Math 106 Exam 2 Topics. du dx

Size: px
Start display at page:

Download "Math 106 Exam 2 Topics. du dx"

Transcription

1 The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul epen on f (x 0 ) an g (f(x 0 )) Chain Rule: (g f) (x 0 ) = g (f(x 0 ))f (x 0 ) = ((outsie) eval at insie fcn) ((insie)) Ex: ((x 3 + x 1) 4 ) = (4(x ) 3 )(3x 2 + 1) Different notation: y = g(f(x)) = g(u), where u = f(x), then y x = y u u x Parametric equations: a general curve neen t be the graph of a function. But we can imagine ourselves travelling along a curve, an then x = x(t) an y = y(t) are functions of t=time. We still may have a reasonable tangent line to the graph, an its slope shoul still be (change in y/change in x = lim t t0 y(t) y(t 0 ) x(t) x(t 0 ) = lim t t 0 (y(t) y(t 0 ))/(t t 0 ) (x(t) x(t 0 ))/(t t 0 ) = lim t t 0 (y(t) y(t 0 ))/(t t 0 ) lim t t0 (x(t) x(t 0 ))/(t t 0 ) = y (t 0 ) x (t 0 ) Implicit ifferentiation We can ifferentiate functions; what about equations? (e.g., x 2 + y 2 = 1) graph looks like it has tangent lines tangent line? (a,b) Iea: Preten equation efines y as a function of x : x 2 + (f(x)) 2 = 1 an ifferentiate! 2x + 2f(x)f (x) = 0 ; so f (x) = x f(x) = x y Different notation: x 2 + xy 2 y 3 = 6 ; then 2x + (y 2 + x(2y y y ) 3y2 x x = 0 y 2x y2 = x 2xy 3y 2 1

2 Application: exten the power rule x (xr ) = rx r 1 works for any rational number r (y = x p/q means y q = x p ; ifferentiate!) Inverse functions an their erivatives Basic iea: run a function backwars y=f(x) ; assign the value x to the input y ; x=g(y) nee g a function; so nee f is one-to-one f is one-to-one: if f(x)=f(y) then x=y ; if x y then f(x) f(y) g = f 1, then g(f(x)) = x an f(g(x)) = x (i.e., g f=i an f g=i) fining inverses: rewrite y=f(x) as x=some expression in y graphs: if (a,b) on graph of f, then (b,a) on graph of f 1 graph of f 1 is graph of f, reflecte across line y=x horizontal lines go to vertical lines; horizontal line test for inverse erivative of the inverse: f (f 1 (x)) (f 1 ) (x) = 1 if f(a) = b, then (f 1 ) (b) = 1/f (a) Logarithms f(x)=a x is either always increasing (a > 1) or always ecreasing (a < 1) inverse is g(x) = log a x = lnx lna lnx is the inverse of e x. lnx is a log; it turns proucts into sums: ln(ab) = ln(a) + ln(b) ln(a b ) = b ln(a) ; ln(a/b) = ln(a) ln(b) e ln x = x an (e x ) = e x, so 1 = (e ln x ) = (e ln x )(lnx) = x(lnx), so (lnx) = 1/x. x (lnx) = 1/x ; x (ln(f(x))) = f (x) This gives us: f(x) Logarithmic ifferentiation: f (x) = f(x) x (ln(f(x))) useful for taking the erivative of proucts, powers, an quotients ln(a b ) shoul be b lna, so a b = e b ln a a b+c = a b a c ; a bc = (a b ) c a x = e x ln a ; x (ax ) = a x lna x r = e r ln x (makes sense for any real number r) ; Inverse trigonometric functions x (xr ) = e r ln x (r)( 1 x ) = rxr 1 Trig functions (sinx, cos x, tanx, etc.) aren t one-to-one; make them! sin x, π/2 x π/2 is one-to-one; inverse is Arcsin x sin(arcsin x)=x, all x; Arcsin(sinx)=x IF x in range above tan x, π/2 < x < π/2 is one-to-one; inverse is Arctan x tan(arctan x)=x, all x; Arctan(tanx)=x IF x in range above 2

3 sec x, 0 x < π/2 an π/2 < x π, is one-to-one; inverse is Arcsec x sec(arcsecx)=x, all x; Arcsec(sec x)=x IF x in range above Computing cos(arcsin x), tan(arcsec x), etc.; use right triangles The other inverse trig functions aren t very useful, they are essentially the negatives of the functions above. Derivatives of inverse trig functions They are the erivatives of inverse functions! Use right triangles to simplify. x (arcsinx) = 1 cos(arcsin(x)) = 1 1 x 2 x (arctanx) = 1 sec 2 (arctan x) = 1 x x (arcsec x) = 1 sec(arcsec x) tan(arcsec x) = 1 x x 2 1 Relate Rates Iea: If two (or more) quantities are relate (a change in one value means a change in others), then their rates of change are relate, too. xyz = 3 ; preten each is a function of t, an ifferentiate (implicitly). General proceure: Draw a picture, escribing the situation; label things with variables. Which variables, rates of change o you know, or want to know? Fin an equation relating the variables whose rates of change you know or want to know. Differentiate! Plug in the values that you know. Linear approximation an ifferentials Iea: The tangent line to a graph of a function makes a goo approximation to the function, near the point of tangency. Tangent line to y = f(x) at (x 0, f(x 0 ) : L(x) = f(x 0 ) + f (x 0 )(x x 0 ) f(x) L(x) for x near x 0 Ex.: (27 25), using f(x) = x (1 + x) k 1 + kx, using x 0 =0 f = f(x 0 + x) f(x 0 ), then f(x 0 + x) L(x 0 + x) translates to f f (x 0 ) x ifferential notation: f = f (x 0 )x So f f, when δx = x is small In fact, f f = (iffrnce quot f (x 0 )) x = (small) (small) = really small, goes like ( x) 2 Chapter 4: Applications of Derivatives Extreme Values 3

4 c is an (absolute) maximum for a function f(x) if f(c) f(x) for every other x is an (absolute) minimum for a function f(x) if f() f(x) for every other x max or min = extremum Extreme Value Theorem: If f is a continuous function efine on a close interval [a, b], then f actually has a max an a min. Goal: figure out where they are! c is a relative max (or min) if f(c) is f(x) (or f(x)) for every x near c. Rel max or min = rel extremum. An absolute extremum is either a rel extremum or an enpoint of the interval. c is a critical point if f (c) = 0 or oes not exist. A rel extremum is a critical point. So absolute extrema occur either at critical points or at the enpoints. So to fin the abs max or min of a function f on an interval [a, b] : (1) Take erivative, fin the critical points. (2) Evaluate f at each critical point an enpoint. (3) Biggest value is maximum value, smallest is minimum value. The Mean Value Theorem You can (almost) recreate a function by knowing its erivative Mean Value Theorem: if f is continuous on [a, b] an ifferentiable on (a, b), then there is at least one c in (a, b) so that f f(b) f(a) (c) = b a Consequences: Rolle s Theorem: f(a) = f(b) = 0; between two roots there is a critical point. So: If a function has no critical points, it has at most one root! A function with f (x)=0 is constant. Functions with the same erivative (on an interval) iffer by a constant. The First Derivative Test f is increasing on an interval if x > y implies f(x) > f(y) f is ecreasing on an interval if x > y implies f(x) < f(y) If f (x) > 0 on an interval, then f is increasing If f (x) < 0 on an interval, then f is ecreasing Local max s / min s occur at critical points; how o you tell them apart? Near a local max, f is increasing, then ecreasing; f (x) > 0 to the left of the critical point, an f (x) < 0 to the right. Near a local min, the opposite is true; f (x) < 0 to the left of the critical point, an f (x) > 0 to the right. If the erivative oes not change sign as you cross a critical point, then the critical point is not a rel extremum. Basic use: plot where a function is increasing/ecreasing: plot critical points; in between them, sign of erivative oes not change. 4

5 The secon erivative test an graphing When we look at a graph, we see where function is increasing/ecreasing. We also see: f is concave up on an interval if f (x) > 0 on the interval Means: f is increasing; f is bening up. f is concave own on an interval if f (x) < 0 on the interval Means: f is ecreasing; f is bening own. A point where the concavity changes is calle a point of inflection Graphing: Fin where f (x) an f (x) are 0 or DNE Plot on the same line. In between points, erivative an secon erivative on t change sign, so graph looks like one of: f ' f '' ecreasing, concave own ecreasing, concave up increasing, concave own increasing, concave up Then string together the pieces! Use information about vertical an horizontal asymptotes to finish sketching the graph. Secon erivative test: If c is a critical point an f (c) > 0, then c is a rel min (smiling!) f (c) < 0, then c is a rel max (frowning!) 5

Math 106 Exam 2 Topics

Math 106 Exam 2 Topics Implicit ifferentiation Math 106 Exam Topics We can ifferentiate functions; what about equations? (e.g., x +y = 1) graph looks like it has tangent lines tangent line? (a,b) Iea: Preten equation efines

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Derivative Methods: (csc(x)) = csc(x) cot(x)

Derivative Methods: (csc(x)) = csc(x) cot(x) EXAM 2 IS TUESDAY IN QUIZ SECTION Allowe:. A Ti-30x IIS Calculator 2. An 8.5 by inch sheet of hanwritten notes (front/back) 3. A pencil or black/blue pen Covers: 3.-3.6, 0.2, 3.9, 3.0, 4. Quick Review

More information

( 3x +1) 2 does not fit the requirement of the power rule that the base be x

( 3x +1) 2 does not fit the requirement of the power rule that the base be x Section 3 4A: The Chain Rule Introuction The Power Rule is state as an x raise to a real number If y = x n where n is a real number then y = n x n-1 What if we wante to fin the erivative of a variable

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Review for Final Exam Lecturer: Sangwook Kim Office : Science & Tech I, 226D math.gmu.eu/ skim22 Chapter 1. Functions, Graphs, an Limits A function is a rule that assigns to each objects in a set A exactly

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.) (1) (Pre-calculus Review Set Problems 80 an 14.) (a) Determine if each of the following statements is True or False. If it is true, explain why. If it is false, give a counterexample. (i) If a an b are

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

AP Calculus AB Summer Math Packet

AP Calculus AB Summer Math Packet Name Date Section AP Calculus AB Summer Math Packet This assignment is to be done at you leisure during the summer. It is meant to help you practice mathematical skills necessary to be successful in Calculus

More information

Flash Card Construction Instructions

Flash Card Construction Instructions Flash Car Construction Instructions *** THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE). The left column

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

2.5 The Chain Rule Brian E. Veitch

2.5 The Chain Rule Brian E. Veitch 2.5 The Chain Rule This is our last ifferentiation rule for this course. It s also one of the most use. The best way to memorize this (along with the other rules) is just by practicing until you can o

More information

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist.

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist. Math 171 Exam II Summary Sheet and Sample Stuff (NOTE: The questions posed here are not necessarily a guarantee of the type of questions which will be on Exam II. This is a sampling of questions I have

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

Math 106 Calculus 1 Topics for first exam

Math 106 Calculus 1 Topics for first exam Math 06 Calculus Topics for first exam Precalculus = what comes before its. Lines and their slopes: slope= rise over run = (change in y-value)/(corresponding change in x value) y y 0 slope-intercept: y

More information

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems. December 2, 1999 Multiple choice section Circle the correct choice You o not nee to show your work on these problems 1 Let f(x) = e 2x+1 What is f (0)? (A) 0 (B) e (C) 2e (D) e 2 (E) 2e 2 1b Let f(x) =

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1.

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1. INVERSE FUNCTIONS DERIVATIVES Recall the steps for computing y implicitly: (1) Take of both sies, treating y like a function. (2) Expan, a, subtract to get the y terms on one sie an everything else on

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c.

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c. MATH 6 WINTER 06 University Calculus I Worksheet # 8 Mar. 06-0 The topic covered by this worksheet is: Derivative of Inverse Functions and the Inverse Trigonometric functions. SamplesolutionstoallproblemswillbeavailableonDL,

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY 1. Calculate the following: a. 2 x, x(t) = A sin(ωt φ) t2 Solution: Using the chain rule, we have x (t) = A cos(ωt φ)ω = ωa cos(ωt φ) x (t) = ω 2

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Differential Calculus Definitions, Rules and Theorems

Differential Calculus Definitions, Rules and Theorems Precalculus Review Differential Calculus Definitions, Rules an Teorems Sara Brewer, Alabama Scool of Mat an Science Functions, Domain an Range f: X Y a function f from X to Y assigns to eac x X a unique

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place. O Answers: Chapter 7 Contemporary Calculus PROBLEM ANSWERS Chapter Seven Section 7.0. f is one to one ( ), y is, g is not, h is not.. f is not, y is, g is, h is not. 5. I think SS numbers are supposeo

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

Lecture 5: Inverse Trigonometric Functions

Lecture 5: Inverse Trigonometric Functions Lecture 5: Inverse Trigonometric Functions 5 The inverse sine function The function f(x = sin(x is not one-to-one on (,, but is on [ π, π Moreover, f still has range [, when restricte to this interval

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2015 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 +

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 + FINAL EXAM 1 SOLUTIONS 2011 1. Below is the graph of a function f(x). From the graph, rea off the value (if any) of the following its: x 1 = 0 f(x) x 1 + = 1 f(x) x 0 = x 0 + = 0 x 1 = 1 1 2 FINAL EXAM

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Chapter 3: Transcendental Functions

Chapter 3: Transcendental Functions Chapter 3: Transcendental Functions Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 32 Except for the power functions, the other basic elementary functions are also called the transcendental

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -7-08 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information