Conservation of Momentum -1

Size: px
Start display at page:

Download "Conservation of Momentum -1"

Transcription

1 Impulse, Action-Reaction and Change in Momentum: Prolem 1: A pitcher throws a 150g aseall y applying a 50N force for 0.1 second. Assuming that the ase all starts from rest, otain a. the initial velocity the initial momentum and KE d. the final momentum and KE e. the final velocity of the all f. the acceleration of the all g. the work done on the all h. Are the momentum and the KE conserved? Prolem : The velocity of a 150g aseall is changed from 0m/s to 10m/s y applying a 100N force. Otain a. the initial momentum and KE the final momentum and KE d. how long the 100N force is applied on the all. e. the acceleration of the all f. the work done on the all g Impulse: FΔ t Change in Momentum: Δ p= Impulse = Δ p = F Δt FReaction= FAction Are the momentum and the KE conserved? Conservation of Momentum -1 Prolem 4: A 150g aseall traveling 0m/s is hit y a aseall at. The all is in contact with the at for 0.1 second. After the hit the aseall moves 0m/s in the opposite direction.. Otain a. the initial momentum and KE the final momentum and KE d. the force applied. e. the acceleration of the all f. the force exerted on the at y the all g. the force exerted on the all y the at h. the work done on the all i. Are the momentum and the KE conserved? Prolem 5 A 1kg pistol fires a ullet of mass 8g with a velocity of 300m/s. Otain a. the change in the momentum and KE of the ullet during firing the momentum and KE of the ullet after firing c. the force applied on the ullet if the firing of the ullet took 0.1s long d. the force applied on the pistol e. the work done on the ullet if the pistol is 0 cm Prolem 3: The velocity of a 150g aseall is changed from 0m/s to 10m/s y applying a force for seconds.. Otain a. the initial momentum and KE the final momentum and KE d. the force applied e. the acceleration of the all f. the distance the all travels during this s time interval g. Are the momentum and the KE conserved?

2 Conservation of Momentum: The total momentum of a system is conserved when the net impuls on the system is zero or approximately zero. r F net Δt 0, r where P T =p1+p+p3+ is the sum of the momenta of all the ojects in the system and stand for efore and after event, e.g. collision Conservation of Momentum - = constant, i.e. r = r a the suscripts and a Prolem 1: Two ice-skaters of masses 50kg and 80kg are standing across from each other.. a. What is the initial momentum each skater?. What is the total momentum of oth skaters? The skaters push each other away. As a result, 80kg skater acquires a velocity of 5 m/s. c. What is the total momentum of the skaters after the push off? d. What is the momentum of the 80kg skater? e. What is the momentum of the 50kg skater? f. What is the velocity of the 50kg skater? g. Otain the KE of each skater efore and after the push off. Is total energy conserved? Is KET conserved? Prolem : How do rockets travel in space? Prolem 3: A 5000kg rocket needs to reach a velocity of 000m/s. How much exhaust does it need to expel at a velocity of 10000km/s in order to reach this speed? Prolem 4: In figure skating a pair standing push each other away. Otain the ratio of their speeds in terms of their masses. Now assume that one the skaters is 30 kg and the other one is 80 kg. a. If the 80 kg skater is moving 5 m/s, otain the speed of the other skater.. If the two skater pushed each other for a duration of 0.5 seconds, how much force did the skaters apply on each other? c. Otain the KE of each skater efore and after the push off. d. How much work did they do?

3 Collisions Conservation of Momentum -3 Prolem 1: A illiard all of mass M moving with a velocity v1 hits a second illiard all of identical mass at rest. a. Otain the velocity of the second illiard all in terms of the velocity of the first illiard all efore and after the collision.. Assume that the velocity of the first all after the collision is zero. Otain the velocity of the second all after the collision. c. Otain the KE of each all efore and after the collision. Is total energy conserved? Is KET conserved? Prolem : A collision car of mass M1 moving with a velocity of v1 and collide with a second car of mass M at rest. After the collision, two cars stick to each other and move together. a. Otain the velocity of the two car system after the collision in terms of M1, M, and v1.. Assume that the cars are identical and have the same mass. Otain the velocity of the two car system after the collision in terms of v1. c. Assume that M1=10 kg, M=30 kg and v1= m/s. Otain the velocity of the two car system after the collision. d. Otain the KE of each all efore and after the collision. Is total energy conserved? Is KET conserved? Prolem 3: Two illiard alls of mass M1 and M moving towards each other with velocity v1 and v collide head on. a. Otain the momentum and velocity of the second illiard all after the collision in terms of the velocity of the second illiard all after the collision and M1, M,v1, and v.. Assume that M1= kg, M = 5 kg, v1= 4 m/s, v=7 m/s, and v1a= 3 m/s. Otain pa, va. c. Otain the KE of each all efore and after the collision. Is total energy conserved? Is KET conserved? Prolem 4: Two illiard alls of mass M1 and M moving ack to ack with velocity v1 and v. The first all catches up with the second and they collide. a. Otain the momentum and velocity of the second illiard all after the collision in terms of the velocity of the first illiard all after the collision and M1, M,v1, and v.. Assume that M1= kg, M = 5 kg, v1= 4 m/s, v=7 m/s, and v1a= 3 m/s. Otain pa, va. c Calculate KE of each all efore and after the collision. Is KET conserved? Conservation of Energy and Momentum in Elastic Collisions If a collision is elastic, the total KE of the system does not change. As a result, the conservation of energy expression can e reduced to the one where we have to deal with only the kinetic energy part.

4 Conservation of Momentum -4 Conservation of Momentum in Collisions in Dimensions Consider an oject of mass M1 and velocity v1 at angle θ1 with respect to the x-axis colliding with a second oject of mass M and velocity v at angle θ with respect to the x-axis. After the collision oject-1 goes in the direction which makes angle φ1 with respect to the x-axis and the oject- goes in the direction which makes angle φ with respect to the x- axis. We would like to otain the velocities, momenta and kinetic energies of the ojects after the collision. Through out the collision the net force on the two-oject system is zero. Since Fnet=0, the total mometnum is conserved. In order to avoid cluttering the expressions with too many suscripts, we will not use the suscripts and a to show quantities efore and after the collision. I. Momenta efore the collision Since Fnet=0, the total mometnum is conserved. = M 1 v 1 x = cos θ 1 y = sinθ 1 Therefore, a = = M v x = cos θ y = sinθ After the collision = + x = x + x y = y + y = M 1 v 1a x = cos φ 1 y = sinφ 1 = M v a x = cos φ y = sinφ = + x = x + x y = y + y a a θ 1 θ φ φ 1 a x a a II. Kinetic Energies efore the collision KE 1 = 1 M 1v 1 KE = 1 M v II. Kinetic Energies after the collision KE 1 = 1 M 1v 1a KE = 1 M v a KE T = KE 1 + KE KE T = KE 1 + KE = M 1 v 1 The collision is elastic if KE T = KE Ta. Otherwise it is inelasti.c.

5 Conservation of Momentum -5 All the angles are given with respect to the positive x-axis. See figures elow. Before the collision After the collision M 1 = kg, v 1 =5 m =10Ns@ The Law of Sines M =4kg, KE1 = 5J KE = 00J KET = 5J v =10 m =40Ns@ After the collision, the angle etween the two momenta is 75 and the angle across from the total momentum is 105. The total momentum is conserved. Therefore, a =. The angle etween the x-axis and the total momentum is - 31, the angle etween the x-axis and is 30 and the The Law of Sines The angle etween the two momenta is 90. As a result, the total momentum is given y the Pythagorean theorem. = + = 41.Ns. We can use the law of sines (or the Pythagorean theorem in this case) to figure out the angle etween and (or ). sin 90 = sin α = sin β. sin α = sin β = pt =0.46, α=14 pt =0.9704, β=76 The angle etween the total momentum and the x-axis is 14 = 31 elow the x-axis. As a result, =41.Ns@ 31 x =10Ns cos =7.07Ns y =10Ns sin =7.07Ns The Component Method x =40Ns cos( ) =8.8Ns y =40Ns sin( ) =8.8Ns x = y = x + y + x =35.35Ns y =1.1Ns angle etween the x-axis and is. As a result, the angle etween and is 14, and and is 61. sin 105 = sin 61 = sin 14 where =41.Ns. =37.31Ns@ =10.3Ns@30 Check = + cos 105 x = x Ns = 3 y = y + 1.1Ns = 1 The Component Method x = + cos30+ y = sin30+ cos(- 45) Ι sin(- 45) Using expressions I and II together gives =37.3Ns and =10.35Ns. =37.3Ns@, v 1 =18.66 m =10.35s@30, KE1a = 348J KEa = 13.J KETa = 361J KE T KE Ta KE T = 60% ΙΙ v =.59 m 30 = Tx + Ty =41.Ns The collision is inelastic. KE Ta > KE T, therefore, there tanθ = y x = =41.Ns@ 31 and θ = 31 must have een some kind of explosion during the collision

6 Conservation of Momentum -6 Before the Collision y x y After the Collision x

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Chapter 9: Momentum and Conservation. Newton s Laws applied

Chapter 9: Momentum and Conservation. Newton s Laws applied Chapter 9: Momentum and Conservation Newton s Laws applied Dynamics of Physics Dynamics are the CAUSES of CHANGE in Physics. Recall that position is changed by velocity. Velocity is changed by acceleration.

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

Q8.3. Wednesday, March 9, Pearson Education, Inc.

Q8.3. Wednesday, March 9, Pearson Education, Inc. Q8.3 A 3.00-kg rifle fires a 0.00500-kg bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity Physics Notes Ch. 6 Momentum and Collisions I. Momentum - inertia in motion equal to mass times velocity Momentum describes a given object s motion Q: So can a company truly have momentum like my investment

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum P H Y S I C S Chapter 9: Collisions, CM, RP Since impulse = change in momentum, If no impulse is exerted on an object, the momentum of the object will not change. If no external forces act on a system,

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

Momentum and Collisions. Phy 114

Momentum and Collisions. Phy 114 Momentum and Collisions Phy 114 Momentum Momentum: p = mv Units are kg(m/s): no derived units A vector quantity: same direction as velocity v=2m/s p= 3 kg (2m/s) From Newton s 2nd ΣF = ΣF = ma v m t ΣF(

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Thinking about collisions (L8)

Thinking about collisions (L8) Thinking about collisions (L8) collisions can be very complicated two objects bang into each other and exert strong forces over short time intervals fortunately, even though we usually do not know the

More information

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q ore on Linear omentum nd Collisions Elastic and Perfect Inelastic Collision (D) Two Dimensional Elastic Collisions Exercise: illiards oard Explosion q ulti-particle

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Chapter 7- Linear Momentum

Chapter 7- Linear Momentum Chapter 7- Linear Momentum Old assignments and midterm exams (solutions have been posted on the web) can be picked up in my office (LB-212) All marks, including assignments, have been posted on the web.

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Physics 10 Lecture 6A. "And in knowing that you know nothing, that makes you the smartest of all. --Socrates

Physics 10 Lecture 6A. And in knowing that you know nothing, that makes you the smartest of all. --Socrates Physics 10 Lecture 6A "And in knowing that you know nothing, that makes you the smartest of all. --Socrates Momentum Which is harder to stop a small ball moving at 1 m/s or a car moving at 1 m/s? Obviously

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Vocabulary linear momemtum second law of motion isolated system elastic collision inelastic collision completly inelastic center of mass center of gravity 9-1 Momentum and Its Relation

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Momentum_P2 1 NA 2NA 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Draw the free-body diagram for the sledge at the position shown on the snow slope. 3b. [3 marks] 1

More information

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

PS113 Chapter 7. Impulse and Momentum

PS113 Chapter 7. Impulse and Momentum PS113 Chapter 7 Impulse and Momentum 1 The impulse-momentum theorem There are many situations in which the force acting on a object is not constant, but varies with time. The resulting motion can be simply

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer: Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Σp before ± I = Σp after

Σp before ± I = Σp after Transfer of Momentum The Law of Conservation of Momentum Momentum can be transferred when objects collide. The objects exert equal and opposite forces on each other, causing both objects to change velocity.

More information

Algebra Based Physics

Algebra Based Physics 1 Algebra Based Physics Momentum 2016 01 20 www.njctl.org 2 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions

More information

S15--Phys Q2 Momentum

S15--Phys Q2 Momentum Name: Class: Date: ID: A S15--Phys Q2 Momentum Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If the momentum of an object changes and its mass remains

More information

CP Snr and Hon Freshmen Study Guide

CP Snr and Hon Freshmen Study Guide CP Snr and Hon Freshmen Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Displacement is which of the following types of quantities? a. vector

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force Momentum is a vector symbolized by the symbol p, and is defined as: It is a vector and has units of: (kg m/s) or (Ns) The rate of change of momentum is

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

This Week. 9/5/2018 Physics 214 Fall

This Week. 9/5/2018 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 9/5/2018 Physics 214 Fall 2018 1 Momentum What

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. Name Physics! Review Problems Unit 8 1. A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. a) What is the initial momentum of the body? b) What is the final momentum

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law Action and Reaction Forces The force your bumper car exerts

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass LINEAR MOMENTUM Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass MOMENTUM Quantity of Motion Product of Mass and Velocity p = mv

More information

6 th week Lectures Feb. 12. Feb

6 th week Lectures Feb. 12. Feb Momentum Rockets and guns 6 th week Lectures Feb. 12. Feb. 16. 2018. How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 2/11/2018 Physics 214 Spring 2018 1 Announcements

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Momentum and Impulse Concept Tests

Momentum and Impulse Concept Tests Momentum and Impulse Concept Tests Question 1 Consider two carts, of masses m and 2m, at rest on an air track. If you push first one cart for 3 s and then the other for the same length of time, exerting

More information

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv) Impulse (J) We create an unbalancing force to overcome the inertia of the object. the integral of force over time The unbalancing force is made up of the force we need to unbalance the object and the time

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics MECHANICS: Momentum and Collisions (Answers) Name: Total Marks: /30 Maths Made Easy Complete

More information

Dylan Humenik Ben Daily Srikrishnan Varadarajan Double Cart Collisions

Dylan Humenik Ben Daily Srikrishnan Varadarajan Double Cart Collisions Double Cart Collisions Objective: -Apply knowledge of collisions in analysis of collision -Find momentum and kinetic energy of two different collisions (elastic and inelastic) Data: Mass (kg) Cart 1 (moving)

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law What is Newton s third law of motion? According to Newton

More information

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0.

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0. 1 (a) A solar-powered ion propulsion engine creates and accelerates xenon ions. The ions are ejected at a constant rate from the rear of a spacecraft, as shown in Fig. 2.1. The ions have a fixed mean speed

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 8 Last Lecture Work for nonconstant force F x Spring force F =!kx x Potential Energy of Spring PE = 1 2 kx2 Power P = "W "t P = Fv = "KE "t Chapter 6 Momentum

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum Table of Contents Momentum and Section 2 Conservation of Momentum Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities.

More information

Chapter 7 Linear Momentum

Chapter 7 Linear Momentum Chapter 7 Linear Momentum Units of Chapter 7 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy and Momentum in Collisions Elastic Collisions in One

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

An Introduction to Momentum (Doodle Science)

An Introduction to Momentum (Doodle Science) Momentum An Introduction to Momentum (Doodle Science) Intro to Momentum part one Momentum Momentum is a way of describing the inertia of an object in motion. Momentum = Mass x Velocity P = m v When direction

More information

Copy down this Momentum table

Copy down this Momentum table Copy down this Momentum table Objects P before (kg*m/s) P after (kg*m/s) Object 1 Object 2 Total Announcements Quiz on Monday (All content from this week) Momentum Objectives (Mom. and Energy Unit) 1.

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

Academic Physics! Work and Momentum Summary! Name

Academic Physics! Work and Momentum Summary! Name Academic Physics! Work and Summary! Name 1. A child with a mass of 23kg rides a bike with a mass of 5.5 kg at a velocity of 4.5 m/s to the south. Compare the momentum of the child and the momentum of the

More information

5.2 Conservation of Momentum in One Dimension

5.2 Conservation of Momentum in One Dimension 5. Conservation of Momentum in One Dimension Success in the sport of curling relies on momentum and impulse. A player must accelerate a curling stone to a precise velocity to collide with an opponent s

More information

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity. AP Physics - Problem Drill 08: Momentum and Collisions No. 1 of 10 1. A car and motor bike are travelling down the road? Which of these is a correct statement? (A) The car will have a higher momentum.

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

Chapter 9 Momentum and Its Conservation

Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation In this chapter you will: Describe momentum and impulse and apply them to the interactions between objects. Relate Newton

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

Q2. Two forces of 6 N and 10 N act at a point. Which of the following could not be the magnitude of the result?

Q2. Two forces of 6 N and 10 N act at a point. Which of the following could not be the magnitude of the result? Q1. Two ice skaters, initially at rest and in contact, push apart from each other. Which line, to, in the table states correctly the change in the total momentum and the total kinetic energy of the two

More information

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 ame: Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this figure. What is the normal force acting on

More information