ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.3 HARMONIC MOTION

Size: px
Start display at page:

Download "ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.3 HARMONIC MOTION"

Transcription

1 ONINE: MATHEMATICS EXTENSION Topic 6 MECHANICS 6.3 HARMONIC MOTION Vibrations or oscillations are motions that repeated more or less reularly in time. The topic is very broad and diverse and covers phenomena such as mechanical vibrations (swinin pendulums, motion of a piston in a cylinder and vibrations of strins, rods, plates), sound, wave propaation, electromanetic waves, AC currents and voltaes. Vibrations or oscillations are periodic if the values of physical quantities describin the motion are repeated in successive equal time intervals. The period T of vibration or oscillations is the minimum time interval in which all the physical quantities characterizin the motion are repeated. Thus, the period T is the time interval for one full vibration or cycle. The frequency f of periodic vibration is the number of vibration made per second. (1) f 1 1 T T f VIEW some reat animations on oscillation (UNSW Physclips) What do these fiures tell you about vibrations? physics.usyd.edu.au/teach_res/math/math.htm mec63 1

2 SIMPE HARMONIC MOTION The simplest type of periodic motion is called simple harmonic motion (SHM). The displacement of a particle eecutin SHM alon the X ais is iven by the sinusoidal function () cos( t ) is the manitude of the imum displacement from the equilibrium position ( = 0). is a positive number and is called the displacement amplitude t called the phase anle [radians] t is the time [s] is the anular frequency [rad.s -1 ] is the initial phase anle (value of the phase anle at t = 0) [rad]. Its value determines the initial displacement of the particle t = 0, cos( ) (3) f T Equation () can also be written as: A sine function sin( t ') A sine and cosine function Acos( t) Bsin( t) The values of the constants,,, A and B can be determined from the initial conditions ( and v at time t = 0). physics.usyd.edu.au/teach_res/math/math.htm mec63

3 = 1 m = 0 rad T = 0 s f = 0.05 Hz = rad.s -1 = 1 m = - / rad T = 0 s f = 0.05 Hz = rad.s -1 = 1 m = / rad T = 0 s f = 0.05 Hz = rad.s -1 = 1 m = rad T = 0 s f = 0.05 Hz = rad.s -1 = 0.5 m = / 4 rad T = 0 s f = 0.05 Hz = rad.s -1 = 0.75 m = - / 4 rad T = 40 s f = 0.05 Hz = rad.s -1 physics.usyd.edu.au/teach_res/math/math.htm mec63 3

4 The velocity v is the time derivative of the displacement (4) d d v cos( t ) dt dt v sin( t ) v v sin( t ) v The displacement and velocity are / rad out of phase with each other 0 v v v 0 The velocity amplitude is v (always a positive number) The acceleration a is the time derivative of the velocity (5) dv d d dt dt dt a v sin( t ) a t cos( ) a a cos( t ) a a The acceleration amplitude is a (always a positive number) The displacement and acceleration are rad out of phase with each other 0 a 0 a a The acceleration is always in the opposite direction to the displacement ecept at the equilibrium position ( = 0 a = 0) and direction of the acceleration is directed towards the equilibrium position. physics.usyd.edu.au/teach_res/math/math.htm mec63 4

5 acceleration a velocity v position 10 SHM time t Since a the equation of the motion of the particle eecutin simple harmonic motion is (6) d 0 0 dt Another approach to the mathematical analysis of SHM is to start with the equation of motion. d dv a v dt d The equation of motion then becomes v dv d We can interate this equation 1 v dv d v C ' v C where C and C are constants which are determined from the initial conditions (t = 0). physics.usyd.edu.au/teach_res/math/math.htm mec63 5

6 Take the initial conditions to be t 0 v 0 0 C C Therefore, the equation for the velocity as a function of displacement is (7) v Accordin to Newton s Second aw, an acceleration results from a non-zero resultant force actin on an object (8) 1 a m i F i For SHM, the force actin on the particle is (9) F m The resultant force F is always in the same direction as the acceleration a. The force responsible for SHM is called the restorin force and is always directed towards the equilibrium position ( = 0) and is proportional to the displacement. physics.usyd.edu.au/teach_res/math/math.htm mec63 6

7 Eample (Syllabus) The deck of a ship was.4 m below the level of the wharf at low tide and 0.6 m above the level at hih tide. ow tide was at 8:30 am and hih tide was at.35 pm. Find when the deck was level with the wharf, if the motion was simple harmonic. Solution The most important part of answerin this question is constructin a ood scientific diaram of the physical situation. Take the initial conditions at the 8:30 am low tide t = 0 s v = 0 m.s -1 = - = -1.5 m The displacement as a function of time is cos( t ) At time t = 0 cos( ) cos( ) 1 rad Hence cos( t ) cos( t) physics.usyd.edu.au/teach_res/math/math.htm mec63 7

8 The time interval from low tide to hih tide is half-period T/ 8:30 am to :35 pm t = 6 hours 5 minutes = (6)(60)(60)+(5)(60) s = 1900 s period T = s anular velocity = rad.s -1 T We want to find the time when the deck is level with the wharf t =? s = 0.9 m position of wharf above equilibrium position ( = 0) cos( t) cos( t) t acos acos t t = s = h = 4 h 17 m The deck will be level with the wharf at time 1:47 pm physics.usyd.edu.au/teach_res/math/math.htm mec63 8

9 SIMPE PENDUUM A simple pendulum is a particle of mass m suspended from a fied point by a weihtless, inetensible strin of lenth. It swins in a vertical plane. The forces actin on the particle are the ravitational force FG and the strin tension F T. For small anle deviations from the vertical, the motion of the particle is approimately SHM. Applyin Newton s Second aw to the particle of mass m (8) 1 a m i F i We assume that the amplitude of the oscillation is small such that the resultant force only acts in the X direction F F F F F 0 G T y The assumption that F y = 0 is only valid for small anles ( < ~15 o ) and the followin predictions do not ive ood areement with measurements for lare amplitude oscillations. Addin the components in the Y direction ives m FT cos m FT cos Addin the components in the X direction ives m F FT sin sin m tan tan cos m F physics.usyd.edu.au/teach_res/math/math.htm mec63 9

10 Therefore the acceleration a in the X direction is (10) a valid only for small values of But the acceleration a is opposite in direction to the displacement and proportional to the displacement, therefore, the motion of the particle is SHM. Equation (5) for the acceleration of a particle eecutin SHM is (5) a Comparin equations (10) and (5), the anular frequency must be (6) hence, the period T of vibration and frequency f are (7) T 1 f valid only for small values of The period T, frequency f and anular velocity only depend upon the lenth of the pendulum s strin and the acceleration due to ravity, they do not depend upon the mass m of the particle or the amplitude of oscillation. d Be careful not to think that as in rotational (circular motion). Here is the dt anle of the pendulum at any instant. We now use not as the rate at which the anle chanes, but rather as constant related to the period. T physics.usyd.edu.au/teach_res/math/math.htm mec63 10

11 Eample Consider a simple pendulum of lenth of the pendulum are t = 0 = 0 v =.. The initial conditions for the vibration (a) Find the first value of where v = 0 by solvin the equation of motion for the vibration of the pendulum. (b) The motion of the pendulum may more accurately be represented by the equation of motion 3 5 a 6 10 Use this equation to find a more accurate answer for than in part (a). Solution (a) Initial conditions t = 0 = 0 v = Final conditions =? v = 0 Equation of motion d dv dt d a v Rearranin the equation of motion v dv d Interatin this equation and usin the initial condition and final conditions ives 0 v dv d v 0 Note: the initial conditions ive the lower limits and the final values ive the upper limits for the interations physics.usyd.edu.au/teach_res/math/math.htm mec63 11

12 (b) dv a v d v dv d We need to find the value of. We can find by usin Newton s Method Newton s Method is a method for findin successively better approimations to the roots (or zeroes) of a real-valued function f(). =? f() = 0 We bein with a first uess 1 for a root of the function f(). Then a better estimate of the root is approimated by f ( ) d '( ) ( ) 1 1 f f f '( 1) d The process is repeated as f ( n) d n 1 n f '( ) f ( ) f '( ) d until a sufficiently accurate value is reached. n et f ( ) We can replace by a variable z where k z k z1 1 k k f ( z) k k k k f '( z) k physics.usyd.edu.au/teach_res/math/math.htm mec63 1

13 Take the first uess the solution iven in part (a) 1 z1 1 f( z ) z z z f '( z1) k k 30 k k f (1) k k k k 10 k 0 k k f '(1) z k k 0 k k k k k k 1 z k z k k k hopefully answer is correct but it seems rather complicated check carefully physics.usyd.edu.au/teach_res/math/math.htm mec63 13

14 Another look at the PENDUUM The displacement of the pendulum alon the arc is iven by must be in radians The restorin force F (force actin so that 0) is the component of the ravitational force (weiht FG FG m ) tanent to the arc of the circle F m sin where the minus sin means that the restorin force F is in the direction opposite to the anular displacement. F is proportional to sin and not itself, hence the motion of the pendulum is not simple harmonic motion. However, for small anular displacements ( < 15 o ), the difference between the anle (in radians) and sin is less than 1%. < 15 o sin Therefore, for small anle oscillations of the pendulum F m the motion can be rearded as SHM. Usin the fact that the arc lenth is iven by acceleration can be epressed as m F F m a a, the restorin force and physics.usyd.edu.au/teach_res/math/math.htm mec63 14

15 Aain, we have the followin relationships Equation (5) for the acceleration of a particle eecutin SHM is (5) a Comparin equations (10) and (5), the anular frequency must be (6) hence, the period T of vibration and frequency f are (7) T 1 f For non-shm the acceleration a of the pendulum is a sin We can epand the function sin in terms of the variable sin 3! 5! 7! Therefore, we can epress the acceleration as a 3! 5! 7! It is now obvious that for small a SHM physics.usyd.edu.au/teach_res/math/math.htm mec63 15

16 physics.usyd.edu.au/teach_res/math/math.htm mec63 16

f 1. (8.1.1) This means that SI unit for frequency is going to be s 1 also known as Hertz d1hz

f 1. (8.1.1) This means that SI unit for frequency is going to be s 1 also known as Hertz d1hz ecture 8-1 Oscillations 1. Oscillations Simple Harmonic Motion So far we have considered two basic types of motion: translational motion and rotational motion. But these are not the only types of motion

More information

OSCILLATIONS

OSCILLATIONS OSCIAIONS Important Points:. Simple Harmonic Motion: a) he acceleration is directly proportional to the displacement of the body from the fixed point and it is always directed towards the fixed point in

More information

g L Simple Pendulum, cont Simple Pendulum Period of Simple Pendulum Equations of Motion for SHM: 4/8/16 k m

g L Simple Pendulum, cont Simple Pendulum Period of Simple Pendulum Equations of Motion for SHM: 4/8/16 k m Simple Pendulum The simple pendulum is another example of simple harmonic motion The force is the component of the weiht tanent to the path of motion F t = - m sin θ Simple Pendulum, cont In eneral, the

More information

Chapter K. Oscillatory Motion. Blinn College - Physics Terry Honan. Interactive Figure

Chapter K. Oscillatory Motion. Blinn College - Physics Terry Honan. Interactive Figure K. - Simple Harmonic Motion Chapter K Oscillatory Motion Blinn Collee - Physics 2425 - Terry Honan The Mass-Sprin System Interactive Fiure Consider a mass slidin without friction on a horizontal surface.

More information

Experiment 1: Simple Pendulum

Experiment 1: Simple Pendulum COMSATS Institute of Information Technoloy, Islamabad Campus PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob)

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

Physics 20 Lesson 24 Simple Harmonic Motion Pendulums

Physics 20 Lesson 24 Simple Harmonic Motion Pendulums Physics 0 esson 4 Simple Harmonic Motion Pendulums Refer to Chapter 7 in Pearson for a discussion of simple harmonic motion. I. Simple Harmonic Motion A study of simple harmonic motion (SHM) will take

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [MOTION IN TWO DIMENSIONS] CHAPTER NO. 4 In this chapter we are oin to discuss motion in projectile

More information

11 Free vibrations: one degree of freedom

11 Free vibrations: one degree of freedom 11 Free vibrations: one deree of freedom 11.1 A uniform riid disk of radius r and mass m rolls without slippin inside a circular track of radius R, as shown in the fiure. The centroidal moment of inertia

More information

SIMPLE HARMONIC MOTION PREVIOUS EAMCET QUESTIONS ENGINEERING. the mass of the particle is 2 gms, the kinetic energy of the particle when t =

SIMPLE HARMONIC MOTION PREVIOUS EAMCET QUESTIONS ENGINEERING. the mass of the particle is 2 gms, the kinetic energy of the particle when t = SIMPLE HRMONIC MOION PREVIOUS EMCE QUESIONS ENGINEERING. he displacement of a particle executin SHM is iven by :y = 5 sin 4t +. If is the time period and 3 the mass of the particle is ms, the kinetic enery

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 ENGINEERING MATHEMATICS AND MECHANICS ENG-4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and ONE other question.

More information

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3) Physics 411 Homework # Due:..18 Mechanics I 1. A projectile is fired from the oriin of a coordinate system, in the x-y plane (x is the horizontal displacement; y, the vertical with initial velocity v =

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 5 Oscillations Any motion or event that repeats itself at reular intervals is said to be periodic. Oscillation: n eneral, an oscillation is a periodic fluctuation in the value of a physical quantity

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

COUPLED OSCILLATORS. Two identical pendulums

COUPLED OSCILLATORS. Two identical pendulums COUPED OSCIATORS A real physical object can be rearded as a lare nuber of siple oscillators coupled toether (atos and olecules in solids. The question is: how does the couplin affect the behavior of each

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name: Dynamics 4600:03 Homework 03 Due: ebruary 08, 008 Name: Please denote your answers clearly, i.e., bo in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

(A) (B) (C) (D) None of these

(A) (B) (C) (D) None of these Exercise OBJECTIVE PROBLEMS. Action and reaction (A) act on two different objects (C) have opposite directions. Which fiure represents the correct F.B.D. of rod of mass m as shown in fiure : (B) have equal

More information

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion Chapter 12++ Revisit Circular Motion Revisit: Anular variables Second laws for radial and tanential acceleration Circular motion CM 2 nd aw with F net To-Do: Vertical circular motion in ravity Complete

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

2.5 Velocity and Acceleration

2.5 Velocity and Acceleration 82 CHAPTER 2. VECTOR FUNCTIONS 2.5 Velocity and Acceleration In this section, we study the motion of an object alon a space curve. In other words, as the object moves with time, its trajectory follows

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Circular_Gravitation_P1 [22 marks]

Circular_Gravitation_P1 [22 marks] Circular_Gravitation_P1 [ marks] 1. An object of mass m at the end of a strin of lenth r moves in a vertical circle at a constant anular speed ω. What is the tension in the strin when the object is at

More information

Conical Pendulum Linearization Analyses

Conical Pendulum Linearization Analyses European J of Physics Education Volume 7 Issue 3 309-70 Dean et al. Conical Pendulum inearization Analyses Kevin Dean Jyothi Mathew Physics Department he Petroleum Institute Abu Dhabi, PO Box 533 United

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N.

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N. Chapter 5 1. We are only concerned with horizontal forces in this problem (ravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on

More information

Chapter 13. F =!kx. Vibrations and Waves. ! = 2" f = 2" T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases.

Chapter 13. F =!kx. Vibrations and Waves. ! = 2 f = 2 T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases. Chapter 13 Vibrations and Waves Hooke s Law Reviewed F =!k When is positive, F is negative ; When at equilibrium (=0, F = 0 ; When is negative, F is positive ; 1 2 Sinusoidal Oscillation Graphing vs. t

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Problem 2: Experiment 09 Physical Pendulum. Part One: Ruler Pendulum

Problem 2: Experiment 09 Physical Pendulum. Part One: Ruler Pendulum Problem : Experiment 9 Physical Pendulum Part One: Ruler Pendulum The ruler has a mass m r =.159 k, a width a =.8 m, a lenth b = 1. m, and the distance from the pivot point to the center of mass is l =.479

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum

More information

You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers.

You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers. Section: Oscillations Take-Home Test You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers. 1. In simple harmonic motion, the

More information

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion Simple Harmonic Motion Class 30 Here is a simulation of a mass hanging from a spring. This is a case of stable equilibrium in which there is a large extension in which the restoring force is linear in

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-1 SIMPLE HARMONIC MOTION Introductory Video: Simple Harmonic Motion IB Assessment Statements Topic 4.1, Kinematics of Simple Harmonic

More information

Chapter 15. Oscillations

Chapter 15. Oscillations Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.

More information

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples.

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples. Vector Spaces in Physics 8/6/15 Chapter 4. Practical Exaples. In this chapter we will discuss solutions to two physics probles where we ae use of techniques discussed in this boo. In both cases there are

More information

Three Spreadsheet Models Of A Simple Pendulum

Three Spreadsheet Models Of A Simple Pendulum Spreadsheets in Education (ejsie) Volume 3 Issue 1 Article 5 10-31-008 Three Spreadsheet Models Of A Simple Pendulum Jan Benacka Constantine the Philosopher University, Nitra, Slovakia, jbenacka@ukf.sk

More information

Oscillations Equations 0. Out of the followin functions representin otion of a particle which represents SHM I) y = sinωt cosωt 3 II) y = sin ωt III) IV) 3 y = 5cos 3ωt 4 y = + ωt+ ω t a) Only IV does

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6 Motion in Two Dimensions Sections Covered in the Tet: Chapters 6 & 7, ecept 7.5 & 7.6 It is time to etend the definitions we developed in Note 03 to describe motion in 2D space. In doin so we shall find

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2009

AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTI YOU ARE TOD TO BEGIN Use = 10 N/k throuhout this contest.

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Fig..1 shows a device for measuring the frequency of vibrations of an engine. The rigid

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST October 3, 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please check): 01

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Introductory Physics Questions

Introductory Physics Questions Introductory Physics Questions (19th June 2015) These questions are taken fro end-of-ter and ake-up exas in 2013 and 2014. After today s class, you should e ale to answer Q1, Q2, Q3 and Q7. Q4, Q5, and

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

Answers to examination-style questions. Answers Marks Examiner s tips

Answers to examination-style questions. Answers Marks Examiner s tips (a) (i) With the object on the spring: the mean value of x = 72 mm, e = 70 mm (ii).4% Each reading was ±0.5 mm. As the extension was the subtraction of two readings the absolute errors are added to give

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Firing an Ideal Projectile

Firing an Ideal Projectile 92 Chapter 13: Vector-Valued Functions and Motion in Space 13.2 Modelin Projectile Motion 921 r at time t v v cos i a j (a) v sin j Newton s second law of motion sas that the force actin on the projectile

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-1 SIMPLE HARMONIC MOTION Introductory Video: Simple Harmonic Motion Essential Idea: A study of oscillations underpins many areas of

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

(C) 7 s. (C) 13 s. (C) 10 m

(C) 7 s. (C) 13 s. (C) 10 m NAME: Ms. Dwarka, Principal Period: #: WC Bryant HS Ms. Simonds, AP Science Base your answers to questions 1 throuh 3 on the position versus time raph below which shows the motion of a particle on a straiht

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion AP Physics 1 2016-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1. Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.6 m between the crests. If a wave laps against the pier every

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST Alternative Sittin October 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

LAB 10 - HARMONIC MOTION AND THE PENDULUM

LAB 10 - HARMONIC MOTION AND THE PENDULUM L10-1 Name Date Partners LAB 10 - HARMONIC MOION AND HE PENDULUM θ L Groove marking the center of mass Photogate s = 0 s F tan mg θ OVERVIEW Figure 1 A body is said to be in a position of stable equilibrium

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

F = W. Since the board s lower end just extends to the floor, the unstrained length x 0. of the spring, plus the length L 0

F = W. Since the board s lower end just extends to the floor, the unstrained length x 0. of the spring, plus the length L 0 CHAPTER 0 SIMPLE HARMONIC MOTION AND ELASTICITY PROBLEMS 3. REASONING The force required to stretch the spring is given by Equation 0. as F Applied =, where is the spring constant and is the displacement

More information

The object of this experiment is to study systems undergoing simple harmonic motion.

The object of this experiment is to study systems undergoing simple harmonic motion. Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

More information

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere A Mathematical Model for the Fire-extinuishin Rocket Fliht in a Turbulent Atmosphere CRISTINA MIHAILESCU Electromecanica Ploiesti SA Soseaua Ploiesti-Tiroviste, Km 8 ROMANIA crismihailescu@yahoo.com http://www.elmec.ro

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

Parameterization and Vector Fields

Parameterization and Vector Fields Parameterization and Vector Fields 17.1 Parameterized Curves Curves in 2 and 3-space can be represented by parametric equations. Parametric equations have the form x x(t), y y(t) in the plane and x x(t),

More information

LAB 10: HARMONIC MOTION AND THE PENDULUM

LAB 10: HARMONIC MOTION AND THE PENDULUM 163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be

More information

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Fluid Mechanics (ME 201) 1

Fluid Mechanics (ME 201) 1 Fluid Mechanics (ME 201) 1 9 Forces on Submered Bodies 9.1 Net Force on a Submered Plane Surfaces In this section, we will compute the forces actin on a plane surface. We consider a surface oriented at

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

AP Physics C Mechanics

AP Physics C Mechanics 1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

A-Level Mathematics. MM05 Mechanics 5 Final Mark scheme June Version/Stage: v1.0

A-Level Mathematics. MM05 Mechanics 5 Final Mark scheme June Version/Stage: v1.0 A-Level Mathematics MM0 Mechanics Final Mark scheme 6360 June 07 Version/Stae: v.0 Mark schemes are prepared by the Lead Assessment Writer and considered, toether with the relevant questions, by a panel

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance CHAPTER 7 PROJECTILES 7 No Air Resistance We suppose that a particle is projected from a point O at the oriin of a coordinate system, the y-axis bein vertical and the x-axis directed alon the round The

More information

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time)

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time) Name: Teacher: Class: FORT STREET HIGH SCHOOL 0 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK : TRIAL HSC Mathematics Extension Time allowed: hours (plus 5 minutes readin time) Syllabus Assessment Area

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-1: SIMPLE HARMONIC MOTION LSN 11-: ENERGY IN THE SIMPLE HARMONIC OSCILLATOR LSN 11-3: PERIOD AND THE SINUSOIDAL NATURE OF SHM Introductory Video:

More information

10.1 The Ideal Spring and Simple Harmonic Motion

10.1 The Ideal Spring and Simple Harmonic Motion 10.1 The Ideal Spring and Simple Harmonic Motion TRANSPARENCY FIGURE 10.1 - restoring force F applied = (+)kx (10:1) Hooke s Law Restoring Force of an Ideal Spring The restoring force of an ideal spring

More information