace, whoe radg ee vary a radom me uch a he me whe hey h a hrehold prce lke 1, ye. More precely, uppoe ha F -adaped procee ρ, µ k, σ k, W k, τ k, k = 1, 2, are gve o a ochac ba (Ω, F, F, P ). The procee X k are defed by (8.1). Le τ k (k = 1, 2) be F -oppg me. O a auxlary probably pace (Ω, F, P ), here are radom varable S, (T ), (S ), (T ) ha are muually depede Poo arrval me wh ey λ k = p k, p k (, ), k = 1, 2, repecvely for S, T ad wh λ k = p k, p k (, ), k = 1, 2, repecvely for (S ), (T ). We coruc he produc ochac ba (Ω, F, (F ), P) cog of Ω = Ω Ω, F = F F, F = F F P = P P. O he ew ba he aforemeoed radom eleme ca be exeded he uual way. Tha, W k ω, ω = W k ω, S ω, ω = S ω, ω, ω Ω, ad o forh. The amplg deg I = (S ) for X wll be made up of (S ) ad (S ) a follow. Se τ 1 = τ Defe S equeally by S 1 = f l N S = f l,m N S l S, l τ 1 <τ 1 + S1, S l S, 1 <S l τ 1 <τ 1 + Sm S 1 <τ 1+Sm, 2. Here, for a oppg me T wh repec o a flrao (F ) ad a e A F T, we defe T A by T A (ω) = T (ω) f ω A; T A (ω) = + oherwe. (T ) defed he ame way from T l ad T l, afer eg τ 2 = τ I he pree uao, he flrao G () co of G () = F ( ξ ) + F, R +. Lemma 8.1. S ad T are G () -oppg me. Proof. S l ad S l are G () -oppg me. Sce τ 1 a (F )-oppg me, τ 1 = τ a G () -oppg me; hece, τ 1 + Sm a G () -oppg me a well. Moreover, ce

14 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) {S l < τ 1} G(), S l {S l <τ 1} a G() -oppg me. Therefore, S 1 a G () -oppg me a S l well. Suppoe for ow ha S 1 a G () -oppg me. The rue ha {S 1 < τ 1 + Sm } G (). A he ame me, τ 1 {S1 < S l < τ 1 +Sm } = {S1 < S l } {S l < τ 1} G(). Thee fac S l mply ha S a G () -oppg me, a aered. Coequely, we have H 1 () p 2 p 1 (τ 1 ) + 2 p 1 ( τ 1 ) =: H 2 () p 2 p 2 (τ 2 ) + 2 p 2 ( τ 2 ) =: H 1 2 () p 2 p 1 + p 2 (τ 1 τ 2 ) + H 1 2 h 1 d, h 2 d, 2 p 1 + p 2 (τ 2 τ 1 τ 2 ) 2 + p 1 + p (τ 1 τ 1 τ 2 2 ) + 2 p 1 + p 2 ( (τ 1 τ 2 ) ) =: () p 2 p p 2 (τ 1 τ 2 2 ) + p p 2 (τ 2 τ 1 τ 2 ) 2 + p p 2 (τ 1 τ 1 τ 2 ) + p p 2 ( τ ) =: a for every. The, uder [A3 ], b 1/2 M d w d W, h 1 2 d, h 1 2 d, where (σ 1 σ 2 2 )2 p p 2 + (ρ σ 1 σ 2 2 )2 p p 2 2 p 1 + p 2 ( τ 1 τ 2 ) (σ 1 σ 2 2 )2 p p 2 + (ρ σ 1 σ 2 2 )2 p p 2 2 p 1 + p 2 1 {τ 1 τ 2 } w = + (σ 1 σ 2 2 )2 p p 2 + (ρ σ 1 σ 2 2 )2 p p 2 2 p p 2 {τ 1 >τ 2 } (τ 1 τ 2 < τ 1 τ 2 ) (σ 1 σ 2p1 2 )2 + 2p2 2 + (ρ σ 1σ 2)2 p p 2 2 p 1 + p 2 (τ 1 τ 2 < ) ad W a depede Browa moo. A example of uch τ k provded by he boudary hg me τ k = f{ > : X k > K k }, K k (, ), k = 1, 2.

15 243 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Comme o he applcao o face The applcao o face o he prmary obec of h paper; however we gve ome comme h eco. I he la decade, raday facal me ere, o-called hghfrequecy daa, have bee becomg creagly avalable boh coverage ad formao coe. The ue of hgh-frequecy daa ha bee expeced o mprove facal rk maageme dramacally; oe uch applcao clude he emao of he varace covarace rucure of he facal marke, whch a eeal roue operao for all facal uo. I he leraure, adard o ue realzed volaly (or realzed varace) for emag egraed varace whe ae reur are regarded a beg ampled from dffuo ype procee. Lkewe, whe he egraed covarace of ere, he ue of realzed covarace farly commo. Neverhele, he adard realzed covarace emaor ha a fudameal flaw rucure whe appled o mulvarae ck-by-ck daa, where me ere are recorded rregularly, a oychroou maer. The commoly ued realzed covarace emaor volve a erpolao of rregularly ampled daa o equda daa. Hayah ad Yohda [9] proved ha uch a aïve mehod evably caue emao ba, whch had bee kow emprcally a he Epp effec, whe he defg regular erval ze mall relave o he frequecy of obervao. I he ame paper, he auhor propoed a way o crcumve uch ba by propog a ew emaor, whch owaday called he Hayah Yohda emaor, ad howed ha he emaor coe a he meh ze of obervao erval ed o zero probably. Th paper ha bee movaed by he que for a lm drbuo of he emao error. I he leraure, aympoc drbuo heore for realzed volaly ype quae have bee developed; ee, addoally o he leraure gve Iroduco, e.g., [14,16,1,2]. Dfferely from hem, h paper deal wh radom amplg cheme ha are depede o he uderlyg procee ad h far from raghforward. Raher ha demaded a ew e of dea ad echcal ool. Tha, we cao mply coduc aaly by codog o he amplg me all he way up o he fe fuure a a me, regardg hem all a deermc, a mo of he exg reul wh radom bu depede amplg cheme do. Reader may recall he fac ha eve he uvarae cae here a rkg carcy of ude whch ake uch depedecy o accou. Bede h, our reame of he bvarae cae ogeher wh oychrocy ew. I h paper, we dd o clude dcuo o he mcrorucure oe. I commo he leraure o far o apply a pre-averagg o ge back o a clacal ychroou amplg. However, he goal of h arcle le developg a ew mehodology o rea he oychrocy elf. Recely, Rober ad Roebaum [24] gave a ew gh o he HY emaor uder mcrorucure oe. See alo [25]. 1. Proof of Propoo 3.2 For compuaoal eae, we roduce he followg wo po procee: = 1 [R () R (), )() 1 [R (), )() = 1 [R () R (),R ())(), = (1 (R (), ) 1 [R (), )) (ochac egral) whch gve a orhogoal decompoo of.

16 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Lemma 1.1. (a) 1 {R ()<R (),R () }. = 1 {R ()<R (),R () }, (b),, ad are (F )-adaped procee wh = 1 {R () <R ()} ad = I addo, = + ad. (1.1). (1.2) Proof. Eay ad omed. Proof of Propoo 3.2. I lgh of (1.1), we decompoe he arge quay a ( K ) V,, ( K ) V + ( K ) V + 2 ( K ) V,,,,,, =: I + II + III. (a) Coder I fr. Recall ha defe he par () uquely,.e., So, Becaue oe ha K [ = ad = ]. I = = V = 1 [R () R (),R ()) V {V R () V R () R () }. V = {I [X]}{J [Y ]} + {(I J ) [X, Y ]}2, (1.3) V R () = [X](I (R () ))[Y ](J (R () )) + [X, Y ]((I J )()) 2. (1.4) O he oher had, V R () R () = [X](I (R () R () ))[Y ](J (R () R () )) Thu follow ha + {[X, Y ]((I J )(R () R () ))} 2 =. I = [X](I (R () ))[Y ](J (R () )) + {[X, Y ]((I J )())} 2. (b) Nex coder II. We decompoe a,, = +,,, : =, = +,,, : =, +,,, :, = The followg argume movaed by Hayah ad Yohda [9].. (1.5),,, :,

17 2432 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Cae 1: = ad =. Recall (1.3). Whe a par () doe o overlap,.e.,, he. Therefore V. Whe () overlap, V = V V R (). However, he ecod erm become (1.4). Coequely, V = [X] I () [Y ] J () [X] I R () [Y ] J R (). Cae 2: = ad. Accordg o (3.4), V = [X, Y ](I J )[X, Y ] I J, whch op varyg for R () R ( ). Noe ha whe eher par () or par ( ) K V. For wo par () ad ( ), <, ha overlap a doe o overlap, he ame me, K V = V Therefore,,,, : =, K = V VR ( ). V. Cae 3: ad =. By ymmery,,,, :, = K Cae 4: ad. Accordg o (3.4), V = [X, Y ] V. I J [X, Y ] I J. Hece, for V, boh par ( ) ad (, ) mu overlap, a he ame me,.e., mu be he cae ha ad K. I order ha K V, eceary ha ad K. However, hee wo codo are compable (.e., (), (, ), ( ), ad (, ) cao repecvely overlap a he ame me). Coequely, follow ha,,, :, K V. Pug he four ub-cae ogeher, we oba II = [X] I () [Y ] J () [X] I R () [Y ] J R (). (c) Coder III. We aga decompoe a (1.5) (b). Cae 1: = ad =. Recall ha = 1 [R () R (),R ()) ad = 1 (R (), ) 1 [R (), ). They are orhogoal whe = ad =,.e., K for = ad =. Hece, Cae 1 ( = ad = ) make o corbuo.

18 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Cae 2: = ad. Evdely, K for = ad <. Suppoe = ad >. The, a log a (or ( ) overlap). Noe ha V = [X, Y ](I J ) [X, Y ] I J. So, f ( ) overlap, he K V = og ha up I J R () V = V VR () R () = [X, Y ] (I J )() [X, Y ] I J (), up I J R () ad R () R () f(i J ). Clearly, he la expreo clude he cae whe ( ) doe o overlap becaue he boh he l.h.. ad he r.h.. are rvally zero. I follow ha K V = [X, Y ](I J ) [X, Y ] I J,,, :, : =, > = 1 [X, Y ] (I J )[X, Y ] I J 2, : = 1 [X, Y ] I J [X, Y ] I J [X, Y ](I J ) 2 = 1 [X, Y ](I ) 2 1 [X, Y ](I J ) Cae 3: ad =. By ymmery, K V = 1 [X, Y ] (J ) 2 1 [X, Y ] (I J ) ,,, :, = Cae 4: ad. Noe ha h cae, V = [X, Y ] I J [X, Y ] I J. Now, ha I J = or I J = mple ha, whch eal ha K V. O he oher had, due o he geomerc relaohp amog he,,, :, K four dc erval I, I, J, ad J, ha I J ad I J mple ha I J = or I J =, ad hece V, whch duce ha K V. Afer all, h cae, K V.

19 2434 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Gaherg he four ub-cae ogeher, we have III = [X, Y ](I ()) 2 + [X, Y ](J ()) [X, Y ] (I J )(). (d) Fally, we pu he hree compoe (a) (c) ogeher o oba I + II + III = V. 11. Proof of Lemma 4.1 Whou lo of geeraly, we may aume ha lm b 1 H 1() = H 1 () for all R + a.. For ay R + ad ϵ >, here are (radom) po ξ uch ha = ξ < ξ 1 < < ξ m = ad ha max m=1,..., m up [ξ m,ξ m+1 ) [X, Y ] [X, Y ] ξ m < ϵ. Le φϵ () = max{ξ m ; ξ m }. The where D ϵ := b 1 b 1 R ϵ (,, ) = [X, Y ](I ()) 2 b 1 2 [X, Y ] φ ϵ (S 1 ) I () 2 2 [X, Y ] φϵ(s1) I () R ϵ (,, ) + R ϵ (,, ) 2, (11.1) [X, Y ] [X, Y ] φ ϵ (S 1 I ) d. Le Ξ = {ξ m ; m = 1,..., m}. If [S 1, S ) Ξ =, he R ϵ (,, ) ϵ I (). There ex N uch ha #([S 1, S ) Ξ ) 1 for all for ay. Suppoe ha wha follow. If [S 1, S ) Ξ, he R ϵ (,, ) 2([X, Y ] ) I (). Thu, D ϵ b1 2([X, Y ] ) ϵ I () 2 + ϵ 2 I () 2 where I = {; [S 1, S ) Ξ }. Therefore + 8([X, Y ] ) 2 b 1 I () 2, I lm up D 2([X, ϵ Y ] ) ϵ + ϵ2 H 1 () ce b 1 I I () 2. Ideed, due o r ( + η), for every η >, lm up b 1 I () 2 I m m=1 H 1 (ξ m + η) H 1 (ξ m η), whch ca be a mall a we lke whe η. From (11.1), lm up b1 [X, Y ](I ()) 2 [X, Y ] 2 H 1 (d) 2([X, Y ] ) ϵ + ϵ2 H 1 2 () + [X, Y ] ξ m1 H 1 (ξ m ) H 1 (ξ m1 ) m

20 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) [X, Y ] 2 H 1 (d) 2([X, Y ] ) ϵ + ϵ2 H 1 () + 2ϵ([X, Y ] ) H 1 (). Sce ϵ arbrary, we coclude ha lm b1 b 1 [X, Y ](I ()) 2 = [X, Y ] 2 H 1 (d). We have obaed (); () ad () ca be how mlarly. Le u prove (v). We have [X](I ()) [Y ] (J ()) = b 1 l L() =1 l=1 [X] [Y ] u I J u 1 Al (, u) ddu, (11.2) where A l := [, a l ) [, a l ), a l1 ), a l1 ), wh = a < < a l < < a L() = uable grd po uch ha max l up [al1,a l ) ( [X] [X] a l1 + [Y ] [Y ] a l1 ) < ϵ for gve ϵ >. Moreover, he r.h.. o (11.2) equal o b 1 [X] [Y ] u I J u 1 Al (, u) ddu (A) b 1 [X] a l1 [Y ] a l1 = b 1 = b 1 (B) b 1 l [X] a l1 [Y ] a l1 l I J u 1 Al (, u) ddu H 1 2 (a l ) H 1 2 (a l1 ) [X] a l1 [Y ] a l1 1 (al1,a l ]() l [X] [Y ] H 1 2 H 1 2 (d) (d) p [X] [Y ] H 1 2 (d), a, for every, uder [A1 ], where mea ha he dfferece goe o zero probably. I rema o valdae he approxmao (A) ad (B). For he proof, we ca adop a argume mlar o ha of Hayah ad Yohda [1]. 12. Proof of Propoo 5.1 Th eco devoed o he proof of Propoo 5.1. We eed wo kd of modfcao of amplg me a aed below. We wre r = b ξ ad for gve T >, prepare equece of oppg me Ŝ ad ˆT defed by Ŝ = S f ; max {S S 1 } r (T + 1)

21 2436 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) ad ˆT = T f ; max {T T 1 } r (T + 1). The Ŝ ad ˆT are G () -oppg me depedg o. Le Î = [Ŝ 1, Ŝ ) ad Ĵ = [ ˆT 1, ˆT ). Le Î = (Î ) ad J ˆ = (Ĵ ). The for a arbrary equece (υ ) of F-oppg me afyg υ T ad P[υ < T ] a, we have P[{X υ, Y υ ; Î, J ˆ} = {X, Y ; I, J } for all [, T ]] 1, accordg o [A4]. Thu, we may aume ha max{ I, J ; } r wha follow ad alo ha X ad Y afy propere characerzed by υ = T. We ake ξ uch ha ξ < ξ < ξ. Le G () = F ξ (b ad G () = ( G () ) + ) R+. We hall prepare a lemma o go o he ecod modfcao of oppg me. Lemma Suppoe ha max{ J ; } r ad ha b ξ r > b ξ. The M := up Z+ :T S T a G () -oppg me for each I. Proof. Fx I ad le (S r T = ) + o {T > S } T o {T S }. The radom me (S r ) + ad (T r ) + are G () -oppg me. Ideed, for R +, {(S r ) + } = {S + r } F (+ r b) ξ F ξ + (b = G () ) +. Therefore {T > S } G (), ad hece S {(S r ) +, T > S } = {(S r ) +, (T r ) + > (S r ) + > } {T > S, S r } G () becaue {(T r ) + > (S r ) + > } G () ad {T > S, S r (S r ) } G () + r = F G () G (). Afer all, {T } G (), ad for R +. Moreover, {T, T S } G () coequely all T are G () -oppg me. Sce up J r ad T =, here a T [(S r ) +, S ]. Therefore, we ee ha M = up Z+ :T S T = up Z+ T a G () -oppg me. We wll apply he reduco ued [7] o every realzao of (I ) ad (J ). Tha, we combe J o oe for J I, for each 1 (do ohg f here o uch J ), he relabel he dce from lef o rgh. Deoe he ewly creaed deg by (J ), wh he aocaed radom me T. We refer o he operao a J -reduco; I-reduco ca be carred ou he ame maer. We refer o he o operao a (I, J )-reduco. A formal coruco of T a oppg me a follow. Coder uffcely large. For each I, N := m Z+ :T S 1 T a oppg me wh repec o G (), ad herefore o G (). Accordg o Lemma 12.1, M are alo G () -oppg me. Whle ome of N, M ( N) have he ame value, we le hoe me up o oba T, whch we have ee above. Rouely, ur ou ha T are G () -oppg me; deed, T = ad T = f{n l {N l > T, 1 } Ml ; l N} for N. {M l > T 1 }

22 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Due o he bleary, {X, Y ; I, J } = {X, Y ; I, J } for I = (I ) ad J = (J ). I hould be oed ha r () vara uder hoe reduco. Le := 1 I () J (). A advaage of he reduco ha 3 ad 3. (12.1) Moreover, ce for each I (or J ), oe ca alway fd a erval I or a erval J ha cover, I (T ) 2 J (T ) 2 I (T ) 2 + J (T ) 2. Hece, Codo [A4] ad [A6] mpoed for he orgal deg (I, J ) wll rema vald for (I, J ). Sce each ummao (3.5) vara uder hoe reduco, order o how [B2] for (I, J ), uffce o verfy for (Ĩ, J ). The above argume eure ha f we ake ξ cloe o ξ, all he codo relaed o ξ are ll fulflled for ξ. Thu, we may aume hroughou he proof ha he (I, J )-reduco operao already carred ou. We wll coue o ue I = (I ) ad J = (J ) o expre he deg afer reduco, a well a ξ place of ξ. Hece (12.1) aumed o hold for from he begg. Moreover, r () r by he fr modfcao u before Lemma Accordg o he above dcuo, we may alo aume ha 4/5 < ξ < ξ < 1 he equel. Se β = ξ 2 3, ad α = ξ 2 3,. Le γ 1 9 ξ 4 5, ϵ 1, 1 2 ad c = b 3 4 γ. Defe υ by υ = f ; [X] > c f ; [Y ] > c f ; [X, Y ] > c X X r + Y Y r f ; up [,] ( r) 1/2ϵ > 1 T. (12.2) 1 (r,): r [(b ξ ) +,) By coruco ad from [A3], each υ a F-oppg me ad P[υ = T ] 1 a. Of coure, oce he localzao by υ appled o X ad Y, hey wll deped o hereafer; however he propere aumed for he orgal X ad Y are uchaged by h oppg, o we wll o wre o hem each me explcly. A oed before, we ake a uffcely large, deermc umber ad oly coder uch ha. I wha follow, for arbrarly gve ε, 3 8 γ, we ca aume he equaly w (X; r (T ), T ) + w (Y ; r (T ), T ) b 1 2 ξ ε (12.3) for all. Th becaue of he oppg by υ ad he fac ha r (T ) b ξ for all. The proof for Propoo 5.1 eeally ar wh he followg lemma. Lemma 12.2() wll be ued by Lemma 12.3(), whch wll ur be ued by Lemma 12.4(); he meame, Lemma 12.2() wll be ued by Lemma 12.3(), whch wll ur be ued by Lemma 12.4(). Lemma 12.4() a well a Lemma 12.5() wll be voked from Lemma 12.8, whle Lemma 12.4() a well a Lemma 12.5() wll be voked from Lemma Lemma 12.6 ad 12.8 coue he ma body of he proof of Propoo 5.1.

23 2438 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) For oaoal mplcy, we roduce he ymbol R () := S 1 T 1 ad R () := S T, addo o R () = S 1 T 1 ad R () = S T already defed. Noce ha hey all are G () -oppg me wh obvou relaohp uch a R () R () ad R () R (). By coveo, gve a cla C of ube of Ω ad a e A Ω, we wre C A := {C A; C C}. We may uppoe ha < b < 1 hereafer. Lemma Suppoe [A2] ad le, [, T ] ad,,,, 1. () For, G () < R ( ) F R (). () For,, G () < R ( ) I () J () I () J () I () J () I () J () I () J () I () J () F R (, ). Proof. We wll ue repeaedly he mple fac ha for ay F-oppg me σ ad τ, F σ {σ τ} F σ τ = F σ F τ, ad parcular {σ τ} F σ F τ, ad ha F σ F τ f σ τ. () Suppoe. I uffce o how ha A B C D F u for A G (), B = { < R ( )} C = {I () J (), I () J () } D = {R () u}, u R +. We have C D = C D {R ( ) < u + 3b ξ } (12.4) due o he fr modfcao a he begg of h eco becaue he wo par () ad ( ) repecvely overlap a he ame me o C. Sce A G () ad C G, () we have (A C) B G () R ( ). Thu, A B C {R ( ) < u + 3b ξ } G() however, G () u+3b ξ u+3b ξ, = F 2/3 u+b (3b αbβ ) F u becaue α > β ad < b < 1. Th ogeher wh he fac ha {R () u} F u mple A B C D F u for ay u. () A argume mlar o ha of () ca be made. Whe four par (), (, ), ( ), (, ), (, ) repecvely overlap, a he ame me, he oal legh of he aocaed combed erval I I I J J mu be cofed a R ( ) R (, ) 4b ξ ; oe ha R (, ) = S 1 S 1 T 1 T 1. Th lead o a dey mlar o (12.4), from whch oe ca prove () he ame faho a (). Remark I ca alo be how ha G () G () { < S } F S 1, G () { < T } F T 1, { < R ()} {I () J () } F R ().

24 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Le H := I + J I J = (I J ), whch he dcaor of he uo of he erval I ad J up o me. Le Ξ = K J ad Λ = H. To mplfy he oao, we ofe wre X G whe a radom varable X G-meaurable. Lemma Suppoe ha [A2] afed. Le (Z ) ad (Z ) be G() -progrevely meaurable procee. Le, >, ad,,,, 1. The: () Λ Λ Z Z F R () for. () Ξ Ξ Z Z F R (, ) for ad. Proof. () Noe ha o I () J () =, { R ( )} {H for. Le = } {H =, ad parcular Λ = } {Λ Λ = } =, ad alo ha A(,,, ) = { < R ( )} {I () J () } {I () J () }. For ay, ad Borel meaurable e B, {Λ Λ Z Z B} = [{ B} A(,,, ) c ] [{Λ Λ Z Z B} A(,,, )] F R () by Lemma 12.2() becaue Λ Λ Z Z G() -meaurable by coruco. () A argume mlar o () ca apply wh Lemma 12.2() ead of (). Remark () mple ha Λ Z = H Z F R () by akg =, =. () mple ha Ξ Z = J K Z F R (, ) for, by akg =, =, ad =. By a argume mlar o ha he proof of Lemma 12.3, ca be how ha I Z F S 1, I J J Z F T 1, Z F R () ( ). For ad <, Λ Λ I J Z F R (), Z Z F R (, ). A mlar reul hold for he aeme (). For a F-adaped proce Z, we wre Z = Z (b ξ ) +. The Z clearly G () -adaped. Le X = (I X) (I X) for every ad. We oce ha X = for >. (12.5) Lemma Suppoe ha [A2] ad [A3] hold. Le, R +. () For,,, 1 wh ad, E[Λ Λ [X, Y ] [X, Y ] L ] =. L

25 244 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) () For all,, k, k,, l 1 wh k, E[Ξ Ξ kk l [Y ] [Y ] X X k k ] =. Proof. () Noe ha, for he overlappg par () ad (, ), < mple whle < mple ; hece we ca uppoe ha < ad < whou lo of geeraly. We fr clam ha, for every, ad, E[L F R ()] =. I fac, L = 1 {>R ()}L becaue L = for R () = S 1 T 1 by defo, ad hece he opoal amplg heorem mple ha E[L F R ()] = 1 {>R ()}E[L F R ()] = 1 {>R ()}L R () =. For < ad <, Lemma 12.3() mple ha Λ [X, Y ] F R () F R (, )- meaurable ad Λ [X, Y ] F R (, ) F R (, )-meaurable, for ay,. Moreover, becaue L F R ()-meaurable (oce ha L op a = R ()), F R (, )- meaurable for ay. I follow ha E[Λ Λ = E[Λ =. [X, Y ] [X, Y ] L Λ L F R ()] [X, Y ] [X, Y ] L E{L F R (, )} F R ()] () We may aume ha, k k due o (12.5), ad alo ha > k by ymmery. Lemma 12.3() or Remark 12.2 mple ha Ξ [Y ] F S 1-meaurable; he ame way Ξ kk l [Y ] F S k 1-meaurable. Sce X k k meaurable wh repec o F S k F S 1, E[Ξ Ξ kk l [Y ] [Y ] X X k k The opoal amplg heorem provde E X F S 1 = X S 1 =, whch coclude he proof. ] = E[Ξ Ξ kk l Lemma Suppoe ha [A2] ad [A3] are afed. () For every ad, up [,T ] L c b ξ for all. () For every ad, up [,T ] X c b ξ for all. [Y ] [Y ] X k k Proof. Sce L = (I X) (J Y ) (I J ) [X, Y ], we have E{X F S 1}]. L w(x; r (), )w(y ; r (), ) + w([x, Y ]; r (), ). 2 By (12.3), w(x; r (T ), T ) b 1 ξ ε ad w(y ; r (T ), T ) b 1 2 ξ ε ε, 3 8 γ. O he oher had, from (12.2), for all, where w([x, Y ]; r (T ), T ) c r (T ) c b ξ.

26 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Therefore we have obaed (). I he ame faho, from he equaly X w(x; r (), T ) 2 + w([x]; r (), T ), we deduce (). Here we hould oe ha (I X) (I X) + (I X) (I X) ( < ) X = (I X) (I X) ( = ) ( > ), ad o ha X adm a repreeao mlar o L ay cae. For he ma body of he proof for Propoo 5.1, le u coder he gap (3.5) whou calg ad decompoe a ( K ) [L, L ] ( K ) V,,,, where = 1, + 2, + 3,, (12.6) 1, = 2, = (,,, K ) ({(I X)(I X)} {(J J ) [Y ]}),,, ( K ) ({(I I ) [X]} {(J J (,,, ) ({(J ) [Y ]}), Y )(J Y )} {(I I ) [X]}),,, ( ) ({(J J ) [Y ]} {(I I ) [X]}) ad 3, = ( K ) ({(I,, X)(J Y )} {(J I ) [Y, X]}),, ( K ) ({(I J ) [X, Y ]} {(J I ) [Y, X]}) + (,, K ) ({(J Y )(I X)} {(I J ) [X, Y ]}),, ( K ) ({(J I ) [Y, X]} {(I J ) [X, Y ]}). Fr, we how ha b 1 1, aympocally eglgble. Le I (J ) = I ad J(I ) = J. Throughou he dcuo, for equece (x ) ad (y ), x y mea ha here ex a coa C [, ) uch ha x Cy for large. Lemma Uder [A2] [A4], hold ha b 1 1, p ad b 1 2, p a.

27 2442 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Proof. We oe ha J J wheever ad ha X = for >, o a o rewre 1, a 1, = 2, K J X [Y ]. Le R = [Y ] [Y ]. We have ( 1,T ) 2 = 4(I + II + III + IV), where I =, k k,l II =, k k,l III = IV = From [A3], T T T T T T, k k,l T T, k k,l up R = O p [,T ], Ξ Ξ Ξ Ξ b ξ 12 λ Ξ kk l Ξ kk l Ξ kk l Ξ kk l for ay λ >. O he oher had, T Ξ d J (T ) 9 hak o (12.1). Coequely, II, k k,l T T X X X X X k k [Y ] [Y ] dd, X k k [Y ] R dd, K T J (T ) 9T, Ξ (max, (X ) T )2 R T ( [Y ] ) T (c b ξ )2 O p b ξ 12 λ Ξ kk l X, X k k [Y ] R dd, X k k R R dd. T X k k [Y ] R dd T c 81T 2. Ξ 2 d Sce < γ < 1 9 ξ 4 5 ad ce λ > ca be ake arbrarly mall, b 2 II = O p b 2+2ξ +ξ 12 λ 9 4 γ O p b 2(ξ ξ) = o p (1). I a mlar maer, we ca how ha b 1 III = o p(1) ad b 1IV = o p(1).

28 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Nex, we wll evaluae E[I]. I lgh of Lemma 12.4(), he erm corbue o he um oly whe = k. Thu, from (12.2), wh he ad of Lemma 12.5(), we have E[I] c 2 b2ξ c 2 E T T Ξ Ξ,k,l dd. Now,, k,l T T However, for each,, : Hece,, k,l T Ξ Ξ d = T T Thu follow ha b 2 Ξ, k,l Ξ k l dd = T, : T Ξ 2 d. J K d 3 J(I )(T ). : Ξ k l dd 9 E[I] b2 c 2 b2ξ c 2 bξ 9 max J(I )(T ) 2 J(I )(T ) J(I )(T ) 9(3r (T ))(3T ) = 81r (T )T b ξ. = b3(αγ ) a. Afer all, we coclude ha b 1 1,T = o p (1). By ymmery, we alo oba b 1 2,T = o p (1). A he la ep for Propoo 5.1, we are gog o how ha b 1 3, aympocally eglgble. The expreo for 3, ca be mplfed a below. Lemma , = 2 ( H L ) [X, Y ]. Proof. By he ue of aocavy ad leary of egrao a well a egrao by par, oe ha 3, = {( K )(K L + L )} [X, Y ].,, The ummao break dow o four cae. Cae 1:,. Wheever < ad >, boh () ad (, ) cao overlap a he ame me; hece K. The cae of > ad < mlar. Whe < ad < (ad whe () ad (, ) repecvely overlap a he ame me), f (, ) overlap, he rvally ; moreover, K K becaue K = for R (, ) = T 1 bu K for R (, ) < R (, ) = T T 1. The cae whe ( ) overlap ead ca be deal wh mlarly.

29 2444 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) The cae of > ad > ca be how by ymmery. I follow ha (K,, :, K )(K L + L ). Cae 2: =,. Whe < (ad whe () ad ( ) repecvely overlap a he ame me), becaue K = for R ( ) = T 1 bu for R () < R () = T T 1 ; herefore ( K )(K L + L ) = ( )( L + L ) = L. Whe >, by ymmery, ( K I follow ha (K,, : =, = )(K L + L ) = L. K K,, : =, < = 2 K,, : =, < )(K L + L ) L + K,, : =, > L = 2, < K L L by ymmery ad by he fac ha (Lemma 1.1). Cae 3:, =. Lke he above cae, whe <, K, o ( K whle for >, ( K I follow ha (K,, :, = = 2 )(K L + L ) = ( K )(K L + L ) = K K L, )(K L + L ) = K L. K K,, : <, = Cae 4: =, =. Evdely, (K,, : =, = K )(K L + L ) K K L = 2, : < )(K L + L ) = 2 K K L. K,, : =, = L = 2 L.

30 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Pug all he four cae ogeher, 1 2 Becaue,, ( K = K L +, <, : < )(K L + L ) K K L + L. L for < ad K L for <, he r.h.. equal o, : K L +, : =, = L +, L I + K K L + K L L J L L L = (I + J I J )L = H L, ad herefore, he aero obaed. Lemma Uder [A2] [A4], b 1 3, p a. Proof. Le R = [X, Y ] [X, Y ]. We apply Lemma 12.7 o ge ( 3,T ) 2 = 4(I+II+III+IV), where I = II = III = IV = T T Λ Λ, T T Λ Λ, T T Λ Λ, T T Λ Λ, [X, Y ] [X, Y ] L [X, Y ] R L R [X, Y ] L R R L L L L L dd. dd dd dd From Lemma 12.5(), we have up [,T ] L c b ξ for all. Alo, 12 λ up R w([x, Y ] ; b ξ, T ) = O p [,T ] b ξ

31 2446 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) for ay λ > by [A3]. Sce H T Λ d 3 T Coequely, we coclude ha II (c b ξ )2 O p b ξ I I + J, I (T ) λ d + c 36T 2, T J J (T ) 6T. d o b 2II = o p(1). Lkewe, we oba b 2III = o p(1) ad b 2IV = o p(1). By he uform boudede [X, Y ] c ad Lemma 12.5(), we oba E[I] c 2 b2ξ c 2 E T T 1 {= or = } Λ Λ, dd. Here we remark ha he cae (, ) make o corbuo o he um, hak o Lemma 12.4(). We have T T 1 {= or = } Λ Λ dd +,,, =: A 1 + A 2. Sce ad A 1 = we ee ha T T 2 Λ d T T Λ d I d + J d 3 I (T ) + J(I )(T ) 4 J(I )(T ), A 1 16 J(I )(T ) 2 16 max J(I )(T ) 16(3r (T ))(3T ) = 144r (T )T b ξ. J(I )(T ) By ymmery, A 2 b ξ. Pug all of h ogeher, we oba E[A 1 + A 2 ] b ξ, ad a a reul, b 2 E[I] b2 c 2 b2ξ c 2 bξ a. Lemma 12.8 ha bee proved. = b3(αγ ) = o(1)

32 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) Proof of Propoo 5.1. The dered reul follow from he decompoo (12.6) ad Lemma 12.6 ad Proof of Theorem 6.1 ad 6.2 Th eco devoed o he proof of Theorem 6.1 ad 6.2. Wh B 1, = A X (I ) M Y (J ), B 2, = A Y (J ) M X (X ), B 3, = A X (I ) A Y (J ), we have he decompoo {X, Y } = {M X, M Y } + B 1, + B 2, + B 3,. The lmg drbuo of he fr erm ha bee foud he prevou eco. We ow clam ha he re are, afer beg caled, aympocally eglgble. We hall maa he ame eup a decrbed Seco 12. Lemma Suppoe ha [A2] [A6] are afed. The b 1/2 Bl,T p a for l = 1, 2, 3. Proof. Th me, place of (12.2), we wll ue he radom me υ defed by υ = f{; [X] > c } f{; [Y ] > c } f{; [X, Y ] > c } M X Mr X f ; up + MY MY r [,] ( r) 1/2ϵ > 1 1 (r,): r [(b ξ ) +,) f{; (A X ) > d } f{; (A Y ) > d } T for ome ζ 13, α 3 4 γ 13, 1. A meoed Seco 12, wh d = b ζ/2 we ca aume ha X ad Y are opped by υ. Th υ here o greaer ha υ (12.2); however h doe o maer ce P[υ = T ] 1. Though wll o be wre explcly o he procee, hey deped o afer localzao. Furher, we ca aume ha he amplg deg have bee modfed by (I, J )-reduco. We oly coder B 1,T. The oher cae ca be how he ame way. For oaoal mplcy, we drop X ad Y from A X ad M Y. Sce = 1 for R () f he par () overlap, ad = oherwe, whle he proce A(I )M(J ) ar o vary a ad beyod = R (), oe ha B 1, = {A(I ) M(J ) } = {A(I ) M(J )} + {M(J ) A(I )} =: I + II.

33 2448 T. Hayah, N. Yohda / Sochac Procee ad her Applcao 121 (211) The proce I clearly a couou local margale wh he quadrac varao [I] = {( K (I A) (I A) (J J )[M] ) }, due o [A3]. Each ummad vahe wheever, ad alo (I A) A I () by [A5]; hece [I] [M] A 2 I () J () K I (). Sce I (), J () 3r () ad K I () 3r (), a well a [M] c by he localzao already doe, oe ha [I] 9c A 2 r () 2, ad herefore b 1 3 [I] 9 c O p (1) b 1 +2α = O p b 2(αγ )+ 5 4 γ = o p (1). The Leglar equaly mple ha b 1/2 up T I p a dered. Nex we coder II. Sce {b 1/2 II} 1 C-gh (cf. Defo VI.3.25 of [17]) by Lemma 13.2 below, uffce o how ha b 1/2 II = o p (1) for every o coclude uform covergece. We rewre II a II = A T 1 =: II 1, + II 2,. I (J M) d + I (J M) (A A T 1 )d (13.1) Fr we clam ha b 1/2 II 1, = o p (1) a. If <, he clearly A A T 1 T 1 F T 1-meaurable; bede, ca be verfed ealy ha K K u I I u F T 1-meaurable due o a vara of Lemma 12.3(). Therefore, E[II 2 1, ] = 2E E A T 1 A T 1,, < (J M) u F T 1 ddu + E (A T 1 ) 2,, = E (A T 1 ) 2,, 4d 2 c E J (T ) K u I I u (J M) K u I I u E[(J [M])2 F T 1]ddu K u I I u (J [M] v) ddu 2 T I (T ) 4d 2 c E[9T r (T ) 2 ] b α 3 4 γ ζ = o(b ), ad hece b 1/2 II 1, p for every T.

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays Ieraoal Coferece o Appled Maheac Sulao ad Modellg (AMSM 6) Aaly of a Sochac Loa-Volerra Copeve Sye wh Drbued Delay Xagu Da ad Xaou L School of Maheacal Scece of Togre Uvery Togre 5543 PR Cha Correpodg

More information

Competitive Facility Location Problem with Demands Depending on the Facilities

Competitive Facility Location Problem with Demands Depending on the Facilities Aa Pacc Maageme Revew 4) 009) 5-5 Compeve Facl Locao Problem wh Demad Depedg o he Facle Shogo Shode a* Kuag-Yh Yeh b Hao-Chg Ha c a Facul of Bue Admrao Kobe Gau Uver Japa bc Urba Plag Deparme Naoal Cheg

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling Vplav Kumar gh Rajeh gh Deparme of ac Baara Hdu Uver Varaa-00 Ida Flore maradache Uver of ew Meco Gallup UA ome Improved Emaor for Populao Varace Ug Two Aular Varable Double amplg Publhed : Rajeh gh Flore

More information

ESTIMATION AND TESTING

ESTIMATION AND TESTING CHAPTER ESTIMATION AND TESTING. Iroduco Modfcao o he maxmum lkelhood (ML mehod of emao cera drbuo o overcome erave oluo of ML equao for he parameer were uggeed by may auhor (for example Tku (967; Mehrora

More information

Reliability Equivalence of a Parallel System with Non-Identical Components

Reliability Equivalence of a Parallel System with Non-Identical Components Ieraoa Mahemaca Forum 3 8 o. 34 693-7 Reaby Equvaece of a Parae Syem wh No-Ideca ompoe M. Moaer ad mmar M. Sarha Deparme of Sac & O.R. oege of Scece Kg Saud Uvery P.O.ox 455 Ryadh 45 Saud raba aarha@yahoo.com

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method Ieraoal Reearch Joural o Appled ad Bac Scece Avalable ole a wwwrabcom ISSN 5-88X / Vol : 8- Scece xplorer Publcao New approach or umercal oluo o Fredholm eral equao yem o he ecod d by u a expao mehod Nare

More information

Topic 2: Distributions, hypothesis testing, and sample size determination

Topic 2: Distributions, hypothesis testing, and sample size determination Topc : Drbuo, hypohe eg, ad ample ze deermao. The Sude - drbuo [ST&D pp. 56, 77] Coder a repeaed drawg of ample of ze from a ormal drbuo. For each ample, compue,,, ad aoher ac,, where: ( ) The ac he devao

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Practice Final Exam (corrected formulas, 12/10 11AM)

Practice Final Exam (corrected formulas, 12/10 11AM) Ecoomc Meze. Ch Fall Socal Scece 78 Uvery of Wco-Mado Pracce Fal Eam (correced formula, / AM) Awer all queo he (hree) bluebook provded. Make cera you wre your ame, your ude I umber, ad your TA ame o all

More information

Speech, NLP and the Web

Speech, NLP and the Web peech NL ad he Web uhpak Bhaacharyya CE Dep. IIT Bombay Lecure 38: Uuperved learg HMM CFG; Baum Welch lecure 37 wa o cogve NL by Abh Mhra Baum Welch uhpak Bhaacharyya roblem HMM arg emac ar of peech Taggg

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Standby Redundancy Allocation for a Coherent System under Its Signature Point Process Representation

Standby Redundancy Allocation for a Coherent System under Its Signature Point Process Representation merca Joural of Operao Reearch, 26, 6, 489-5 hp://www.crp.org/joural/ajor ISSN Ole: 26-8849 ISSN Pr: 26-883 Sadby Redudacy llocao for a Cohere Syem uder I Sgaure Po Proce Repreeao Vaderle da Coa ueo Deparme

More information

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model Joura of Saca Theory ad Appcao Vo. No. (Sepember ) - Parameer Emao a Geera Faure Rae Sem-Marov Reaby Mode M. Fahzadeh ad K. Khorhda Deparme of Sac Facuy of Mahemaca Scece Va-e-Ar Uvery of Rafaja Rafaja

More information

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

A Remark on Generalized Free Subgroups. of Generalized HNN Groups Ieraoal Mahemacal Forum 5 200 o 503-509 A Remar o Geeralzed Free Subroup o Geeralzed HNN Group R M S Mahmood Al Ho Uvery Abu Dhab POBo 526 UAE raheedmm@yahoocom Abrac A roup ermed eeralzed ree roup a ree

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Deterioration-based Maintenance Management Algorithm

Deterioration-based Maintenance Management Algorithm Aca Polyechca Hugarca Vol. 4 No. 2007 Deerorao-baed Maeace Maageme Algorhm Koréla Ambru-Somogy Iue of Meda Techology Budape Tech Doberdó ú 6 H-034 Budape Hugary a_omogy.korela@rkk.bmf.hu Abrac: The Road

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. ublc Affars 974 Meze D. Ch Fall Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he Effce Markes Hypohess (rev d //) The rese Value Model Approach o Asse rcg The exbook expresses he sock prce

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

National Conference on Recent Trends in Synthesis and Characterization of Futuristic Material in Science for the Development of Society

National Conference on Recent Trends in Synthesis and Characterization of Futuristic Material in Science for the Development of Society ABSTRACT Naoa Coferece o Rece Tred Syhe ad Characerzao of Fuurc Maera Scece for he Deveome of Socey (NCRDAMDS-208) I aocao wh Ieraoa Joura of Scefc Reearch Scece ad Techoogy Some New Iegra Reao of I- Fuco

More information

Second Quantization for Fermions

Second Quantization for Fermions 9 Chaper Secod Quazao for Fermo Maro Pr Iuo Superor de Ceca y Tecología Nucleare, Ave Salvador Allede y Luace, Qua de lo Molo, La Habaa 6, Cuba. The objec of quaum chemry co of eracg may parcle yem of

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. coomcs 435 Meze. Ch Fall 07 Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he ffce Markes Hypohess The rese Value Model Approach o Asse rcg The exbook expresses he sock prce as he prese dscoued

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Reliability Analysis. Basic Reliability Measures

Reliability Analysis. Basic Reliability Measures elably /6/ elably Aaly Perae faul Πelably decay Teporary faul ΠOfe Seady ae characerzao Deg faul Πelably growh durg eg & debuggg A pace hule Challeger Lauch, 986 Ocober 6, Bac elably Meaure elably:

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

Modeling by Meshless Method LRPIM (local radial point interpolation method)

Modeling by Meshless Method LRPIM (local radial point interpolation method) ème ogrè Fraça de Mécaque Lyo, 4 au 8 Aoû 5 Modelg by Mehle Mehod LRPM (local radal po erpolao mehod) Abrac: A. Mouaou a,. Bouzae b a. Deparme of phyc, Faculy of cece, Moulay mal Uvery B.P. Meke, Morocco,

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling I.J.Curr.crobol.App.Sc (08) 7(): 808-85 Ieraoal Joural of Curre crobolog ad Appled Scece ISS: 39-7706 olue 7 uber 0 (08) Joural hoepage: hp://www.jca.co Orgal Reearch Arcle hp://do.org/0.0546/jca.08.70.9

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

A moment closure method for stochastic reaction networks

A moment closure method for stochastic reaction networks THE JOURNAL OF CHEMICAL PHYSICS 3, 347 29 A mome cloure mehod for ochac reaco ewor Chag Hyeog Lee,,a Kyeog-Hu Km, 2,b ad Plwo Km 3,c Deparme of Mahemacal Scece, Worceer Polyechc Iue, Iue Road, Worceer,

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

Nilpotent Elements in Skew Polynomial Rings

Nilpotent Elements in Skew Polynomial Rings Joural of Scece, Ilac epublc of Ira 8(): 59-74 (07) Uvery of Tehra, ISSN 06-04 hp://cece.u.ac.r Nlpoe Elee Sew Polyoal g M. Az ad A. Mouav * Depare of Pure Maheac, Faculy of Maheacal Scece, Tarba Modare

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

Linear Approximating to Integer Addition

Linear Approximating to Integer Addition Lear Approxmatg to Iteger Addto L A-Pg Bejg 00085, P.R. Cha apl000@a.com Abtract The teger addto ofte appled cpher a a cryptographc mea. I th paper we wll preet ome reult about the lear approxmatg for

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems *

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems * erca Joural of Operao eearch 0 47-5 hp://ddoorg/046/ajor007 Publhed Ole Jue 0 (hp://wwwscporg/joural/ajor) The Theory of Meberhp Degree of Γ-Cocluo Several -Valued Logc Sye Jacheg Zhag Depare of Maheac

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

Quantitative Portfolio Theory & Performance Analysis

Quantitative Portfolio Theory & Performance Analysis 550.447 Quaave Porfolo heory & Performace Aalyss Week February 4 203 Coceps. Assgme For February 4 (hs Week) ead: A&L Chaper Iroduco & Chaper (PF Maageme Evrome) Chaper 2 ( Coceps) Seco (Basc eur Calculaos)

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

PARAMETER OPTIMIZATION FOR ACTIVE SHAPE MODELS. Contact:

PARAMETER OPTIMIZATION FOR ACTIVE SHAPE MODELS. Contact: PARAMEER OPIMIZAION FOR ACIVE SHAPE MODELS Chu Che * Mg Zhao Sa Z.L Jaju Bu School of Compuer Scece ad echology, Zhejag Uvery, Hagzhou, Cha Mcroof Reearch Cha, Bejg Sgma Ceer, Bejg, Cha Coac: chec@zju.edu.c

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4 CHAPTER Smple Lear Regreo EXAMPLE A expermet volvg fve ubject coducted to determe the relatohp betwee the percetage of a certa drug the bloodtream ad the legth of tme t take the ubject to react to a tmulu.

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ecre Noe Prepared b r G. ghda EE 64 ETUE NTE WEE r. r G. ghda ocorda Uer eceraled orol e - Whe corol heor appled o a e ha co of geographcall eparaed copoe or a e cog of a large ber of p-op ao ofe dered

More information

The Bernstein Operational Matrix of Integration

The Bernstein Operational Matrix of Integration Appled Mahemacal Sceces, Vol. 3, 29, o. 49, 2427-2436 he Berse Operaoal Marx of Iegrao Am K. Sgh, Vee K. Sgh, Om P. Sgh Deparme of Appled Mahemacs Isue of echology, Baaras Hdu Uversy Varaas -225, Ida Asrac

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull Advace Pure Mahemac 3 3 67-679 Publhed Ole November 3 (h://wwwcrorg/oural/am) h://dxdoorg/436/am3389 he Lace of Fully Ivara Subgrou of he Cooro Hull arel Kemoldze Dearme of Mahemac Aa ereel Sae Uvery Kua

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis Probably /4/6 CS 5 elably Aaly Yahwa K. Malaya Colorado Sae very Ocober 4, 6 elably Aaly: Oule elably eaure: elably, avalably, Tra. elably, T M MTTF ad (, MTBF Bac Cae Sgle u wh perae falure, falure rae

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Pricing Asian Options with Fourier Convolution

Pricing Asian Options with Fourier Convolution Prcg Asa Opos wh Fourer Covoluo Cheg-Hsug Shu Deparme of Compuer Scece ad Iformao Egeerg Naoal Tawa Uversy Coes. Iroduco. Backgroud 3. The Fourer Covoluo Mehod 3. Seward ad Hodges facorzao 3. Re-ceerg

More information

The Impact of Transaction Cost on Competitive Economy

The Impact of Transaction Cost on Competitive Economy The Impac of Traaco Co o Compeve Ecoomy Zhpg Xe Shadog Uvery & Hua Uvery (emal: zpxe@2c.com) Abrac The fucoal relaohp bewee he prce vecor ad coumer Marhalla demad ad/or producer opmal acual ale wll be

More information

JURY. Mohamed MNIF, Professeur, Ecole Nationale d'ingénieurs de Tunis, Tunis

JURY. Mohamed MNIF, Professeur, Ecole Nationale d'ingénieurs de Tunis, Tunis Achref BACHOUCH Mémore préeé e vue de l obeo du grade de Doceur de l Uveré du Mae ou le label de L Uveré Nae Ager Le Ma e de l'ecole Naoale d'igéeur de Tu ou le label de L Uveré de Tu EL Maar École docorale

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF INF 4300 04 Mulvarae clafcao Ae Solberg ae@fuoo Baed o Chaper -6 Duda ad Har: Paer Clafcao Baye rule for a clafcao proble Suppoe we have J, =,J clae he cla label for a pel, ad he oberved feaure vecor We

More information

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS Vol.7 No.4 (200) p73-78 Joural of Maageme Scece & Sascal Decso IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS TIANXIANG YAO AND ZAIWU GONG College of Ecoomcs &

More information

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1 CS473-Algorthm I Lecture b Dyamc Table CS 473 Lecture X Why Dyamc Table? I ome applcato: We do't kow how may object wll be tored a table. We may allocate pace for a table But, later we may fd out that

More information

An Efficient Dual to Ratio and Product Estimator of Population Variance in Sample Surveys

An Efficient Dual to Ratio and Product Estimator of Population Variance in Sample Surveys "cece as True Here" Joural of Mahemacs ad ascal cece, Volume 06, 78-88 cece gpos Publshg A Effce Dual o Rao ad Produc Esmaor of Populao Varace ample urves ubhash Kumar Yadav Deparme of Mahemacs ad ascs

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecure 12 Chaper 4 Fresel quaos co. Toal eral refleco ad evaesce waves Opcal properes of meals Laer: Famlar aspecs of he eraco of lgh ad maer Fresel quaos r 2 Usg Sell s law, we ca re-wre: r s s r a a

More information

General Complex Fuzzy Transformation Semigroups in Automata

General Complex Fuzzy Transformation Semigroups in Automata Joural of Advaces Compuer Research Quarerly pissn: 345-606x eissn: 345-6078 Sar Brach Islamc Azad Uversy Sar IRIra Vol 7 No May 06 Pages: 7-37 wwwacrausaracr Geeral Complex uzzy Trasformao Semgroups Auomaa

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Odoardo Volonterio 1, Michele Nardelli 2

Odoardo Volonterio 1, Michele Nardelli 2 ON SOME APPLICATIONS OF THE VOLONTERIO S TRANSFORM: SERIES DEVELOPMENT OF TYPE N+M AND MATHEMATICAL CONNECTIONS WITH SOME SECTORS OF THE STRING THEORY Odoardo Voloero Mchele Nardell Polecco d Mlao Paa

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Improvd Epoal Emaor for Populao Varac Ug Two Aular Varabl Rajh gh Dparm of ac,baara Hdu Uvr(U.P., Ida (rgha@ahoo.com Pakaj Chauha ad rmala awa chool of ac, DAVV, Idor (M.P., Ida Flor maradach Dparm of

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information