Imaging Chain. Imaging Chain. Imaging Chain. 1. Light source. 2. Object interactions. 3. Propagation & Collection: optics (lenses & mirrors)

Size: px
Start display at page:

Download "Imaging Chain. Imaging Chain. Imaging Chain. 1. Light source. 2. Object interactions. 3. Propagation & Collection: optics (lenses & mirrors)"

Transcription

1 1. Light source λ [nm] sunset blue sky 2. Object interactions 3. Propagation & Collection: optics (lenses & mirrors) 1

2 Optics: Lenses Objects Images Optics: Mirrors Object Image 4. Detector or Sensor Photographic Emulsion Electronic Sensor (CCD) 2

3 5. Processing 6. Compression / Storage / Transmission 7. Display 3

4 8. Perception Link #1 The Source of Energy : Source All imaging systems require some source of energy. 1. Source 2. Object 3. Collection 4. Detection 5. Processing 6. Compression/storage/transmi ssion 7. Display 8. Perception 4

5 : Source All imaging systems require some source of energy. Most familiar imaging systems use some form of electromagnetic (EM) radiation such as (1) light, (2) X-rays, (3) infrared radiation, or (4) radio waves Other forms of energy are also used, e.g., pressure waves in seismic imaging and ultrasound Radioactive isotopes in PET scans Magnetic fields in MRI Electromagnetic (EM) Radiation Electromagnetic radiation conveys energy from one point in space to another without a medium It is a Transverse Wave It oscillates PERPENDICULAR to the direction of travel Different from sound waves, water waves, slinky waves, which require a medium (air, water) to carry energy Pressure waves may be Transverse or Longitudinal or both Waves are Sinusoids The same sine function you learned about in high school often written as a cosine, which is symmetric with respect to the origin (z = ) f [] z = A [ k z] = A sin k z + cos π 2 5

6 Transverse wave: wavelength f Peak [] z = A cos[ k z] = A cos π z 2 (λ = Greek letter lambda ) λ λ A z A z= Trough Waves Can Move Through Space The wave becomes a function of space AND time to move f[z] f[z,t] z [] z = A cos 2π mν t λ f (ν = Greek letter nu ) Electromagnetic (EM) Spectrum Frequency = How many wave crests go by per unit time rate of oscillation per unit time measured in cycles per second 1 cycle per second = 1 Hertz [Hz] 6

7 Velocity Δ Velocity = z Δ t = z1 z t t 1 Electromagnetic (EM) Spectrum Velocity = rate of change of position Wave at t=t crest at z=z z Wave at t=t 1 > t crest at z=z 1 z Δz Conversion from Wavelength to Frequency Wavelength: λ [meters] (λ = Greek letter lambda ) Frequency: ν [cycles per second = Hz] (ν = Greek letter nu ) Velocity: c [meters per second] m sec = [ m] c ν = λ 1 sec = Hz 7

8 Relation Between λ and ν Longer λ Lower ν Lower frequencies have longer wavelengths Radio waves have very long wavelengths and thus low frequencies Visible light has shorter wavelengths and thus larger frequencies Electromagnetic (EM) Radiation Thus far, we have described electromagnetic radiation as a wave Under some conditions, it is simpler to consider EM radiation as of particles of energy photons Dual nature of EM radiation, described by: Wavelength λ, frequency ν [Hz] Energy E of a single photon, E = hν = h c λ h: Planck s constant: h erg-sec ν [Hz] = oscillation rate of electromagnetic field Shorter λ Larger ν Larger E Photons of light with shorter wavelengths oscillate more rapidly and thus have larger energies!! Why short-wavelength light (e.g., ultraviolet light and X rays) can be bad for you! 8

9 Electromagnetic (EM) Spectrum Cosmic rays Gamma rays Infrared Light Ultraviolet X-rays Microwaves Radio waves Electrical oscillations wavelength (m) [μå X-ray unit Å nm μm mm cm meter kilometer] [nucleus atom bacteria mouse human RIT moon] ν Increases More Energy per Photon 9

Light: Transverse WAVE

Light: Transverse WAVE Light Longitudinal WAVES Light: Transverse WAVE Light: Particle or wave Photon The Wave Nature of Light 1. Unlike other branches of science, astronomers cannot touch or do field work on their samples.

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it! SP4 Waves SP4a Describing waves Step Learning outcome Had a look Nearly there Nailed it Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency,

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction SP4 Waves SP4a Describing waves Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency, wavelength, amplitude, period and velocity. Describe

More information

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9 ASTRONOMY 161 Introduction to Solar System Astronomy Class 9 Light Monday, January 29 Look, but don t touch. - Astronomers Motto Light: Key Concepts (1) Visible light is just one form of electromagnetic

More information

Background: The Electromagnetic Spectrum

Background: The Electromagnetic Spectrum Background: The Electromagnetic Spectrum Wavelength (λ) in meters wavelength decreasing 10 4 10 2 10 0 10-2 10-4 10-6 10-8 10-10 10-12 10-14 microwaves ultraviolet Gamma rays Radio waves AM 10 4 Shortwave

More information

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons???

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? no mass travel in a wave like pattern move at the speed of light contain a certain amount (or bundle) of energy

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light

Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light Key Terms: Microscope, telescope, amplitude, crest, energy, force, frequency, hertz, medium, transverse wave, trough, wave, wavelength, reflection,

More information

LECTURE 1: ELECTROMAGNETIC RADIATION

LECTURE 1: ELECTROMAGNETIC RADIATION LECTURE 1: ELECTROMAGNETIC RADIATION 1.0 -- PURPOSE OF UNIT The purpose of this unit is to identify and describe some of the basic properties common to all forms of electromagnetic radiation and to identify

More information

Chapter 4 - Light. Name: Block:

Chapter 4 - Light. Name: Block: Chapter 4 Notes: Light Name: Block: Properties of Waves Waves are a repeating disturbance or movement that energy through matter or space without causing any displacement of material Features of a wave:

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Unit 5 Lesson 1 Images from Space. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 1 Images from Space. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.4.2 Explain how political, social, and economic concerns can affect science, and vice versa. SC.8.E.5.10 Assess how technology is essential to science for such purposes as access

More information

Electromagnetic Waves

Electromagnetic Waves ELECTROMAGNETIC RADIATION AND THE ELECTROMAGNETIC SPECTRUM Electromagnetic Radiation (EMR) THE ELECTROMAGNETIC SPECTRUM Electromagnetic Waves A wave is characterized by: Wavelength (λ - lambda) is the

More information

Chapter 7. Part I Dr. Stone Stan State

Chapter 7. Part I Dr. Stone Stan State Chapter 7 Part I Dr. Stone Stan State 1 2 Electromagnetic Radiation Perpendicular oscillating fields: Electric: PET scan: gamma rays X-rays Visible light Infrared (heat) Microwaves Magnetic MRI = magnetic

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves Waves If we wish to talk about electromagnetism or light we must first understand wave motion. If you drop a rock into the water small ripples are seen on the surface of

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

λ is a distance, so its units are m, cm, or mm, etc.

λ is a distance, so its units are m, cm, or mm, etc. Electromagnetic Radiation (How we get most of our information about the cosmos) Radiation travels as waves. Waves carry information and energy. Properties of a wave Examples of electromagnetic radiation:

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017 Lecture 6: The Physics of Light, Part 1 Astronomy 111 Wednesday September 13, 2017 Reminders Star party tonight! Homework #3 due Monday Exam #1 Monday, September 25 The nature of light Look, but don t

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves The Sine Wave Mathematically, a function that represents a smooth oscillation For example, if we drew the motion of how the weight bobs on the spring to the weight we would draw out a sine wave. The Sine

More information

wave Electromagnetic Waves

wave Electromagnetic Waves What is a wave? A wave is a periodic disturbance in a solid, liquid or gas as energy is transmitted. A wave is characterized by its wavelength, frequency, and amplitude Light waves don t require a medium

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Light and Geometric Optics

Light and Geometric Optics By the end of this week I will be able to... label a diagram of a wave Solve word problems using the wave equation identify the types of radiation on the EM spectrum explain how light behaves like a wave

More information

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, Is Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

Energy - the ability to do work or cause change. 1 point

Energy - the ability to do work or cause change. 1 point Energy and Waves Energy - the ability to do work or cause change Work - the transfer of energy Work = Force X Distance Power - the rate at which work is done Power = Work Time Kinetic Energy - the energy

More information

2007 Oct 9 Light, Tools of Astronomy Page 1 of 5

2007 Oct 9 Light, Tools of Astronomy Page 1 of 5 Light Waves, Tools of Astronomy I. Vibrations and waves A. Wiggle in time is a vibration needs elapsed time to occur B. Wave is created by vibration exists over space and time C. Types 1. Sound wave needs

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

Chapter 13. F =!kx. Vibrations and Waves. ! = 2" f = 2" T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases.

Chapter 13. F =!kx. Vibrations and Waves. ! = 2 f = 2 T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases. Chapter 13 Vibrations and Waves Hooke s Law Reviewed F =!k When is positive, F is negative ; When at equilibrium (=0, F = 0 ; When is negative, F is positive ; 1 2 Sinusoidal Oscillation Graphing vs. t

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

a. A static electric field exists around a stationary charge such as an electron.

a. A static electric field exists around a stationary charge such as an electron. II. Astronomy Light: A. Analysis of light is by far the primary method with which astronomers obtain information about the Universe. 1. Astronomy is an observational science; classical experiments generally

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

Physics 1C. Lecture 12C

Physics 1C. Lecture 12C Physics 1C Lecture 12C Simple Pendulum The simple pendulum is another example of simple harmonic motion. Making a quick force diagram of the situation, we find:! The tension in the string cancels out with

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Light, Electrons, and Energy. Pre-AP

Light, Electrons, and Energy. Pre-AP Light, Electrons, and Energy Pre-AP Light Waves! Electromagnetic Frequency Light Phenomenon Light can act as a wave or as a particle, but most light-electron interactions use wave physics. = greek letter

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves). Sometimes it behaves like billiard balls (particles).

More information

EM radiation: wave nature and particle nature (Grade 12) *

EM radiation: wave nature and particle nature (Grade 12) * OpenStax-CNX module: m39511 1 EM radiation: wave nature and particle nature (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves Spectroscopy Interaction of electromagnetic radiation with matter yields that energy is absorbed or emitted by matter in discrete quantities (quanta). Measurement of the frequency or (wave length) of the

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Light. October 14, ) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources

Light. October 14, ) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources Light October 14, 2002 1) Exam Review 2) Introduction 3) Light Waves 4) Atoms 5) Light Sources Waves You know of many types of waves water, sound, seismic, etc A wave is something oscillating back and

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

TAP 314-2: Charting the electromagnetic spectrum

TAP 314-2: Charting the electromagnetic spectrum TAP 314-2: Charting the electromagnetic spectrum Annotate this chart to answer questions 1 and 2. Answer the remaining questions in the spaces provided. frequency / Hz wavelength / m Type of electromagnetic

More information

WELCOME TO PERIOD 20: RADIANT ENERGY FROM THE SUN

WELCOME TO PERIOD 20: RADIANT ENERGY FROM THE SUN WELCOME TO PERIOD 20: RADIANT ENERGY FROM THE SUN Homework #19 is due today. Midterm 2: Weds, Mar 27, 7:45 8:55 pm (Same room as your midterm 1 exam.) Covers periods 10 19 and videos 3 & 4 Review: Tues,

More information

How do we get information about heavenly bodies when they are so far??

How do we get information about heavenly bodies when they are so far?? In Astronomy the most common unit to measure distances is---- Light Year: It is the distance traveled by light in one year. Speed of light ~ 300,000 kilometers/sec So in one hour lights travels = 300,000

More information

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror.

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror. 1. ship is fitted with echo-sounding equipment. pulse of sound is sent downwards from the ship at a speed of 1500 m/s. The seabed is 600m below the ship. How long will it take the pulse of sound to return

More information

Chapter 6 Part 1 Structure of the atom

Chapter 6 Part 1 Structure of the atom Chapter 6 Part 1 Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

Foundation Year Programme

Foundation Year Programme Foundation Year Programme Entrance Tests PHYSICS SPECIFICATION Standard ATS sample material 2 3 Physics 1. Electricity 1.1 Electrostatics: a. charging of insulators by friction b. object gaining electrons

More information

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light! Properties of Light and Atomic Structure Chapter 7 So Where are the Electrons? We know where the protons and neutrons are Nuclear structure of atoms (Chapter 2) The interaction of light and matter helps

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

Light - electromagnetic radiation

Light - electromagnetic radiation Astronomy & Light Astronomy is a science In science we know by doing experiments When multiple experiments give the same results we develop theories and laws In astronomy many of the experiments are done

More information

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Physics 2113 Jonathan Dowling Heinrich Hertz (1857 1894) Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Maxwell Equations in Empty Space: E da = 0 S B da = 0 S C C B ds = µ ε 0 0 E ds = d dt d dt S

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information

Light, Energy and Waves

Light, Energy and Waves Light, Energy and Waves Transverse waves: Wave Types Waves in which the medium moves at right angles to the direction of the wave Compressional (or longitudinal) waves Waves in which the medium moves back

More information

Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES. Maintain a record of your progress Use the booklet to guide revision

Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES. Maintain a record of your progress Use the booklet to guide revision Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES Maintain a record of your progress Use the booklet to guide revision Close the Gap Contemporary record of the Topics / Learning outcomes that I

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation?

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation? 5 Radiation and Spectra 1 Radiation and Spectra What is light? According to Webster: a.something that makes vision possible b.the sensation aroused by stimulation of the visual receptors c.electromagnetic

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Foundation Year Programme. Entrance Tests PHYSICS SPECIFICATION. For NUFYP SET 2018

Foundation Year Programme. Entrance Tests PHYSICS SPECIFICATION. For NUFYP SET 2018 Foundation Year Programme Entrance Tests PHYSICS SPECIFICATION For NUFYP SET 2018 V1.0 October 2017 2 Standard AT Sample Material Physics 1. Electricity 1.1 Electrostatics: a. charging of insulators by

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s Lecture 7 ASTR 111 Section 002 Outline Discuss Quiz 5 Light Suggested reading: Chapter 5.1-5.2 and 5.6-5.8 of textbook Light travels through empty space at a speed of 300,000 km/s In 1676, Danish astronomer

More information

Activity 2: Physics and the Visual Arts

Activity 2: Physics and the Visual Arts Why? An appreciation for and understanding of the physical processes that underpin the visual arts can be satisfying for an artist and lead to production of some unique pieces such as ferrosculptures:

More information

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School Prentice Hall Physics: Principles with Applications, Updated 6th Edition (Giancoli) 2009 High School C O R R E L A T E D T O Physics I Students should understand that scientific knowledge is gained from

More information

Nature of Light. Objectives. What is light What are the different forms

Nature of Light. Objectives. What is light What are the different forms Nature of Light Objectives What is light What are the different forms Light s Importance Light contributes 99% of all observations in Astronomy Light is a form of energy Light is electromagnetic radiation

More information

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

More information

NATIONAL SENIOR CERTIFICATE GRADE 10

NATIONAL SENIOR CERTIFICATE GRADE 10 NATIONAL SENIOR CERTIFICATE GRADE 10 PHYSICAL SCIENCES: TERM TEST 1 14 MARCH 2016 MARKS: 100 NAME OF SCHOOL: This question paper consists of 11 pages, including the cover page Page 1 of 11 INSTRUCTIONS

More information

wave speed (metre/second, m/s) = distance (metre, m) / time (second, s) v = x/t_ Universal physics

wave speed (metre/second, m/s) = distance (metre, m) / time (second, s) v = x/t_ Universal physics Topic 1 Visible light and the Solar System 1.1 Describe how ideas about the structure of the Solar System have changed over time, including the change from the geocentric to the heliocentric models and

More information

NAT 5 - Waves and Radiation Powerpoint Answers

NAT 5 - Waves and Radiation Powerpoint Answers NAT 5 - Waves and Radiation Powerpoint Answers 1. Light is a form of energy. 2. Angle of incidence = 60º. Angle of reflection = 60º. 3. Refraction is the change in the speed of light when moving from one

More information

Chapter 27: Light. What is light?

Chapter 27: Light. What is light? Chapter 27: Light What is light? Scientists first theorized light was a wave as it behaved with a wave properties, i.e. diffraction and interference. In 1905, Einstein realized that light was behaving

More information

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow

ASTRONOMY. Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow ASTRONOMY Chapter 5 RADIATION AND SPECTRA PowerPoint Image Slideshow FIGURE 5.1 Our Sun in Ultraviolet Light. This photograph of the Sun was taken at several different wavelengths of ultraviolet, which

More information

Reading and Announcements

Reading and Announcements Reading and Announcements Read Chapters 7.1 and 7.2 Homework #4 due Thursday, February 14 Quiz #3 Tuesday, February 12 No class Tuesday, February 19 as it s a UMass Monday Exam #1, Tuesday, February 21

More information