Elementarteilchenphysik. Weak interaction

Size: px
Start display at page:

Download "Elementarteilchenphysik. Weak interaction"

Transcription

1 Elementarteilchenphysik Antonio Ereditato LHEP University of Bern Weak interaction 1

2 Weak Interaction Weak interaction is the only interaction that does not produce fermion bound states: weakness and short range Link with lepton flavor conservation Characteristic feature: neutrinos quasi point-like interaction mediated by three massive bosons: W + W - Z 0 Charged Current (CC) reactions: mediated by a W; Neutral Currents (NC) mediated by Z Three types of weak reactions: leptonic, semileptonic, non leptonic First theory of weak interaction: Fermi (circa 1930, after the hypothesis of the neutrino by Pauli) (Address NC reactions later, in the context of the electroweak unification theory) 2

3 Lepton number conservation 3

4 Examples of charged current weak interaction processes Leptonic neutral current Semleptonic Non leptonic 4

5 More charged current weak interactions Electron capture Inverse beta decay 5

6 4-fermion interaction (Fermi) d ν e g g 1 q 2 + M W 2 u e - n ν e p G =10 5 GeV 2 e - f (q 2 ) = g 2 q M (W,Z ) G = g GeV 2 2 M (W,Z ) 6

7 Lepton universality The weak coupling is the same for all leptons (e, µ, τ) but not for different quarks. Take the example of a leptonic weak process, such as muon decay: G = g2 2 M (W ) Dimensionally: G [GeV -2 ], decay amplitude G, rate G 2 Γ(µ e + ν e + ν µ) G 2 m 5 µ = g 4 µ m 5 4 µ = 1 M (W ) τ µ Remember: t[gev -1 ] # % $ g τ g µ & ( ' 4 In a similar way, the weak decay of the τ, with a branching ratio of 17.8%, gives # = m & µ % ( $ ' m τ 5 Γ(τ e + ν e + ν τ ) G 2 m τ 5 = # % $ τ µ τ τ & ' g 4 τ m 5 4 τ = 1 M (W ) τ τ ( (inserting the experimental values) g τ g µ = ± Similarly, universality holds for neutral currents (Z 0 ) 7

8 Historical link between the understanding of the β-decay and the hypothesis of the neutrino events ν Before 1930: N N + e - After 1930: N N + e - + ν m ν > 0? The β-decay problem e - energy Available energy = Δm nuclei c 2 Pauli's letter of December 4 th, 1930 Dear Radioactive Ladies and Gentlemen, As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant. I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win. Your humble servant W. Pauli 8

9 ! Solvay congress in Brussels (1933, after the discovery of the neutron): Fermi invented the name of neutrino! Soon after, in 1934, Fermi developed a theory of beta decay to include the neutrino, presumed to be massless as well as chargeless! The paper was published in Zeitschrift für Physik, Vol. 88, (1934) 161: Versuch einer Theorie der beta-strahlen. It had been originally rejected by Nature because: it contains speculations too remote from reality to be of interest to the reader! Treating the beta decay as a transition that depended on the strength of coupling between the initial and final states, Fermi developed a relationship which is now referred to as Fermi's Golden Rule λ if = M if 2 ρ f! However, the nature of the interaction which led to beta decay was unknown in Fermi's time (the weak interaction) 9

10 β-decay Negative beta-decay (e.g. neutron decay) Inside a nucleus (need to supply ΔE) we could have a positive beta-decay: and an electron capture The results is a different nucleus (same A, different Z): β - β + e-capture The beta-decay rate can be calculated according to the Fermi theory by means of Fermi s Golden rule. This brings to the Kurie plot, usually exploited to determine the electron-neutrino mass. 10

11 Inverse beta decay ν e + p n + e + This reaction has a kinematical threshold of 1.80 MeV, required to produce the positron at rest in the laboratory The cross section of the process is calculated from: One obtains: σ(ν e + p n + e + ) = G2 π M if 2 p 2 v i v f dσ dω (a + b c + d) = 1 4π 2 h M 4 if 2 This gives an incredibly small value: 2 ρ f v i v f σ(ν e + p n + e + ) =10 38 cm 2 E ν (GeV ) Mean free path for a 1 MeV neutrino: 50 light years of water!!! This explains why it took ~25 years from the neutrino hypothesis to the first detection of a neutrino This is balanced by the huge number of neutrinos around us: 330 neutrinos/cm 3 of Universe from the Big Bang (very low energy: 10-4 ev) Solar neutrino flux on Earth: 60 billion neutrinos/cm 2 x s Neutrinos from Supernova explosion, from cosmic-rays, from all the stars Neutrinos from Earth radioactivity and geo-neutrinos from the Earth core (30 TW power, equivalent to nuclear plants) Neutrinos from mankind (nuclear plants, accelerators) 11

12 Neutrinos and the human body Electromagnetic radiation interacts with our body depositing its energy. Due to their extremely low cross section neutrinos go through our body without interacting and releasing their energy. Thanks to this life is possible on Earth! γ ν Every second a human being is crossed by: 4 x neutrinos from the Sun 5 x neutrinos from Earth rock radioactivity x 10 9 neutrinos from all nuclear plants in the world NOTICE: the human body contains about 20 mg of Potassium 40, which is a β-emitter. Therefore, we produce 340 million neutrinos per day, that leave us at the speed of light, transmitting a signal of our presence down to the far corners of the Universe 12

13 Neutrino discovery Reines and Cowan (1956) Experiment at the Savannah River nuclear reactor (~10 20 neutrinos/s) : Pontecorvo s idea: ν e + p -> e + + n Cadmium Chloride 13

14 Inverse muon decay: i.e. how to build an accelerator neutrino beam Conceptual layout of an accelerator neutrino beam far detector near detectors absorber decay tunnel focusing magnets target 14

15 Questions (apparently not related to experimental particle physics.) 1) Suppose to communicate with an intelligent alien-being in a distant planet e.g. via radio. You can explain to him (her?) many things about our world asking him to perform experiments and to make observations and in the same way you can understand about him and his world. A problem arise when you want to explain him what is left and what is right.really?? 2) Is the world in the mirror identical to our world? 15

16 The establishment of parity violation in weak interactions In 1848 Pasteur discovered the property of optical isomerism. Two forms of the same chemical compound, isomers, were found to rotate polarized light in two different directions. Living organisms synthesize and use only one isomer and never the other. But nature itself appeared to have no preference over which form it produced. The concept of parity originated with the development of quantum mechanics. In 1924 Laporte classified the wave functions of an atom as either even or odd, depending upon the symmetry of the wave function. Laporte discovered that when in atomic transitions a photon is emitted, the wave function changes from even to odd or vice-versa. Parity is conserved in atomic transitions. If the initial wave function was odd (-1 parity), Laporte's rule asserts the final wave function must be even (+1 parity). Since the initial system has -1 parity and the final system has as its parity the product of parities of the final wave function and the parity of the emitted photon, (+1)(-1) = -1, parity is conserved in the transition. In 1927 Wigner proved that Laporte's rule was a consequence of right-left symmetry (or mirror image symmetry) of the electromagnetic force. In 1949 Powell identified a cosmic-ray particle which disintegrated into three pions. He named it taumeson. Another particle called the theta-meson was also discovered, disintegrating into two pions. Both particles decayed via weak interaction. However, the two particles turned out to be indistinguishable other than their mode of decay. Their masses and lifetimes were identical within the experimental uncertainties. The problem itself was not that the tau and theta, if they were the same particle, decayed in two different modes, one by two pions, the other by three pions. The problem dealt with the conservation of parity in weak interactions. Dalitz argued that since the pion has parity of -1, if the conservation of parity holds, they could not be the same particle. (Today we know that the tau and the theta are the same particle, the kaon, which can decay by weak interaction in two or three charged pions) 16

17 Lee Yang Wu Lee and Yang proposed in April 1956 an idea for ending the theta-tau puzzle. Their idea was that certain kinds of elementary particles occur in two forms with different parities, parity doubling. Feynman brought up the question of non-conservation of parity. Wigner also suggested that perhaps parity conservation was violated in weak interactions. Lee and Yang pursued a careful study of all known experiments involving weak interactions. After several weeks of reviewing they had come to the conclusion that past experiments on weak interactions had actually no bearing on the question of parity conservation, while there were solid proofs that parity was conserved in EM and strong interactions. On October 1st, 1956 Lee and Yang's published a paper stating: "To decide unequivocally whether parity is conserved in weak interactions, one must perform an experiment to determine whether weak interactions differentiate right from left." They proposed several experiments. One of the (conceptually) simplest involved measurements of Cobalt-60 beta-decay. Wu was the first to act on the proposed experiment involving beta decay in Cobalt 60. The experiment was very difficult: temperatures as low as one hundredth of a Kelvin were necessary to attain a high degree of spin orientations for the Cobalt nuclei. After several trials the experiment was successful on December 27th, Lederman realized that he could perform an independent test with the cyclotron in Columbia, by studying the decay of pions and muons, as also been proposed by Lee and Yang. Also this experiment showed parity violation in weak interactions. The two groups published together on on January 15th, 1957, with a press release at Columbia University. 17

18 The Wu experiment 18

19 Helicity: λ = s p / p = ± 1/2 s is a axial-vector: does not change for spatial inversion The mirror changes (e.g.) a left handed neutrino (existing in nature) into a right handed neutrino, that does not exist in nature. One is then able to distinguish our world from its mirror image: parity is not conserved in weak interactions. However, if we also apply C operation, we get a right handed antineutrino (that exists!). This implies that CP is conserved in weak interactions 19

20 Pion decay Why the pion decays into a muon and not into an electron? The fraction of left-helicity in the RH antilepton (proportional to m/e) is larger for the muon than for the electron 20

21 W and Z bosons Indirect evidence for Z (neutral currents) from the CERN Gargamelle experiment (1973) The W and Z bosons were directly observed for the first time at CERN (UA1 and UA2 experiments) in 1983 They were found thanks to the the SPS proton collider (270 GeV protons 270 GeV antiprotons) Nobel Prize to Rubbia and Van der Meer: UA1 and antiproton cooling p (uud) p (uud) u d g W - g e - ν e d (u) d (u) g Z 0 g e + (µ + ) e - (µ - ) V-A theory: only LH fermions and RH anti-fermions involved Color factor 1/3 to match quark-antiquark of color-anticolor Quark density functions to be taken into account 21

22 Mass- and weak- quark eigenstates Experimental indication of a difference in the weak coupling strength between muon and neutron decay (by 4% lower in the case of neutron decay), and in the decay rate of ΔS=1 and ΔS=0 weak reactions (factor ~20!), such as neutron decay vs Λ decay. This is in apparent contrast with the principle of universality of the weak interaction. The problem was solved by Cabibbo assuming that the states actually involved in the weak interaction processes are a linear combination (mixing) of the quark mass-eigenstates u, d, s with a mixing angle θ c (experimentally ~12.9 0, sinθ c = 0.221, cosθ c =0.974 ) Mass- and weak-eigenstates do not coincide for quarks ( u ) d cosθ c +s sinθ c 22

23 Comparison of n and Λ weak decay Proportional to cos 2 θ c = Proportional to sin 2 θ c = Good agreement with the experiments, but another problem arises 23

24 GIM mechanism and CKM matrix Experimentally, weak neutral currents follow the selection rule ΔS=0 (no flavor changing neutral currents ΔS=1): NC/CC: K + π + + ν + ν K + π 0 + µ + + ν µ <10 8 However, the Cabibbo theory, although successful, allows for ΔS=1 transitions: K + u s Z 0 u d ν ν π + u Z 0 + d cosθ c + s sinθ c Z 0 K + u s W + u u µ + π 0 u d cosθ c + s sinθ c ν µ ΔS=1 neutral current! uu + (dd cos 2 θ c + ss sin 2 θ c ) + (sd + ds)sinθ c cosθ c How to cancel the unwanted flavor changing neutral currents?? GIM mechanism, i.e. introducing a new up-like quark, the charm 24

25 1970: Glashow, Iliopoulos and Maiani (GIM) postulated the charm quark (discovered in1974) arranged with the strange quark in a second doublet, in addition to the up and down doublet ( u ) d cosθ c +s sinθ c ( c ) s cosθ c - d sinθ c ( ) " d' % " $ ' = cosθ c sinθ c % $ # s' & # sinθ c cosθ c & ' " $ d% # s ' & 25

26 u Z 0 + d cosθ c + s sinθ c Z 0 + c Z 0 + s cosθ c - d sinθ c Z 0 u d cosθ c + s sinθ c c s cosθ c - d sinθ c uu + cc + (dd + ss )cos 2 θ c + (ss + dd)sin 2 θ c ΔS = 0 + (sd + sd sd sd) sinθ c cosθ c ΔS = 1 The discovery of the other quark bottom led to a natural extension of the 2x2 matrix and to the prediction of the 6 th up-like quark (top). Cabibbo-Kobayashi-Maskawa 3x3 unitary matrix Rotation matrix in 3D space " d' % " V ud V us V ub %" d% $ ' s' $ ' = $ ' $ ' V cd V cs V cb s $ ' $ ' # b' & # V td V ts V tb &# b& 3 angles and one phase The phase can introduce CP violation Elements determined by experiments, e.g. studying the decay of heavy quarks (V ub from b u decays, etc.) Exploit unitarity condition: Σ j V ij 2 =1 Diagonal terms close to 1: t b, c s and u d 26

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER A brief history of neutrino Two body decay m 1 M m 2 Energy-momentum conservation => Energy of the decay products always the same 1913-1930: Puzzle of decay Continuous spectrum of particles Energy is not

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Lecture 10: Weak Interaction. 1

Lecture 10: Weak Interaction.   1 Lecture 10: Weak Interaction http://faculty.physics.tamu.edu/kamon/teaching/phys627/ 1 Standard Model Lagrangian http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf Standard Model Lagrangian

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

Interactions of Neutrinos at High and Low Energies. Kevin McFarland University of Rochester Neutrinos at SUSSP August 2006

Interactions of Neutrinos at High and Low Energies. Kevin McFarland University of Rochester Neutrinos at SUSSP August 2006 Interactions of Neutrinos at High and Low Energies Kevin McFarland University of Rochester Neutrinos at SUSSP 1-15 15 August 006 Neutrino Interaction Outline Motivations for and History of Measuring Neutrino

More information

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos 6-8 February 2017 Hotel do Mar Sesimbra Hands on Neutrinos Hands on Neutrinos 1 I. BRIEF HISTORY OF NEUTRINOs The neutrinowas first postulated by Wolfgang Pauli in 1930 to explain how β particles emitted

More information

Leptons and Weak interactions

Leptons and Weak interactions PHY771, 8/28/2014 Tomasz Skwarnicki 1 Historical introduction to Elementary Particles: Leptons and Weak interactions Tomasz Skwarnicki Syracuse University Griffiths, 2 nd ed., 1.3-1.5,1.10 PHY771, 8/28/2014

More information

Discovery of the Neutrino Mass-I. P1X* Frontiers of Physics Lectures October 2004 Dr Paul Soler University of Glasgow

Discovery of the Neutrino Mass-I. P1X* Frontiers of Physics Lectures October 2004 Dr Paul Soler University of Glasgow -I P1X* Frontiers of Physics Lectures 19-0 October 004 Dr Paul Soler University of Glasgow Outline 1. Introduction: the structure of matter. Neutrinos:.1 Neutrino interactions. Neutrino discovery and questions.3

More information

Lecture 11: Weak Interactions

Lecture 11: Weak Interactions Lecture 11: Weak Interactions Cross-Section and the W Coupling The Cabibbo Angle and the CKM Matrix Parity Violation Kaons and Mixing CP Violation Useful Sections in Martin & Shaw: Sections 4.51, 8.1,

More information

Introduction. Read: Ch 1 of M&S

Introduction. Read: Ch 1 of M&S Introduction What questions does this field address? Want to know the basic law of nature. Can we unify all the forces with one equation or one theory? Read: Ch 1 of M&S K.K. Gan L1: Introduction 1 Particle

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia)

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia) NEUTRINOS (Stony Brook-USA and IFIC-Valencia San Feliu, June 2004 Plan of Lectures I. Standard Neutrino Properties and Mass Terms (Beyond Standard II. Neutrino Oscillations III. The Data and Its Interpretation

More information

The Weak Interaction April 29, 2014

The Weak Interaction April 29, 2014 The Weak Interaction April 9, 04 0. Introduction The nuclear β-decay caused a great deal of anxiety among physicists. Both α- and γ-rays are emitted with discrete spectra, simply because of energy conservation.

More information

We will consider the physics of each of these processes. Physics 273 Radioactivity

We will consider the physics of each of these processes. Physics 273 Radioactivity Radioactivity Many nuclides are unstable. There are three (common) types of radioactive decay: Alpha decay: a Helium nucleus is emitted Beta decay: an electron or positron is emitted Gamma decay: a photon

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Neutrinos Lecture Introduction

Neutrinos Lecture Introduction Neutrinos Lecture 16 1 Introduction Neutrino physics is discussed in some detail for several reasons. In the first place, the physics is interesting and easily understood, yet it is representative of the

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Lecture 12 Weak Decays of Hadrons

Lecture 12 Weak Decays of Hadrons Lecture 12 Weak Decays of Hadrons π + and K + decays Semileptonic decays Hyperon decays Heavy quark decays Rare decays The Cabibbo-Kobayashi-Maskawa Matrix 1 Charged Pion Decay π + decay by annihilation

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Physics 141. Lecture 16.

Physics 141. Lecture 16. Physics 141. Lecture 16. Projectile motion a great homework assignment! Detroit, 10/23/2014. Video by F. Wolfs Jr. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture

More information

Physics 141. Lecture 16. Physics 141. Lecture 16. Course Information. Projectile motion a great homework assignment!

Physics 141. Lecture 16. Physics 141. Lecture 16. Course Information. Projectile motion a great homework assignment! Physics 141. Lecture 16. Projectile motion a great homework assignment! Detroit, 10/23/2014. Video by F. Wolfs Jr. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG Weak Interactions The Theory of GLASHOW, SALAM and WEINBERG ~ 1959-1968 (Nobel 1979) Theory of the unified weak and electromagnetic interaction, transmitted by exchange of intermediate vector bosons mass

More information

Current knowledge tells us that matter is made of fundamental particle called fermions,

Current knowledge tells us that matter is made of fundamental particle called fermions, Chapter 1 Particle Physics 1.1 Fundamental Particles Current knowledge tells us that matter is made of fundamental particle called fermions, which are spin 1 particles. Our world is composed of two kinds

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa17/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Particle Physics A short History

Particle Physics A short History Introduction to Experimental Particle Physics Heavily indebted to 1. Steve Lloyd Queen Mary s College, London 2004 2. Robert S. Orr University of Toronto 2007 3. Z. Vilakazi University of Cape Town -2006

More information

Weak Interactions: towards the Standard Model of Physics

Weak Interactions: towards the Standard Model of Physics Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental

More information

Beta decay. Coupling between nucleons and weak field

Beta decay. Coupling between nucleons and weak field Beta decay Coupling between nucleons and weak field One of the puzzles in understanding beta- decay was the emission of par:cles (electron, positron, neutrino) that are not present in the atomic nucleus.

More information

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS History of Elementary Particles THE CLASSICAL ERA (1897-1932) Elementary particle physics was born in 1897 with J.J. Thomson s discovery of the ELECTRONS

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix Particle Physics Lecture 12: Hadron Decays!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix 1 From Friday: Mesons and Baryons Summary Quarks are confined to colourless bound states,

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact strongly Like leptons,

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung.

Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung. 0. Einführung Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung. Folien auf Englisch (aus anderer Vorlesung ausgeliehen)

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Quark flavour physics

Quark flavour physics Quark flavour physics Michal Kreps Physics Department Plan Kaon physics and SM construction (bit of history) Establishing SM experimentally Looking for breakdown of SM Hard to cover everything in details

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

Neutrino New Physics: mass and oscillations

Neutrino New Physics: mass and oscillations Neutrino New Physics: mass and oscillations Introduction to the Intercollegiate Postgraduate Course University of London Academic Year 2016-17 Stefania Ricciardi,RAL E-mail: stefania.ricciardi@stfc.ac.uk

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble Electroweak interactions of quarks Benoit Clément, Université Joseph Fourier/LPSC Grenoble HASCO School, Göttingen, July 15-27 2012 1 PART 1 : Hadron decay, history of flavour mixing PART 2 : Oscillations

More information

Dear Radioactive Ladies and Gentlemen,

Dear Radioactive Ladies and Gentlemen, Dear Radioactive Ladies and Gentlemen, As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei

More information

Neutrino Physics: Lecture 1

Neutrino Physics: Lecture 1 Neutrino Physics: Lecture 1 Overview: discoveries, current status, future Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 1, 2010 Plan of the course Omnipresent

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Introduction to particle physics Lecture 12: Weak interactions

Introduction to particle physics Lecture 12: Weak interactions Introduction to particle physics Lecture 12: Weak interactions Frank Krauss IPPP Durham U Durham, Epiphany term 2010 1 / 22 Outline 1 Gauge theory of weak interactions 2 Spontaneous symmetry breaking 3

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS

F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS the fundamental discoveries in physics con4nues 1 CONGRATULATIONS - NOBEL PRIZE IN PHYSICS 2016 the secrets of exotic matter

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 1: Detection and basic properties Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017, NISER, Bhubaneswar,

More information

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012 Neutron Beta-Decay Christopher B. Hayes December 6, 2012 Abstract A Detailed account of the V-A theory of neutron beta decay is presented culminating in a precise calculation of the neutron lifetime. 1

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Neutrinos From The Sky and Through the Earth

Neutrinos From The Sky and Through the Earth Neutrinos From The Sky and Through the Earth Kate Scholberg, Duke University DNP Meeting, October 2016 Neutrino Oscillation Nobel Prize! The fourth Nobel for neutrinos: 1988: neutrino flavor 1995: discovery

More information

The weak interaction Part II

The weak interaction Part II The weak interaction Part II Marie-Hélène Schune Achille Stocchi LAL-Orsay IN2P3/CNRS Weak Interaction, An-Najah National University, Nablus, Palestine 1 The K -K system The CKM mechanism Measurements

More information

Chapter 2 Weak Interaction Before the Standard Model

Chapter 2 Weak Interaction Before the Standard Model Chapter Weak Interaction Before the Standard Model All existing present data are in perfect agreement with the unified theory of the electromagnetic and weak interactions (Standard Model). Before this

More information

Some fundamental questions

Some fundamental questions Some fundamental questions What is the standard model of elementary particles and their interactions? What is the origin of mass and electroweak symmetry breaking? What is the role of anti-matter in Nature?

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

CKM Matrix and CP Violation in Standard Model

CKM Matrix and CP Violation in Standard Model CKM Matrix and CP Violation in Standard Model CP&Viola,on&in&Standard&Model&& Lecture&15& Shahram&Rahatlou& Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815& http://www.roma1.infn.it/people/rahatlou/particelle/

More information

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m Par$cles Ma#er is made of atoms atom nucleus nucleon quark 10-10 m 10-14 m 10-15 m 10-18 m Atoms are made of leptons and quarks Leptons ν e e Quarks u d What Have We Learned? Rela?vis?c Quantum Mechanics

More information

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007 IoP Masterclass FLAVOUR PHYSICS Tim Gershon, University of Warwick April 20 th 2007 The Standard Model Tim Gershon, IoP Masterclass, April 20 th 2007 2 Some Questions What is antimatter? Why are there

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle Lecture 4 Particle physics processes - particles are small, light, energetic à processes described by quantum mechanics and relativity à processes are probabilistic, i.e., we cannot know the outcome of

More information

Flavor oscillations of solar neutrinos

Flavor oscillations of solar neutrinos Chapter 11 Flavor oscillations of solar neutrinos In the preceding chapter we discussed the internal structure of the Sun and suggested that neutrinos emitted by thermonuclear processes in the central

More information

Neutrinos in Astrophysics and Cosmology

Neutrinos in Astrophysics and Cosmology Crab Nebula Neutrinos in Astrophysics and Cosmology Introductory Remarks Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany Periodic System of Elementary Particles Quarks Charge -1/3 Charge

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012)

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) 1 Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) Michael Dittmar (ETH-Zürich/CMS) 17.4.2012 1950ies From the messy world of hadrons to weak decays and neutrinos.

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

From Here to a Neutrino Factory: Neutrino Oscillations Now and Again

From Here to a Neutrino Factory: Neutrino Oscillations Now and Again NuMI From Here to a Neutrino Factory: Neutrino Oscillations Now and Again University of the Tevatron April 11, Deborah Harris Fermilab Outline of this Talk History of Neutrino Physics Neutrino Oscillation

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Chapter 46. Particle Physics and Cosmology

Chapter 46. Particle Physics and Cosmology Chapter 46 Particle Physics and Cosmology Atoms as Elementary Particles Atoms From the Greek for indivisible Were once thought to be the elementary particles Atom constituents Proton, neutron, and electron

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information