The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF

Size: px
Start display at page:

Download "The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF"

Transcription

1 INF Mulvarae clafcao Ae Solberg Baed o Chaper -6 Duda ad Har: Paer Clafcao Baye rule for a clafcao proble Suppoe we have J, =,J clae he cla label for a pel, ad he oberved feaure vecor We ca ue Baye rule o fd a epreo for he cla wh he hghe probably: p P P p pror probably poeror probably lkelhood oralzg facor P he pror probably for cla If we do' have pecal kowledge ha oe of he clae occur ore freque ha oher clae, we e he equal for all clae P =/J, =,,,J 04 INF 4300 INF 4300 Baye rule eplaed p P P p p he probably dey fuco ha odel he lkelhood for obervg feaure vecor f he pel belog o cla Typcally we aue a ype of drbuo, eg Gaua, ad he ea ad covarace of ha drbuo fed o oe daa ha we kow belog o ha cla Th fg called clafer rag P he poeror probably ha he pel acually belog o cla p u a calg facor ha aure ha he probable u o INF The codoal dey p Ay probably dey fuco ca be ued o odel p A coo odel he ulvarae Gaua dey The ulvarae Gaua dey: p ep / Σ / μ Σ μ If we have feaure, a vecor of legh ad ad a ar deped o cla μ S ΣS 3 he deera of he ar, ad - he vere INF Syerc ar he varace of feaure he covarace bewee feaure ad feaure

2 Mea vecor ad covarace arce deo If a -deoal feaure vecor for oe obec/pel, we ca forulae ea vecor ad covarace ar a: wh feaure, he ea vecor wll be of ze ad or ze INF Σ μ Ipecg p INF p μ Σ μ Σ / / ep Scalar vecor rapoed vecor rapoed ar Ivere of covarace ar Scalar probably The ea vecor for each cla The ea vecor for cla defed a he epeced value of : wh feaure, he ea vecor wll be of ze If we have M rag aple ha we kow belog o cla, we ca eae he ea vecor a: INF μ rag aple belogg o cla where he u over all, ˆ M M μ The covarace ar for each cla The covarace for cla defed a he epeced value of -- : wh feaure, he covarace ar wll be of ze If we have M rag aple ha we kow belog o cla, we ca eae he covarace ar The eae of a rado varable f deoed ach er copued a: INF Σ rag aple belogg o cla where he u over all ˆ ˆ ˆ M M for cla ad for he covarace bewee feaure ˆ ˆ,,, M M fˆ

3 More o he covarace ar The covarace ar wll alway be yerc ad pove edefe If all copoe of have o-zero varace, wll be pove defe he covarace bewee feaure ad If feaure ad are ucorrelaed, = 0 I he geeral cae, wll have +/ dffere value A D Gaua odel Paraeer μ ad Σ defe a dey a a bup The curve o he plo are coour of equal probably, u a he coour o a ap The ar Σ h cae ha hree dffere elee, varace each of he ae, ad covarace bewee he ae S he varace for feaure = he covarace bewee feaure ad he varace for feaure INF INF The covarace ar ad ellpe I D, he Gaua odel ca be hough of a approag he clae D feaure pace wh ellpe The ea vecor =[, ] defe he he ceer po of he ellpe, he covarace bewee he feaure defe he oreao of he ellpe ad defe he wdh of he ellpe he a ad b paraeer S The ellpe defe po where he probably dey equal qual he ee ha he dace o he ea a copued by he Mahalaob dace equal The Mahalaob dace bewee a po ad he cla ceer : T r The a ae of he ellpe deered by he egevecor of The egevalue of gve her legh INF 4300 ucldea dace v Mahalaob dace ucldea dace bewee po ad cla ceer : T Mahalaob dace bewee ad : r T INF 4300 Po wh equal dace o le o a crcle Po wh equal dace o le o a ellpe

4 Dcra fuco for he oral dey We aw la lecure ha he u-error-rae clafcao ca copued ug he dcra fuco g l p l P Wh a ulvarae Gaua we ge: g μ μ l l l P Le u look a h epreo for oe pecal cae: Cae : Σ =σ I Coder ha we aue he feaure ucorrelaed depede wh he ae varace σ The covarace σ =0 by defo f he feaure are ucorrelaed The dcra fuco wll be plfed o: μ g l P where μ μ μ We how h o he e lde Thu we odel he probable a -deoal phere becaue po ha have equal dcra fuco wll le o a crcle aroud he ea Σ - =I/σ Σ = σ INF INF Cae : Σ =σ I The dcra fuco plfe o lear fuco ug uch a hape o he probably drbuo T g μ l l μ P T T T μ l l μ μ P Lear algebra bac: Ier produc bewee wo vecor The er produc or do produc bewee wo vecor of legh N ad y or gve by N, y y y The agle bewee wo vecor A ad B defed a: T Coo for all clae, o eed o copue hee wo er Sce T coo for all clae, g reduce o a lear fuco of INF co A, B A B If he er produc of wo vecor zero, hey are oral o each oher 6

5 Cae : Σ =σ I A equvale forulao of he dcra fuco: g w w 0 where w μ ad 0 l w μ μ P The equao g =g cabe wrea If he feaure were depee Σ =σ I he dcra fuco wa plfed o: ' T g μ l μ P μ l P w 0 where w μ -μ 0 P ad 0 μ -μ l μ -μ μ -μ P w= - he vecor bewee he ea value Th equao defe a hyperplae hrough he po 0, ad orhogoal o w If P =P he hyperplae wll be locaed halfway bewee he ea value Th reul lear deco boudare Copug h dcra fuco o clafy paer volve copug he dace fro he po o he ea value for each cla INF INF A ple odel, Σ =σ I The dcra fuco whe Σ =σ I ha defe he border bewee cla ad he feaure pace a ragh le The dcra fuco erec he le coecg he wo cla ea a he po 0 = - / f we do o coder pror probable The dcra fuco wll alo be oral o he le coecg he ea 0 Deco boudary The drbuo are phercal deo The deco boudary a geeralzed hyperplae of - deo The deco boudary perpedcular o he le eparag he wo ea value Th kd of a clafer called a lear clafer, or a lear dcra fuco Becaue he deco fuco a lear fuco of If P = P, he deco boudary wll be half-way bewee ad 9 INF

6 Mu dace clafcao If all clae have equal pror probable, 0 wll be he po halfway bewee he ea vecor Clafcao wll co of agg feaure vecor o he ae cla a he cloe ea eaured by ucldea dace - A clafer baed o he ucldea dace called a u dace clafer Cae : Coo covarace, Σ = Σ If we aue ha all clae have he ae hape of daa cluer, a uve odel o aue ha her probably drbuo have he ae hape By h aupo we ca ue all he daa o eae he covarace ar Th eae coo for all clae, ad h ea ha alo h cae he dcra fuco becoe lear fuco T g μ Σ μ l Σ l P T T T Σ μ Σ μ Σ μ l Σ l P INF 4300 Coo for all clae, o eed o copue Sce T coo for all clae, g aga reduce o a lear fuco of INF 4300 Cae : Coo covarace, Σ = Σ Coo covarace, Σ = Σ A equvale forulao of he dcra fuco g w w0 where w Σ μ ad w0 μ Σ μ l P The deco boudare are aga hyperplae Becaue w = Σ - - o he dreco of -, he hyperpla wl o be orhogoal o he le bewee he ea The clae ca be decrbed by hyperellpode d deo All hyperellpod have he ae oreao The deco boudary wll aga be a hyperplae Becaue w= Σ - - geerally o he dreco of -, he hyperplae wll o be perpedcular o he le bewee he ea Coder a po 0 o he le - defed by he pror probable: If P = P, 0 wll be half way bewee he ea The eparag hyperplae wll erec he le a 0 INF INF

7 Cae 3:, Σ =arbrary Whe all clae are odeled a havg dffere hape, he dcra fuco cao be plfed Th ea ha he dcra fuco wll be quadrac fuco Deco boudare wll be hyperquadrc ad aue ay of he geeral for: hyperplae, par of hyperplae, hyperphere, hyperellode, hyperparabolod, hyperhyperbolod INF Cae 3:, Σ =arbrary The dcra fuco wll be quadrac: g W w w0 where W Σ, w Σ μ ad w0 μ Σ μ l Σ l P The deco urface are hyperquadrc ad ca aue ay of he geeral for: hyperplae hyperhpere par of hyperplae hyperellod, Hyperparabolod, The e lde how eaple of h I h geeral cae we cao uvely draw he deco boudare u by lookg a he ea ad covarace INF The full odel, Σ =arbrary - eaple The full odel, Σ=arbrary - eaple INF INF

8 The full odel, Σ =arbrary - eaple The full odel, Σ=arbrary - eaple INF INF The full odel, Σ=arbrary - eaple A ulcla eaple INF INF

9 I he Gaua clafer he oly choce? The Gaua clafer gve lear or quadrac dcra fuco Oher clafer ca gve arbrary cople deco urface ofe pecewe-lear Mure of Gaua Oher probably dey fuco -drbuo, epoeal drbuo Neural ework Suppor vecor ache INF 5300 eble of ple clafer ADAboo Rado fore/deco ree knn k-neare-neghbor clafcao e week INF Ug ak o ra ad e Trag ak: a ak where rego o ra each cla are arked ug dffere pel value, eg cla label= for cla, for cla ec Te ak: a lar ak a rag, bu o eae clafer accuracy oly INF Trag a clafer Oba a ay groud ruh aple for each cla a poble If vual peco relable, eper ca ark rag rego eracvely For reoe eg, go ou he feld ad collec feld aple or ue age fro a dffere eor For ybol recogo, ark a e of ybol aually For edcal applcao, ue eg ue aple or erpreao ade by eper Dvde he groud ruh o a rag e ad a e e Ue feaure eraco ad feaure eleco/evaluao o deere he be e of feaure Decde f a lear or quadrac clafer eeded ˆ ha elee ˆ ha -/ elee For each cla, copue ad ug he gve Mau Lkelhood eae INF Clafyg ew daa For each aple, copue he poeror probable for each cla P p P ep P / / P Clafy he aple o he cla wh he hghe poeror probably valuae he perforace of he clafer We ca alo produce age of he poeror probably for each cla INF

10 Valdag clafer perforace Clafcao perforace evaluaed o a dffere e of aple wh kow cla - he e e The rag e ad he e e u be depede! Norally, he e of groud ruh pel wh kow cla parooed o a e of rag pel ad a e of e pel of approaely he ae ze Th ca be repeaed everal e o copue ore robu eae a average e accuracy over everal dffere paro of e e ad rag e By elecg eg 0 rado paro of he e of aple o a rag e ad a e e Cofuo arce A ar wh he rue cla label veru he eaed cla label for each cla aed cla label True cla label Cla Cla Cla 3 Toal #apl e Cla Cla Cla Toal INF INF Cofuo ar - co Alerave: Repor of correcly clafed pel for each cla Repor he perceage of correcly clafed pel for each cla Repor he perceage of correcly clafed pel oal Why h o a good eaure f he uber of e pel fro each cla vare bewee clae? Cla Cla Cla 3 Toal #a ple Cla Cla Cla Toal INF A clafcao eaple Lada age wh 6 pecral bad The 6 bad wll be he feaure Trag area ad e area how ak Upper par: RGB-fale color age creaed fro bad 4,5 ad 6 wh rag ad e rego overlad Lower par: age of rag rego oly 4 INF

11 Vual peco of feaure Vual peco of feaure Cla fore ee o be well eparaed, Maybe alo cla urba Cla fore ee o be well eparaed 4 3 INF INF Vual peco of feaure 3 Vual peco of feaure 4 Cla fore ee o be well eparaed, Cla urba ee o be well eparaed Cla waer ee o be well eparaed, Maybe alo cla 4 agrculural INF INF

12 Vual peco of feaure 5 Vual peco of feaure 6 Waer ad fore appear lar - bu he varace gh be dffere See lar o feaure 5, bu wh beer cora Urba ad agrculural appear lar bu he varace gh be dffere INF INF Seleced caer plo gcaer Clafed age Scaerplo bewee feaure ad 4 Scaerplo bewee feaure 5 ad 6 The ere age clafed o he o probable cla INF INF

13 Dplay he poeror probable a age Cofuo ar for he rag e Dark value: Probable cloe o 0 True cla Aged o Cla Aged o Cla Aged o Cla 3 Cla Aged o Cla4 Poeror probably for cla urba Poeror probably for cla fore Brgh value: Probable cloe o Cla Cla Cla Poeror probably for cla waer Poeror probably for cla agrculural Accuracy per cla: Averaged over all clae: 97% Cla: 8% Cla: 96% Cla3: 00% Cla4: 90% INF INF Cofuo ar for he e e Learg goal fro h lecure True cla Aged o Cla Aged o Cla Aged o Cla 3 Cla Cla Cla Cla Accuracy per cla: Averaged over all clae: 875% Cla: 85% Cla: 8% Cla3: 98% Cla4: 86% Aged o Cla4 INF Be able o ue ad plee Baye rule wh a - deoal Gaua drbuo Kow how ad are eaed Uderad he -deoal cae where a covarace ar lluraed a a ellpe Be able o plfy he geeral dcra fuco for 3 cae Have a geoerc erpreao of clafcao wh feaure INF

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

Reliability Analysis. Basic Reliability Measures

Reliability Analysis. Basic Reliability Measures elably /6/ elably Aaly Perae faul Πelably decay Teporary faul ΠOfe Seady ae characerzao Deg faul Πelably growh durg eg & debuggg A pace hule Challeger Lauch, 986 Ocober 6, Bac elably Meaure elably:

More information

Today s focus. Bayes rule explained INF Multivariate classification Anne Solberg

Today s focus. Bayes rule explained INF Multivariate classification Anne Solberg Toay focu INF 4300 006 Mulvarae clafcaon Anne Solberg anne@fuono From a -menonal feaure vecor =[, ] T Gven K fferen clae k=, K Compue he probably ha belong o cla k Pk = p kpk/con How houl he mulvarae eny

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

The Histogram. Non-parametric Density Estimation. Non-parametric Approaches

The Histogram. Non-parametric Density Estimation. Non-parametric Approaches The Hogram Chaper 4 No-paramerc Techque Kerel Pare Wdow Dey Emao Neare Neghbor Rule Approach Neare Neghbor Emao Mmum/Mamum Dace Clafcao No-paramerc Approache A poeal problem wh he paramerc approache The

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling I.J.Curr.crobol.App.Sc (08) 7(): 808-85 Ieraoal Joural of Curre crobolog ad Appled Scece ISS: 39-7706 olue 7 uber 0 (08) Joural hoepage: hp://www.jca.co Orgal Reearch Arcle hp://do.org/0.0546/jca.08.70.9

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis Probably /4/6 CS 5 elably Aaly Yahwa K. Malaya Colorado Sae very Ocober 4, 6 elably Aaly: Oule elably eaure: elably, avalably, Tra. elably, T M MTTF ad (, MTBF Bac Cae Sgle u wh perae falure, falure rae

More information

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ecre Noe Prepared b r G. ghda EE 64 ETUE NTE WEE r. r G. ghda ocorda Uer eceraled orol e - Whe corol heor appled o a e ha co of geographcall eparaed copoe or a e cog of a large ber of p-op ao ofe dered

More information

PARAMETER OPTIMIZATION FOR ACTIVE SHAPE MODELS. Contact:

PARAMETER OPTIMIZATION FOR ACTIVE SHAPE MODELS. Contact: PARAMEER OPIMIZAION FOR ACIVE SHAPE MODELS Chu Che * Mg Zhao Sa Z.L Jaju Bu School of Compuer Scece ad echology, Zhejag Uvery, Hagzhou, Cha Mcroof Reearch Cha, Bejg Sgma Ceer, Bejg, Cha Coac: chec@zju.edu.c

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Notes on MRI, Part III

Notes on MRI, Part III oll 6 MRI oe 3: page oe o MRI Par III The 3 rd Deo - Z The 3D gal equao ca be wre a follow: ep w v u w v u M ddd where Muvw he 3D FT of. I he p-warp ehod for D acquo oe le a a e acqured he D Fourer doa

More information

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays Ieraoal Coferece o Appled Maheac Sulao ad Modellg (AMSM 6) Aaly of a Sochac Loa-Volerra Copeve Sye wh Drbued Delay Xagu Da ad Xaou L School of Maheacal Scece of Togre Uvery Togre 5543 PR Cha Correpodg

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Practice Final Exam (corrected formulas, 12/10 11AM)

Practice Final Exam (corrected formulas, 12/10 11AM) Ecoomc Meze. Ch Fall Socal Scece 78 Uvery of Wco-Mado Pracce Fal Eam (correced formula, / AM) Awer all queo he (hree) bluebook provded. Make cera you wre your ame, your ude I umber, ad your TA ame o all

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Mau Lkelhood aon Beln Chen Depaen of Copue Scence & Infoaon ngneeng aonal Tawan oal Unvey Refeence:. he Alpaydn, Inoducon o Machne Leanng, Chape 4, MIT Pe, 4 Saple Sac and Populaon Paaee A Scheac Depcon

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Nilpotent Elements in Skew Polynomial Rings

Nilpotent Elements in Skew Polynomial Rings Joural of Scece, Ilac epublc of Ira 8(): 59-74 (07) Uvery of Tehra, ISSN 06-04 hp://cece.u.ac.r Nlpoe Elee Sew Polyoal g M. Az ad A. Mouav * Depare of Pure Maheac, Faculy of Maheacal Scece, Tarba Modare

More information

Competitive Facility Location Problem with Demands Depending on the Facilities

Competitive Facility Location Problem with Demands Depending on the Facilities Aa Pacc Maageme Revew 4) 009) 5-5 Compeve Facl Locao Problem wh Demad Depedg o he Facle Shogo Shode a* Kuag-Yh Yeh b Hao-Chg Ha c a Facul of Bue Admrao Kobe Gau Uver Japa bc Urba Plag Deparme Naoal Cheg

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model Joura of Saca Theory ad Appcao Vo. No. (Sepember ) - Parameer Emao a Geera Faure Rae Sem-Marov Reaby Mode M. Fahzadeh ad K. Khorhda Deparme of Sac Facuy of Mahemaca Scece Va-e-Ar Uvery of Rafaja Rafaja

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Theory study about quarter-wave-stack dielectric mirrors

Theory study about quarter-wave-stack dielectric mirrors Theor tud about quarter-wave-tack delectrc rror Stratfed edu tratted reflected reflected Stratfed edu tratted cdet cdet T T Frt, coder a wave roagato a tratfed edu. A we kow, a arbtrarl olared lae wave

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Dimension Reduction. Curse of dimensionality

Dimension Reduction. Curse of dimensionality Deso Reuco Deso Reuco Curse of esoaly h 5 feaures esos, each quaze o levels, creae 5 possble feaure cobaos, age ho ay saples you ee o esae p? ho o you vsualze he srucure a 5 esoal space? Oher probles ze

More information

Speech, NLP and the Web

Speech, NLP and the Web peech NL ad he Web uhpak Bhaacharyya CE Dep. IIT Bombay Lecure 38: Uuperved learg HMM CFG; Baum Welch lecure 37 wa o cogve NL by Abh Mhra Baum Welch uhpak Bhaacharyya roblem HMM arg emac ar of peech Taggg

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 8 Compuer Orgaizaio Chaper. Overview of Pipeliig Chau Yu Laudry Example Laudry Example A, Bria, Cahy, Dave each have oe load of clohe o wah, dry, ad fold Waher ake 0 miue A B C D Dryer ake 0 miue Folder

More information

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling Vplav Kumar gh Rajeh gh Deparme of ac Baara Hdu Uver Varaa-00 Ida Flore maradache Uver of ew Meco Gallup UA ome Improved Emaor for Populao Varace Ug Two Aular Varable Double amplg Publhed : Rajeh gh Flore

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Reve: Fal Exam (//005) Reve-Fal- Fal Exam Dec. 6 h Frday :0-3 pm, Mudd Rm 644 Reve Fal- Chap 5: Lear Dscrma Fucos Reve

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Interval Regression Analysis with Reduced Support Vector Machine

Interval Regression Analysis with Reduced Support Vector Machine Ieraoal DSI / Asa ad Pacfc DSI 007 Full Paper (July, 007) Ierval Regresso Aalyss wh Reduced Suppor Vecor Mache Cha-Hu Huag,), Ha-Yg ao ) ) Isue of Iforao Maagee, Naoal Chao Tug Uversy (leohkko@yahoo.co.w)

More information

On Metric Dimension of Two Constructed Families from Antiprism Graph

On Metric Dimension of Two Constructed Families from Antiprism Graph Mah S Le 2, No, -7 203) Mahemaal Sees Leers A Ieraoal Joural @ 203 NSP Naural Sees Publhg Cor O Mer Dmeso of Two Cosrued Famles from Aprm Graph M Al,2, G Al,2 ad M T Rahm 2 Cere for Mahemaal Imagg Tehques

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition SSN 76-7659 Eglad K Joural of forao ad Copug Scece Vol 7 No 3 pp 63-7 A Secod Kd Chebyshev olyoal Approach for he Wave Equao Subec o a egral Coservao Codo Soayeh Nea ad Yadollah rdokha Depare of aheacs

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecure 12 Chaper 4 Fresel quaos co. Toal eral refleco ad evaesce waves Opcal properes of meals Laer: Famlar aspecs of he eraco of lgh ad maer Fresel quaos r 2 Usg Sell s law, we ca re-wre: r s s r a a

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Reliability Equivalence of a Parallel System with Non-Identical Components

Reliability Equivalence of a Parallel System with Non-Identical Components Ieraoa Mahemaca Forum 3 8 o. 34 693-7 Reaby Equvaece of a Parae Syem wh No-Ideca ompoe M. Moaer ad mmar M. Sarha Deparme of Sac & O.R. oege of Scece Kg Saud Uvery P.O.ox 455 Ryadh 45 Saud raba aarha@yahoo.com

More information

ESTIMATION AND TESTING

ESTIMATION AND TESTING CHAPTER ESTIMATION AND TESTING. Iroduco Modfcao o he maxmum lkelhood (ML mehod of emao cera drbuo o overcome erave oluo of ML equao for he parameer were uggeed by may auhor (for example Tku (967; Mehrora

More information

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks Usupervsed Learg Newors Cluserg Coe Iroduco Ipora Usupervsed Learg NNs Hag Newors Kohoe s Self-Orgazg Feaure Maps Grossberg s AR Newors Couerpropagao Newors Adapve BAN Neocogro Cocluso Usupervsed Learg

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems *

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems * erca Joural of Operao eearch 0 47-5 hp://ddoorg/046/ajor007 Publhed Ole Jue 0 (hp://wwwscporg/joural/ajor) The Theory of Meberhp Degree of Γ-Cocluo Several -Valued Logc Sye Jacheg Zhag Depare of Maheac

More information

Numerical approximatons for solving partial differentıal equations with variable coefficients

Numerical approximatons for solving partial differentıal equations with variable coefficients Appled ad Copuaoal Maheacs ; () : 9- Publshed ole Februar (hp://www.scecepublshggroup.co/j/ac) do:.648/j.ac.. Nuercal approaos for solvg paral dffereıal equaos wh varable coeffces Ves TURUT Depare of Maheacs

More information

On the energy of complement of regular line graphs

On the energy of complement of regular line graphs MATCH Coucato Matheatcal ad Coputer Chetry MATCH Cou Math Coput Che 60 008) 47-434 ISSN 0340-653 O the eergy of copleet of regular le graph Fateeh Alaghpour a, Baha Ahad b a Uverty of Tehra, Tehra, Ira

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October ISSN Ieraoal Joural of cefc & Egeerg Research, Volue, Issue 0, Ocober-0 The eady-ae oluo Of eral hael Wh Feedback Ad Reegg oeced Wh o-eral Queug Processes Wh Reegg Ad Balkg ayabr gh* ad Dr a gh** *Assoc Prof

More information

Topic 2: Distributions, hypothesis testing, and sample size determination

Topic 2: Distributions, hypothesis testing, and sample size determination Topc : Drbuo, hypohe eg, ad ample ze deermao. The Sude - drbuo [ST&D pp. 56, 77] Coder a repeaed drawg of ample of ze from a ormal drbuo. For each ample, compue,,, ad aoher ac,, where: ( ) The ac he devao

More information

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples Rado Sgals robabl & Rado Varables: Revew M. Sa Fadal roessor o lecrcal geerg Uvers o evada Reo Soe phscal sgals ose cao be epressed as a eplc aheacal orla. These sgals s be descrbed probablsc ers. ose

More information

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4 CHAPTER Smple Lear Regreo EXAMPLE A expermet volvg fve ubject coducted to determe the relatohp betwee the percetage of a certa drug the bloodtream ad the legth of tme t take the ubject to react to a tmulu.

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Some probability inequalities for multivariate gamma and normal distributions. Abstract

Some probability inequalities for multivariate gamma and normal distributions. Abstract -- Soe probably equales for ulvarae gaa ad oral dsrbuos Thoas oye Uversy of appled sceces Bge, Berlsrasse 9, D-554 Bge, Geray, e-al: hoas.roye@-ole.de Absrac The Gaussa correlao equaly for ulvarae zero-ea

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14)

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14) Quz - Lear Regreo Aaly (Baed o Lecture -4). I the mple lear regreo model y = β + βx + ε, wth Tme: Hour Ε ε = Ε ε = ( ) 3, ( ), =,,...,, the ubaed drect leat quare etmator ˆβ ad ˆβ of β ad β repectvely,

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

Advanced Machine Learning

Advanced Machine Learning dvaced ache Learg Learg rahcal odels Learg full observed ad arall observed BN rc g Lecure 4 ugus 3 009 Readg: rc g rc g @ U 006-009 Iferece ad Learg BN descrbes a uque robabl dsrbuo P Tcal asks: Task :

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

Statistics Parameters

Statistics Parameters Saplig Ditributio & Cofidece Iterval Etiator Statitical Iferece Etiatio Tetig Hypothei Statitic Ued to Etiate Populatio Paraeter Statitic Saple Mea, Saple Variace, Saple Proportio, Paraeter populatio ea

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

Overview. Introduction Building Classifiers (2) Introduction Building Classifiers. Introduction. Introduction to Pattern Recognition and Data Mining

Overview. Introduction Building Classifiers (2) Introduction Building Classifiers. Introduction. Introduction to Pattern Recognition and Data Mining Ovrv Iroduco o ar Rcogo ad Daa Mg Lcur 4: Lar Dcra Fuco Irucor: Dr. Gova Dpar of Copur Egrg aa Clara Uvry Iroduco Approach o uldg clafr Lar dcra fuco: dfo ad urfac Lar paral ca rcpro crra Ohr hod Lar Dcra

More information

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 7 Lear regresso Mlos Hauskrecht los@cs.ptt.edu 59 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear cobato of put copoets f + + + K d d K k - paraeters eghts

More information

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval Saplig Ditributio & Cofidece Iterval Uivariate Aalyi for a Nueric Variable (or a Nueric Populatio) Statitical Iferece Etiatio Tetig Hypothei Weight N ( =?, =?) 1 Uivariate Aalyi for a Categorical Variable

More information

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22 Cheisry B, Fall 6 Topics - STRUCTURE ad DYNAMICS Cheisry B Fall 6 Cheisry B so far: STRUCTURE of aos ad olecules Topics - Cheical Kieics Cheisry B ow: DYNAMICS cheical kieics herodyaics (che C, 6B) ad

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information