3.2 Conditional Probability and Independence

Size: px
Start display at page:

Download "3.2 Conditional Probability and Independence"

Transcription

1 3.2 Conditional Probability and Independence Mark R. Woodard Furman U 2010 Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

2 Outline 1 Conditional Probability 2 Independence 3 Examples and Assignment Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

3 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

4 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

5 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. For example, if you pick a card out of a deck at random, the probability that the card is from the diamond suit is 1/4, but if you knew somehow that the card was red, then the probability would jump to 1/2. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

6 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. For example, if you pick a card out of a deck at random, the probability that the card is from the diamond suit is 1/4, but if you knew somehow that the card was red, then the probability would jump to 1/2. We say that the conditional probability of diamond given red is 1/2. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

7 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. For example, if you pick a card out of a deck at random, the probability that the card is from the diamond suit is 1/4, but if you knew somehow that the card was red, then the probability would jump to 1/2. We say that the conditional probability of diamond given red is 1/2. The symbolism for this is Pr(A B) which we read as the conditional probability of A given B, or sometimes we simply say the probability of A given B. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

8 Conditional Probability Main Idea The main idea of conditional probability is that knowing some extra information about an experiment might change the probability in a specific way. For example, if you pick a card out of a deck at random, the probability that the card is from the diamond suit is 1/4, but if you knew somehow that the card was red, then the probability would jump to 1/2. We say that the conditional probability of diamond given red is 1/2. The symbolism for this is Pr(A B) which we read as the conditional probability of A given B, or sometimes we simply say the probability of A given B. In this symbolism, A and B are events, that is, subsets of the sample space. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

9 Conditional Probability Definition The formula for conditional probability is as follows: Pr(A B) = Pr(A B). Pr(B) Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

10 Conditional Probability Definition The formula for conditional probability is as follows: Pr(A B) = Pr(A B). Pr(B) Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

11 Conditional Probability Definition The formula for conditional probability is as follows: Pr(A B) = Pr(A B). Pr(B) In class, we will dicuss why this is a reasonable formula, but you can take this to be the definition of conditional probability if you like. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

12 Conditional Probability Definition The formula for conditional probability is as follows: Pr(A B) = Pr(A B). Pr(B) In class, we will dicuss why this is a reasonable formula, but you can take this to be the definition of conditional probability if you like. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

13 Independence Independent Events The following statements turn out to be equivalent: Whenever any of the above are true, we say that A and B are independent events. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

14 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Whenever any of the above are true, we say that A and B are independent events. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

15 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Whenever any of the above are true, we say that A and B are independent events. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

16 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Pr(B A) = Pr(B). Whenever any of the above are true, we say that A and B are independent events. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

17 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Pr(B A) = Pr(B). Whenever any of the above are true, we say that A and B are independent events. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

18 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Pr(B A) = Pr(B). Whenever any of the above are true, we say that A and B are independent events. Warning Note that although the word independent seems something like the word disjoint, they are very different in this context. In particular, if A and B are disjoint, then Pr(A B) = Pr(φ) = 0, rather than as in the definition above. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

19 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Pr(B A) = Pr(B). Whenever any of the above are true, we say that A and B are independent events. Warning Note that although the word independent seems something like the word disjoint, they are very different in this context. In particular, if A and B are disjoint, then Pr(A B) = Pr(φ) = 0, rather than as in the definition above. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

20 Independence Independent Events The following statements turn out to be equivalent: Pr(A B) = Pr(A) Pr(B). Pr(A B) = Pr(A). Pr(B A) = Pr(B). Whenever any of the above are true, we say that A and B are independent events. Warning Note that although the word independent seems something like the word disjoint, they are very different in this context. In particular, if A and B are disjoint, then Pr(A B) = Pr(φ) = 0, rather than as in the definition above. You should think of events as being independent when knowing that one occurs doesn t have any effect on the probability of the other. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

21 Examples and Assignment Examples and Assignment Examples: 6, 10, 12, 18, 24. Assignment: Numbers 1, 5, 9, 11, 15, 19, 23, 27, 31. Mark R. Woodard (Furman U) 3.2 Conditional Probability and Independence / 6

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Understanding Atomic Mass

Understanding Atomic Mass Understanding Atomic Mass What does a deck cards and the atomic mass on the periodic table have in common.? Let s Review Significant Figures and Digits All numbered digits are significant. i.e. 632 g =

More information

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later.

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later. PROBABILITY MATH CIRCLE (ADVANCED /27/203 The likelyhood of something (usually called an event happening is called the probability. Probability (informal: We can calculate probability using a ratio: want

More information

6.3 Partial Fractions

6.3 Partial Fractions 6.3 Partial Fractions Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 6.3 Partial Fractions Fall 2009 1 / 11 Outline 1 The method illustrated 2 Terminology 3 Factoring Polynomials 4 Partial fraction

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

God doesn t play dice. - Albert Einstein

God doesn t play dice. - Albert Einstein ECE 450 Lecture 1 God doesn t play dice. - Albert Einstein As far as the laws of mathematics refer to reality, they are not certain; as far as they are certain, they do not refer to reality. Lecture Overview

More information

8.8 Applications of Taylor Polynomials

8.8 Applications of Taylor Polynomials 8.8 Applications of Taylor Polynomials Mark Woodard Furman U Spring 2008 Mark Woodard (Furman U) 8.8 Applications of Taylor Polynomials Spring 2008 1 / 14 Outline 1 Point estimation 2 Estimation on an

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

ISyE 6739 Test 1 Solutions Summer 2015

ISyE 6739 Test 1 Solutions Summer 2015 1 NAME ISyE 6739 Test 1 Solutions Summer 2015 This test is 100 minutes long. You are allowed one cheat sheet. 1. (50 points) Short-Answer Questions (a) What is any subset of the sample space called? Solution:

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

COMP 120. For any doubts in the following, contact Agam, Room. 023

COMP 120. For any doubts in the following, contact Agam, Room. 023 COMP 120 Computer Organization Spring 2006 For any doubts in the following, contact Agam, Room. 023 Problem Set #1 Solution Problem 1. Miss Information [A] First card ca n be any one of 52 possibilities.

More information

5.8 Indeterminate forms and L Hôpital s rule

5.8 Indeterminate forms and L Hôpital s rule 5.8 Indeterminate forms and L Hôpital s rule Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 5.8 Indeterminate forms and L Hôpital s rule Fall 2009 1 / 11 Outline 1 The forms 0/0 and / 2 Examples

More information

Discrete Mathematics and Probability Theory Fall 2011 Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Fall 2011 Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Fall 20 Rao Midterm 2 Solutions True/False. [24 pts] Circle one of the provided answers please! No negative points will be assigned for incorrect answers.

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Formalizing Probability. Choosing the Sample Space. Probability Measures

Formalizing Probability. Choosing the Sample Space. Probability Measures Formalizing Probability Choosing the Sample Space What do we assign probability to? Intuitively, we assign them to possible events (things that might happen, outcomes of an experiment) Formally, we take

More information

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review 6.262: Discrete Stochastic Processes 2/2/11 Lecture 1: Introduction and Probability review Outline: Probability in the real world Probability as a branch of mathematics Discrete stochastic processes Processes

More information

Third Problem Assignment

Third Problem Assignment EECS 401 Due on January 26, 2007 PROBLEM 1 (35 points Oscar has lost his dog in either forest A (with a priori probability 0.4 or in forest B (with a priori probability 0.6. If the dog is alive and not

More information

Econ Lecture 7. Outline. 1. Connected Sets 2. Correspondences 3. Continuity for Correspondences

Econ Lecture 7. Outline. 1. Connected Sets 2. Correspondences 3. Continuity for Correspondences Econ 204 2011 Lecture 7 Outline 1. Connected Sets 2. Correspondences 3. Continuity for Correspondences 1 Connected Sets Definition 1. Two sets A, B in a metric space are separated if Ā B = A B = A set

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam

Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam CS 70 Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam Friday August 15, 2014, 5:10pm-8:10pm. Instructions: Do not turn over this page until the proctor tells you to. Don t

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

DRAFT. M118 Exam Jam Concise. Contents. Chapter 2: Set Theory 2. Chapter 3: Combinatorics 3. Chapter 4: Probability 4. Chapter 5: Statistics 6

DRAFT. M118 Exam Jam Concise. Contents. Chapter 2: Set Theory 2. Chapter 3: Combinatorics 3. Chapter 4: Probability 4. Chapter 5: Statistics 6 Contents Chapter 2: Set Theory 2 Chapter 3: Combinatorics 3 Chapter 4: Probability 4 Chapter 5: Statistics 6 Chapter 6: Linear Equations and Matrix Algebra 8 Chapter 7: Linear Programming: Graphical Solutions

More information

M118 Exam Jam. Contents. Chapter 2: Set Theory 2. Chapter 3: Combinatorics 5. Chapter 4: Probability 7. Chapter 5: Statistics 12

M118 Exam Jam. Contents. Chapter 2: Set Theory 2. Chapter 3: Combinatorics 5. Chapter 4: Probability 7. Chapter 5: Statistics 12 Contents Chapter 2: Set Theory 2 Chapter 3: Combinatorics 5 Chapter 4: Probability 7 Chapter 5: Statistics 12 Chapter 6: Linear Equations and Matrix Algebra 17 Chapter 7: Linear Programming: Graphical

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Set Notation and the Real Numbers

Set Notation and the Real Numbers Set Notation and the Real Numbers Oh, and some stuff on functions, too 1 Elementary Set Theory Vocabulary: Set Element Subset Union Intersection Set Difference Disjoint A intersects B Empty set or null

More information

Notes on the Point-Set Topology of R Northwestern University, Fall 2014

Notes on the Point-Set Topology of R Northwestern University, Fall 2014 Notes on the Point-Set Topology of R Northwestern University, Fall 2014 These notes give an introduction to the notions of open and closed subsets of R, which belong to the subject known as point-set topology.

More information

Chapter 2: Set Theory 2. Chapter 3: Combinatorics 3. Chapter 4: Probability 4. Chapter 5: Statistics 5

Chapter 2: Set Theory 2. Chapter 3: Combinatorics 3. Chapter 4: Probability 4. Chapter 5: Statistics 5 M118 Exam Jam Concise s Contents Chapter 2: Set Theory 2 Chapter 3: Combinatorics 3 Chapter 4: Probability 4 Chapter 5: Statistics 5 Chapter 6: Linear Equations and Matrix Algebra 7 Chapter 7: Linear Programming:

More information

Lecture 2: Mutually Orthogonal Latin Squares and Finite Fields

Lecture 2: Mutually Orthogonal Latin Squares and Finite Fields Latin Squares Instructor: Padraic Bartlett Lecture 2: Mutually Orthogonal Latin Squares and Finite Fields Week 2 Mathcamp 2012 Before we start this lecture, try solving the following problem: Question

More information

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical.

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical. RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013 0) a) Suppose you flip a fair coin 3 times. i) What is the probability you get 0 heads? ii) 1 head? iii) 2 heads? iv) 3 heads? b) Suppose you are dealt

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

2. Polynomials. 19 points. 3/3/3/3/3/4 Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!

2. Polynomials. 19 points. 3/3/3/3/3/4 Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify! 1. Short Modular Arithmetic/RSA. 16 points: 3/3/3/3/4 For each question, please answer in the correct format. When an expression is asked for, it may simply be a number, or an expression involving variables

More information

Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln

Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln CS 70 Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln PRINT your name:, (last) SIGN your name: (first) PRINT your username on cory.eecs: WRITE your section number (101 or 102): This exam is open-book,

More information

Probability and the Second Law of Thermodynamics

Probability and the Second Law of Thermodynamics Probability and the Second Law of Thermodynamics Stephen R. Addison January 24, 200 Introduction Over the next several class periods we will be reviewing the basic results of probability and relating probability

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 4: Sequential experiments Andrew McGregor University of Massachusetts Last Compiled: February 2, 2017 Outline 1 Recap 2 Sequential Experiments 3 Total Probability

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Mathematical Probability

Mathematical Probability Mathematical Probability STA 281 Fall 2011 1 Introduction Engineers and scientists are always exposed to data, both in their professional capacities and in everyday activities. The discipline of statistics

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space?

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space? Math 166 Exam 1 Review Sections L.1-L.2, 1.1-1.7 Note: This review is more heavily weighted on the new material this week: Sections 1.5-1.7. For more practice problems on previous material, take a look

More information

In case (1) 1 = 0. Then using and from Friday,

In case (1) 1 = 0. Then using and from Friday, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

Conditional Probability

Conditional Probability Chapter 6 Conditional Probability 6.1 Introduction The concept of conditional probability is a fascinating one. What if one noticed that an event occurred and we wish to follow that with another event.

More information

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence of events. 2.

More information

Senior Math Circles March 3, 2010 Counting Techniques and Probability II

Senior Math Circles March 3, 2010 Counting Techniques and Probability II 1 University of Waterloo Faculty of Mathematics Senior Math Circles March 3, 2010 Counting Techniques and Probability II Centre for Education in Mathematics and Computing Counting Rules Multiplication

More information

MATH2206 Prob Stat/20.Jan Weekly Review 1-2

MATH2206 Prob Stat/20.Jan Weekly Review 1-2 MATH2206 Prob Stat/20.Jan.2017 Weekly Review 1-2 This week I explained the idea behind the formula of the well-known statistic standard deviation so that it is clear now why it is a measure of dispersion

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

18.600: Lecture 3 What is probability?

18.600: Lecture 3 What is probability? 18.600: Lecture 3 What is probability? Scott Sheffield MIT Outline Formalizing probability Sample space DeMorgan s laws Axioms of probability Outline Formalizing probability Sample space DeMorgan s laws

More information

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Math 356 Abstract We sum up the main features of our last three class sessions, which list of topics are given

More information

12. Vagueness, Uncertainty and Degrees of Belief

12. Vagueness, Uncertainty and Degrees of Belief 12. Vagueness, Uncertainty and Degrees of Belief KR & R Brachman & Levesque 2005 202 Noncategorical statements Ordinary commonsense knowledge quickly moves away from categorical statements like a P is

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

Janson s Inequality and Poisson Heuristic

Janson s Inequality and Poisson Heuristic Janson s Inequality and Poisson Heuristic Dinesh K CS11M019 IIT Madras April 30, 2012 Dinesh (IITM) Janson s Inequality April 30, 2012 1 / 11 Outline 1 Motivation Dinesh (IITM) Janson s Inequality April

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 6 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 6 Notes Goals: CL Sections 3, 4; FN Section

More information

The objects in a set are the elements or members of the set. Always enclose the elements of a set in curly brackets. is read is an element of

The objects in a set are the elements or members of the set. Always enclose the elements of a set in curly brackets. is read is an element of Math 166 (c)2013 Epstein Chapter 1 Page 1 Chapter 1: SETS ND PROBBILITY 1.1 Introduction to Sets set is a collection of objects. The objects in a set are the elements or members of the set. lways enclose

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

2) There should be uncertainty as to which outcome will occur before the procedure takes place.

2) There should be uncertainty as to which outcome will occur before the procedure takes place. robability Numbers For many statisticians the concept of the probability that an event occurs is ultimately rooted in the interpretation of an event as an outcome of an experiment, others would interpret

More information

Relations and Equivalence Relations

Relations and Equivalence Relations Relations and Equivalence Relations In this section, we shall introduce a formal definition for the notion of a relation on a set. This is something we often take for granted in elementary algebra courses,

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition.

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition. Math 231 Exam Practice Problem Solutions WARNING: This is not a sample test. Problems on the exams may or may not be similar to these problems. These problems are just intended to focus your study of the

More information

Slides for a Course Based on the Text Discrete Mathematics & Its Applications (5 th Edition) by Kenneth H. Rosen

Slides for a Course Based on the Text Discrete Mathematics & Its Applications (5 th Edition) by Kenneth H. Rosen University of Florida Dept. of Computer & Information Science & Engineering COT 3100 Applications of Discrete Structures Dr. Michael P. Frank Slides for a Course Based on the Text Discrete Mathematics

More information

Set builder notation: Describe the set in terms of its properties, Chapter 1: SETS AND PROBABILITY. 1.1 Introduction to Sets

Set builder notation: Describe the set in terms of its properties, Chapter 1: SETS AND PROBABILITY. 1.1 Introduction to Sets Math 166 (c)2011 Epstein hapter 1 Page 1 hapter 1: SETS ND PROBBILITY Math 166 (c)2011 Epstein hapter 1 Page 2 Set builder notation: Describe the set in terms of its properties, 1.1 Introduction to Sets

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

Machine Learning, Midterm Exam: Spring 2008 SOLUTIONS. Q Topic Max. Score Score. 1 Short answer questions 20.

Machine Learning, Midterm Exam: Spring 2008 SOLUTIONS. Q Topic Max. Score Score. 1 Short answer questions 20. 10-601 Machine Learning, Midterm Exam: Spring 2008 Please put your name on this cover sheet If you need more room to work out your answer to a question, use the back of the page and clearly mark on the

More information

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata CS/Math 24: Introduction to Discrete Mathematics 4/2/2 Lecture 23 : Nondeterministic Finite Automata Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we designed finite state automata

More information

Chapter 2 Probability

Chapter 2 Probability Basic Axioms and properties Chapter 2 Probability 1. 0 Pr(A) 1 2. Pr(S) = 1 3. A B Pr(A) Pr(B) 4. Pr(φ ) = 0 5. If A and B are disjoint i.e. A B φ P( A B) = P(A) + P(B). 6. For any two events A and B,

More information

Mathematical Induction

Mathematical Induction Chapter 6 Mathematical Induction 6.1 The Process of Mathematical Induction 6.1.1 Motivating Mathematical Induction Consider the sum of the first several odd integers. produce the following: 1 = 1 1 + 3

More information

Conditional Probability (cont'd)

Conditional Probability (cont'd) Conditional Probability (cont'd) April 26, 2006 Conditional Probability (cont'd) Midterm Problems In a ten-question true-false exam, nd the probability that a student get a grade of 70 percent or better

More information

APM 421 Probability Theory Probability Notes. Jay Taylor Fall Jay Taylor (ASU) Fall / 62

APM 421 Probability Theory Probability Notes. Jay Taylor Fall Jay Taylor (ASU) Fall / 62 APM 421 Probability Theory Probability Notes Jay Taylor Fall 2013 Jay Taylor (ASU) Fall 2013 1 / 62 Motivation Scientific Determinism Scientific determinism holds that we can exactly predict how a system

More information

Sunk Costs and Escalation

Sunk Costs and Escalation Sunk Costs and Escalation The sunk cost fallacy occurs when we take into consideration costs we have already paid when making decisions about what we should do in the future. I ve been with this boyfriend

More information

Statistics 1L03 - Midterm #2 Review

Statistics 1L03 - Midterm #2 Review Statistics 1L03 - Midterm # Review Atinder Bharaj Made with L A TEX October, 01 Introduction As many of you will soon find out, I will not be holding the next midterm review. To make it a bit easier on

More information

ECEN 303: Homework 3 Solutions

ECEN 303: Homework 3 Solutions Problem 1: ECEN 0: Homework Solutions Let A be the event that the dog was lost in forest A and A c be the event that the dog was lost in forest B. Let D n be the event that the dog dies on the nth day.

More information

Math 20 Spring Discrete Probability. Midterm Exam

Math 20 Spring Discrete Probability. Midterm Exam Math 20 Spring 203 Discrete Probability Midterm Exam Thursday April 25, 5:00 7:00 PM Your name (please print): Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted.

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

Stat 5101 Notes: Algorithms (thru 2nd midterm)

Stat 5101 Notes: Algorithms (thru 2nd midterm) Stat 5101 Notes: Algorithms (thru 2nd midterm) Charles J. Geyer October 18, 2012 Contents 1 Calculating an Expectation or a Probability 2 1.1 From a PMF........................... 2 1.2 From a PDF...........................

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

3. The Multivariate Hypergeometric Distribution

3. The Multivariate Hypergeometric Distribution 1 of 6 7/16/2009 6:47 AM Virtual Laboratories > 12. Finite Sampling Models > 1 2 3 4 5 6 7 8 9 3. The Multivariate Hypergeometric Distribution Basic Theory As in the basic sampling model, we start with

More information

Set/deck of playing cards. Spades Hearts Diamonds Clubs

Set/deck of playing cards. Spades Hearts Diamonds Clubs TC Mathematics S2 Coins Die dice Tale Head Set/deck of playing cards Spades Hearts Diamonds Clubs TC Mathematics S2 PROBABILITIES : intuitive? Experiment tossing a coin Event it s a head Probability 1/2

More information

Lecture 1: Introduction and probability review

Lecture 1: Introduction and probability review Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 1: Introduction and probability review Lecturer: Art B. Owen September 25 Disclaimer: These notes have not been subjected to the usual

More information

Statistics Primer. A Brief Overview of Basic Statistical and Probability Principles. Essential Statistics for Data Analysts Using Excel

Statistics Primer. A Brief Overview of Basic Statistical and Probability Principles. Essential Statistics for Data Analysts Using Excel Statistics Primer A Brief Overview of Basic Statistical and Probability Principles Liberty J. Munson, PhD 9/19/16 Essential Statistics for Data Analysts Using Excel Table of Contents What is a Variable?...

More information

Unit 5 Quadratic Expressions and Equations

Unit 5 Quadratic Expressions and Equations Unit 5 Quadratic Expressions and Equations Test Date: Name: By the end of this unit, you will be able to Add, subtract, and multiply polynomials Solve equations involving the products of monomials and

More information

Lecture 4 - Conditional Probability

Lecture 4 - Conditional Probability ecture 4 - Conditional Probability 6.04 - February, 00 Conditional Probability Suppose that we pick a random person in the world. Everyone has an equal chance of being picked. et A be the event that the

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

The Plane of Complex Numbers

The Plane of Complex Numbers The Plane of Complex Numbers In this chapter we ll introduce the complex numbers as a plane of numbers. Each complex number will be identified by a number on a real axis and a number on an imaginary axis.

More information

Lecture : Tietze Extension Theorem

Lecture : Tietze Extension Theorem Proof of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India November 26, 2014 Outline Introduction Proof of 1 Introduction 2 3 Proof of 4 Proof of The theorem is due to

More information

1 Indistinguishability for multiple encryptions

1 Indistinguishability for multiple encryptions CSCI 5440: Cryptography Lecture 3 The Chinese University of Hong Kong 26 September 2012 1 Indistinguishability for multiple encryptions We now have a reasonable encryption scheme, which we proved is message

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

Direct Sums and Invariants. Direct Sums

Direct Sums and Invariants. Direct Sums Math 5327 Direct Sums and Invariants Direct Sums Suppose that W and W 2 are both subspaces of a vector space V Recall from Chapter 2 that the sum W W 2 is the set "u v u " W v " W 2 # That is W W 2 is

More information

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success College Algebra Chapter 5 Review Created by: Lauren Atkinson Math Coordinator, Mary Stangler Center for Academic Success Note: This review is composed of questions from the chapter review at the end of

More information

Chapter 2 - Relations

Chapter 2 - Relations Chapter 2 - Relations Chapter 2: Relations We could use up two Eternities in learning all that is to be learned about our own world and the thousands of nations that have arisen and flourished and vanished

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Statistical Methods for the Social Sciences, Autumn 2012

Statistical Methods for the Social Sciences, Autumn 2012 Statistical Methods for the Social Sciences, Autumn 2012 Review Session 3: Probability. Exercises Ch.4. More on Stata TA: Anastasia Aladysheva anastasia.aladysheva@graduateinstitute.ch Office hours: Mon

More information

ORF 245 Fundamentals of Statistics Chapter 5 Probability

ORF 245 Fundamentals of Statistics Chapter 5 Probability ORF 245 Fundamentals of Statistics Chapter 5 Probability Robert Vanderbei Oct 2015 Slides last edited on October 14, 2015 http://www.princeton.edu/ rvdb Sample Spaces (aka Populations) and Events When

More information

2007 Winton. Empirical Distributions

2007 Winton. Empirical Distributions 1 Empirical Distributions 2 Distributions In the discrete case, a probability distribution is just a set of values, each with some probability of occurrence Probabilities don t change as values occur Example,

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating

More information

Topic 2 Multiple events, conditioning, and independence, I. 2.1 Two or more events on the same sample space

Topic 2 Multiple events, conditioning, and independence, I. 2.1 Two or more events on the same sample space CSE 103: Probability and statistics Fall 2010 Topic 2 Multiple events, conditioning, and independence, I 2.1 Two or more events on the same sample space Frequently we end up dealing with multiple events

More information