Stat 401B Exam 3 Fall 2016 (Corrected Version)

Size: px
Start display at page:

Download "Stat 401B Exam 3 Fall 2016 (Corrected Version)"

Transcription

1 Stat 401B Exam 3 Fall 2016 (Corrected Version) I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning will receive NO partial credit. Correct numerical answers to difficult questions unaccompanied by supporting reasoning may not receive full credit. SHOW YOUR WORK/EXPLAIN YOURSELF! 1

2 1. There are data on the UCI Machine Learning Repository due originally to P. Tüfekci and H. Kaya concerning the running of a power plant. Hourly information on atmospheric conditions and a plant operating variable were collected over a number of years, along with the hourly energy output of the plant. This question concerns MLR analyses of a random sample of 200 of the hourly periods made treating mean "PE" (electrical power) as a function of the variables "AT" (ambient temperature in C ), "AP" (ambient pressure in milibars), "RH" (relative humidity in %), and "V" (exhaust vacuum in cm Mg). 5 pts a) Below is a graphic from the "leaps" function regsubsets() for the n = 200 periods. Which 2 predictors seem to be most effective in predicting PE? What fraction of the raw variability in PE do they account for? 8 pts b) Give the value of and degrees of freedom for an F statistic for comparing the full model involving all predictors to the best 2-predictor model. (While it is not really needed to answer this question, SSTot = for these n = 200 cases.) F = d.f. =, 2

3 Below are some results (cross-validation root mean squared prediction error) from repeated 10-fold cross-validation, and values of 2 MSE and R for several MLR models for PE. Model Predictors Included CV-RMSPE RMSE R-Squared 1 V AT AT,V AT,RH AT,AP,RH AT,V,RH AT,V,AP,RH pts c) Which of models 1-7 is most attractive on the basis of the table above? Explain. 4 pts d) What about the table above suggests that none of the models fit there suffers dramatic overfitting? Below are some scatterplots of the data from the 200 sample hours. 4 pts d) Is there evidence of multicollinearity in these plots? If so, what is it? 3

4 2. There is an interesting "Banknote Authentication" data set on the UCI Machine Learning repository that consists of 4 numerical features extracted from grey scale images of real and counterfeit banknotes. There are 610 counterfeit and 762 real notes represented in the data set. There is a printout beginning on Page 8 of this exam from an attempt to model the probability that a note is counterfeit (V5=1) as a function of the features (V1,V2,V3,V4). Use it to answer the following questions. a) Which of the features V1,V2,V3,V4 appears to be least important in modeling the probability that V5=1 (the note is counterfeit)? Explain. ( ( )) b) Recall that if p ( u) = exp ( u) / ( 1+ exp( u) ) then the "log odds" are u ln p( u) / 1 p( u) =. Give approximately 95% confidence limits for the increase in log odds that a banknote is counterfeit accompanying a unit increase in V1 if the other features V2,V3,V4 are held fixed. c) Give 2-sided approximately 95% confidence limits for the probability that a banknote with features V1=.2,V2=.8,V3=.4,V4=-.6 is counterfeit. 4

5 3. A data set in the book Regression Analysis by Graybill and Iyer concerns how an optical reading, y, measuring light transmitted through a chemical solution depends upon the concentration of a chemical, x (in mg/l). A possible nonlinear (in coefficients β1, β2, and β 3) form for the relationship between x and mean y is μyx = β1+ β2exp( β3x) (*) A printout beginning on Page 9 summarizes an analysis of the n = 12 pairs in the data set. a) Suppose relationship (*) above holds and that for a given concentration the optical reading is normally distributed with standard deviation σ. Give approximate 95% two-sided confidence limits for this model parameter. 5 pts b) According to the relationship (*), as concentration, x, goes from 0 to, the mean light transmitted goes from β1+ β2 to β1. The value of concentration, x, at which half of the decrease in light transmission has been realized might be of interest. What is this in terms of the model parameters? Give 95% two-sided confidence limits for this value of x. 4. On page 217 of the white Vardeman and Jobe text there are data of Koh, Morden, and Ogbourne that concern axial breaking strengths of wooden dowel rods of 3 different lengths and 3 different diameters. A printout beginning on Page 9 of this exam summarizes some computations with these data. a) What about the printed analyses of dowel strength makes direct analysis of y under the usual one-way normal model assumptions seem inappropriate? Instead we will henceforth consider analysis of y' ln( y) =. 5

6 b) Make an interaction plot enhanced with error bars based on 95% confidence limits for combination mean log strengths. What are your "margins of error" for this plotting? (Give a number.) + / margin: c) Based on the plot above, which effects appear to be both statistically detectable and most important? (Consider diameter and length main effects and interactions. List an order of importance.) d) What items on the printout support your judgment in c)? Explain how they lend support. 6

7 5. Beginning on Page 12 there is R code and output corresponding to a balanced experiment on paper airplane flight distances (carried out in an undergraduate engineering statistics class). There are 3 levels of the factor "Design," 2 levels of the factor (nose) "Weight," and 3 levels of the factor "Paper" (type) in the study. Use the R output to answer the rest of the questions on this exam. a) What is the value of s pooled for this data set? (Say where you found your value.) What does this measure in the present context? b) What is the relatively simple interpretation that is possible for these data? (What factorial effect(s) dominate(s) and what does that mean about the flying of paper airplanes?) What on the output tells you that this is so? c) What type or types of airplanes fly furthest (according to the outcome of this study)? Explain. d) What do you predict for the average flight distance of the type or types of planes you identified in part c) based on a good simple model here? 7

8 R Code and OutPut for the Banknote Data > Banknote[1:5,] V1 V2 V3 V4 V > summary(banknote) V1 V2 V3 V4 V5 Min. : Min. : Min. : Min. : Min. : st Qu.: st Qu.: st Qu.: st Qu.: st Qu.: Median : Median : Median : Median : Median : Mean : Mean : Mean : Mean : Mean : rd Qu.: rd Qu.: rd Qu.: rd Qu.: rd Qu.: Max. : Max. : Max. : Max. : Max. : > bank.out<-glm(as.factor(v5)~v1+v2+v3+v4,data=banknote,family=binomial()) Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred > summary(bank.out) Call: glm(formula = as.factor(v5) ~ V1 + V2 + V3 + V4, family = binomial(), data = Banknote) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-06 *** V e-06 *** V e-06 *** V e-06 *** V (Dispersion parameter for binomial family taken to be 1) Null deviance: on 1371 degrees of freedom Residual deviance: on 1367 degrees of freedom AIC: Number of Fisher Scoring iterations: 12 > unknown<-data.frame(v1=.2,v2=.8,v3=.4,v4=-.6) > predict(bank.out,newdata=unknown,se.fit=true) $fit $se.fit [1] $residual.scale [1] 1 8

9 R Code and OutPut for the Optical Data > optical.out<-nls(y~b1+b2*exp(-b3*x),start=c(b1=0,b2=3,b3=1),trace=t) : : : : : > summary(optical.out) Formula: y ~ b1 + b2 * exp(-b3 * x) Parameters: Estimate Std. Error t value Pr(> t ) b b e-07 *** b *** Residual standard error: on 9 degrees of freedom Number of iterations to convergence: 4 Achieved convergence tolerance: 7.998e-07 > confint(optical.out) Waiting for profiling to be done : : : : % 97.5% b b b > predict(optical.out) [1] [9] R Code and OutPut for the Dowel Strength Data > cbind(type,diam,length,strength) type diam length strength [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,]

10 [19,] [20,] [21,] [22,] [23,] [24,] [25,] [26,] [27,] [28,] [29,] [30,] [31,] [32,] [33,] [34,] [35,] [36,] > > options(contrasts = rep("contr.sum", 2)) > > aggregate(strength,by=list(type),fun=mean) Group.1 x > aggregate(strength,by=list(type),fun=sd) Group.1 x > summary(lm(strength~as.factor(type))) Call: lm(formula = strength ~ as.factor(type)) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** as.factor(type) e-07 *** as.factor(type) e-13 *** as.factor(type) e-13 *** as.factor(type) e-15 *** as.factor(type) *** as.factor(type) e-12 *** as.factor(type) < 2e-16 *** as.factor(type) e-07 *** Residual standard error: on 27 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 219 on 8 and 27 DF, p-value: < 2.2e-16 10

11 > > logstrength<-log(strength) > logstrength [1] [9] [17] [25] [33] > > aggregate(logstrength,by=list(type),fun=mean) Group.1 x > aggregate(logstrength,by=list(type),fun=sd) Group.1 x > summary(lm(logstrength~as.factor(type))) Call: lm(formula = logstrength ~ as.factor(type)) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** as.factor(type) as.factor(type) < 2e-16 *** as.factor(type) < 2e-16 *** as.factor(type) e-16 *** as.factor(type) e-05 *** as.factor(type) e-10 *** as.factor(type) < 2e-16 *** as.factor(type) e-13 *** Residual standard error: on 27 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 8 and 27 DF, p-value: < 2.2e-16 > > summary(lm(logstrength~as.factor(diam)*as.factor(length))) Call: lm(formula = logstrength ~ as.factor(diam) * as.factor(length)) Residuals: Min 1Q Median 3Q Max

12 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** as.factor(diam) < 2e-16 *** as.factor(diam) e-09 *** as.factor(length) < 2e-16 *** as.factor(length) as.factor(diam)1:as.factor(length) e-07 *** as.factor(diam)2:as.factor(length) as.factor(diam)1:as.factor(length) *** as.factor(diam)2:as.factor(length) Residual standard error: on 27 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 8 and 27 DF, p-value: < 2.2e-16 > anova(lm(logstrength~as.factor(diam)*as.factor(length))) Analysis of Variance Table Response: logstrength Df Sum Sq Mean Sq F value Pr(>F) as.factor(diam) < 2.2e-16 *** as.factor(length) < 2.2e-16 *** as.factor(diam):as.factor(length) e-06 *** Residuals R Code and OutPut for the Paper Airplane Data > cbind(design,weight,paper,dist) design weight paper dist [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] [11,] [12,] [13,] [14,] [15,] [16,] [17,] [18,] [19,] [20,] [21,] [22,] [23,] [24,] [25,] [26,] [27,] [28,] [29,] [30,] [31,] [32,]

13 [33,] [34,] [35,] [36,] > > Design<-as.factor(design) > Weight<-as.factor(weight) > Paper<-as.factor(paper) > > summary(lm(dist~design*weight*paper)) Call: lm(formula = dist ~ Design * Weight * Paper) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-13 *** Design Design e-05 *** Weight Paper Design1:Weight Design2:Weight Design1:Paper Design2:Paper Weight1:Paper Design1:Weight1:Paper Design2:Weight1:Paper Residual standard error: on 24 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 11 and 24 DF, p-value: > anova(lm(dist~design*weight*paper)) Analysis of Variance Table Response: dist Df Sum Sq Mean Sq F value Pr(>F) Design *** Weight Paper Design:Weight Design:Paper Weight:Paper Design:Weight:Paper Residuals

Stat 401B Exam 2 Fall 2017

Stat 401B Exam 2 Fall 2017 Stat 0B Exam Fall 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning will

More information

Stat 401B Final Exam Fall 2015

Stat 401B Final Exam Fall 2015 Stat 401B Final Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Stat 401B Final Exam Fall 2016

Stat 401B Final Exam Fall 2016 Stat 40B Final Exam Fall 0 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Stat 401XV Final Exam Spring 2017

Stat 401XV Final Exam Spring 2017 Stat 40XV Final Exam Spring 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Stat 401B Exam 2 Fall 2015

Stat 401B Exam 2 Fall 2015 Stat 401B Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Stat 401B Exam 2 Fall 2016

Stat 401B Exam 2 Fall 2016 Stat 40B Eam Fall 06 I have neither given nor received unauthorized assistance on this eam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning will

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 Work all problems. 60 points needed to pass at the Masters level, 75 to pass at the PhD

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Logistic Regression 21/05

Logistic Regression 21/05 Logistic Regression 21/05 Recall that we are trying to solve a classification problem in which features x i can be continuous or discrete (coded as 0/1) and the response y is discrete (0/1). Logistic regression

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

STAT 526 Spring Midterm 1. Wednesday February 2, 2011

STAT 526 Spring Midterm 1. Wednesday February 2, 2011 STAT 526 Spring 2011 Midterm 1 Wednesday February 2, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points

More information

STAT 510 Final Exam Spring 2015

STAT 510 Final Exam Spring 2015 STAT 510 Final Exam Spring 2015 Instructions: The is a closed-notes, closed-book exam No calculator or electronic device of any kind may be used Use nothing but a pen or pencil Please write your name and

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model Stat 3302 (Spring 2017) Peter F. Craigmile Simple linear logistic regression (part 1) [Dobson and Barnett, 2008, Sections 7.1 7.3] Generalized linear models for binary data Beetles dose-response example

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

Week 7 Multiple factors. Ch , Some miscellaneous parts

Week 7 Multiple factors. Ch , Some miscellaneous parts Week 7 Multiple factors Ch. 18-19, Some miscellaneous parts Multiple Factors Most experiments will involve multiple factors, some of which will be nuisance variables Dealing with these factors requires

More information

Stat 328 Final Exam (Regression) Summer 2002 Professor Vardeman

Stat 328 Final Exam (Regression) Summer 2002 Professor Vardeman Stat Final Exam (Regression) Summer Professor Vardeman This exam concerns the analysis of 99 salary data for n = offensive backs in the NFL (This is a part of the larger data set that serves as the basis

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours Instructions: STATS216v Introduction to Statistical Learning Stanford University, Summer 2017 Remember the university honor code. Midterm Exam (Solutions) Duration: 1 hours Write your name and SUNet ID

More information

IE 361 EXAM #3 FALL 2013 Show your work: Partial credit can only be given for incorrect answers if there is enough information to clearly see what you were trying to do. There are two additional blank

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

On the Inference of the Logistic Regression Model

On the Inference of the Logistic Regression Model On the Inference of the Logistic Regression Model 1. Model ln =(; ), i.e. = representing false. The linear form of (;) is entertained, i.e. ((;)) ((;)), where ==1 ;, with 1 representing true, 0 ;= 1+ +

More information

Unit 6 - Introduction to linear regression

Unit 6 - Introduction to linear regression Unit 6 - Introduction to linear regression Suggested reading: OpenIntro Statistics, Chapter 7 Suggested exercises: Part 1 - Relationship between two numerical variables: 7.7, 7.9, 7.11, 7.13, 7.15, 7.25,

More information

Unit 6 - Simple linear regression

Unit 6 - Simple linear regression Sta 101: Data Analysis and Statistical Inference Dr. Çetinkaya-Rundel Unit 6 - Simple linear regression LO 1. Define the explanatory variable as the independent variable (predictor), and the response variable

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

Stat 231 Exam 2 Fall 2013

Stat 231 Exam 2 Fall 2013 Stat 231 Exam 2 Fall 2013 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Some IE 361 students worked with a manufacturer on quantifying the capability

More information

Example: 1982 State SAT Scores (First year state by state data available)

Example: 1982 State SAT Scores (First year state by state data available) Lecture 11 Review Section 3.5 from last Monday (on board) Overview of today s example (on board) Section 3.6, Continued: Nested F tests, review on board first Section 3.4: Interaction for quantitative

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

CAS MA575 Linear Models

CAS MA575 Linear Models CAS MA575 Linear Models Boston University, Fall 2013 Midterm Exam (Correction) Instructor: Cedric Ginestet Date: 22 Oct 2013. Maximal Score: 200pts. Please Note: You will only be graded on work and answers

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

Statistical Prediction

Statistical Prediction Statistical Prediction P.R. Hahn Fall 2017 1 Some terminology The goal is to use data to find a pattern that we can exploit. y: response/outcome/dependent/left-hand-side x: predictor/covariate/feature/independent

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

STAT 350: Summer Semester Midterm 1: Solutions

STAT 350: Summer Semester Midterm 1: Solutions Name: Student Number: STAT 350: Summer Semester 2008 Midterm 1: Solutions 9 June 2008 Instructor: Richard Lockhart Instructions: This is an open book test. You may use notes, text, other books and a calculator.

More information

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Statistical modelling: Theory and practice Gilles Guillot gigu@dtu.dk November 4, 2013 Gilles Guillot (gigu@dtu.dk)

More information

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam Booklet of Code and Output for STAD29/STA 1007 Midterm Exam List of Figures in this document by page: List of Figures 1 Packages................................ 2 2 Hospital infection risk data (some).................

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Consider fitting a model using ordinary least squares (OLS) regression:

Consider fitting a model using ordinary least squares (OLS) regression: Example 1: Mating Success of African Elephants In this study, 41 male African elephants were followed over a period of 8 years. The age of the elephant at the beginning of the study and the number of successful

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

STAT 512 MidTerm I (2/21/2013) Spring 2013 INSTRUCTIONS

STAT 512 MidTerm I (2/21/2013) Spring 2013 INSTRUCTIONS STAT 512 MidTerm I (2/21/2013) Spring 2013 Name: Key INSTRUCTIONS 1. This exam is open book/open notes. All papers (but no electronic devices except for calculators) are allowed. 2. There are 5 pages in

More information

Stat 231 Final Exam Fall 2013 Slightly Edited Version

Stat 231 Final Exam Fall 2013 Slightly Edited Version Stat 31 Final Exam Fall 013 Slightly Edited Version I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. An IE 361 project group studied the operation

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Leftovers. Morris. University Farm. University Farm. Morris. yield

Leftovers. Morris. University Farm. University Farm. Morris. yield Leftovers SI 544 Lada Adamic 1 Trellis graphics Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475 Manchuria No. 462 Svansota Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475

More information

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation Background Regression so far... Lecture 23 - Sta 111 Colin Rundel June 17, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical or categorical

More information

Exercise 5.4 Solution

Exercise 5.4 Solution Exercise 5.4 Solution Niels Richard Hansen University of Copenhagen May 7, 2010 1 5.4(a) > leukemia

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 7, 2017 Figure captions are below the Figures they refer to. LowCalorie LowFat LowCarbo Control 8 2 3 2 9 4 5 2 6 3 4-1 7 5 2 0 3 1 3 3 Figure

More information

Age 55 (x = 1) Age < 55 (x = 0)

Age 55 (x = 1) Age < 55 (x = 0) Logistic Regression with a Single Dichotomous Predictor EXAMPLE: Consider the data in the file CHDcsv Instead of examining the relationship between the continuous variable age and the presence or absence

More information

Activity #12: More regression topics: LOWESS; polynomial, nonlinear, robust, quantile; ANOVA as regression

Activity #12: More regression topics: LOWESS; polynomial, nonlinear, robust, quantile; ANOVA as regression Activity #12: More regression topics: LOWESS; polynomial, nonlinear, robust, quantile; ANOVA as regression Scenario: 31 counts (over a 30-second period) were recorded from a Geiger counter at a nuclear

More information

Logistic Regression. 0.1 Frogs Dataset

Logistic Regression. 0.1 Frogs Dataset Logistic Regression We move now to the classification problem from the regression problem and study the technique ot logistic regression. The setting for the classification problem is the same as that

More information

Modeling Overdispersion

Modeling Overdispersion James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Introduction 2 Introduction In this lecture we discuss the problem of overdispersion in

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam Booklet of Code and Output for STAD29/STA 1007 Midterm Exam List of Figures in this document by page: List of Figures 1 NBA attendance data........................ 2 2 Regression model for NBA attendances...............

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

Reaction Days

Reaction Days Stat April 03 Week Fitting Individual Trajectories # Straight-line, constant rate of change fit > sdat = subset(sleepstudy, Subject == "37") > sdat Reaction Days Subject > lm.sdat = lm(reaction ~ Days)

More information

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm Kedem, STAT 430 SAS Examples: Logistic Regression ==================================== ssh abc@glue.umd.edu, tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm a. Logistic regression.

More information

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson )

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson ) Tutorial 7: Correlation and Regression Correlation Used to test whether two variables are linearly associated. A correlation coefficient (r) indicates the strength and direction of the association. A correlation

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Various Issues in Fitting Contingency Tables

Various Issues in Fitting Contingency Tables Various Issues in Fitting Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Complete Tables with Zero Entries In contingency tables, it is possible to have zero entries in a

More information

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102 Background Regression so far... Lecture 21 - Sta102 / BME102 Colin Rundel November 18, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3 4 5 6 Full marks

More information

Multiple Linear Regression. Chapter 12

Multiple Linear Regression. Chapter 12 13 Multiple Linear Regression Chapter 12 Multiple Regression Analysis Definition The multiple regression model equation is Y = b 0 + b 1 x 1 + b 2 x 2 +... + b p x p + ε where E(ε) = 0 and Var(ε) = s 2.

More information

Regression Methods for Survey Data

Regression Methods for Survey Data Regression Methods for Survey Data Professor Ron Fricker! Naval Postgraduate School! Monterey, California! 3/26/13 Reading:! Lohr chapter 11! 1 Goals for this Lecture! Linear regression! Review of linear

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Generalized Linear Models in R

Generalized Linear Models in R Generalized Linear Models in R NO ORDER Kenneth K. Lopiano, Garvesh Raskutti, Dan Yang last modified 28 4 2013 1 Outline 1. Background and preliminaries 2. Data manipulation and exercises 3. Data structures

More information

Regression Analysis IV... More MLR and Model Building

Regression Analysis IV... More MLR and Model Building Regression Analysis IV... More MLR and Model Building This session finishes up presenting the formal methods of inference based on the MLR model and then begins discussion of "model building" (use of regression

More information

Lecture 11 Multiple Linear Regression

Lecture 11 Multiple Linear Regression Lecture 11 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 11-1 Topic Overview Review: Multiple Linear Regression (MLR) Computer Science Case Study 11-2 Multiple Regression

More information

Interactions in Logistic Regression

Interactions in Logistic Regression Interactions in Logistic Regression > # UCBAdmissions is a 3-D table: Gender by Dept by Admit > # Same data in another format: > # One col for Yes counts, another for No counts. > Berkeley = read.table("http://www.utstat.toronto.edu/~brunner/312f12/

More information

No other aids are allowed. For example you are not allowed to have any other textbook or past exams.

No other aids are allowed. For example you are not allowed to have any other textbook or past exams. UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Sample Exam Note: This is one of our past exams, In fact the only past exam with R. Before that we were using SAS. In

More information

STAT 525 Fall Final exam. Tuesday December 14, 2010

STAT 525 Fall Final exam. Tuesday December 14, 2010 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

PAPER 206 APPLIED STATISTICS

PAPER 206 APPLIED STATISTICS MATHEMATICAL TRIPOS Part III Thursday, 1 June, 2017 9:00 am to 12:00 pm PAPER 206 APPLIED STATISTICS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal weight.

More information

> nrow(hmwk1) # check that the number of observations is correct [1] 36 > attach(hmwk1) # I like to attach the data to avoid the '$' addressing

> nrow(hmwk1) # check that the number of observations is correct [1] 36 > attach(hmwk1) # I like to attach the data to avoid the '$' addressing Homework #1 Key Spring 2014 Psyx 501, Montana State University Prof. Colleen F Moore Preliminary comments: The design is a 4x3 factorial between-groups. Non-athletes do aerobic training for 6, 4 or 2 weeks,

More information

Ch Inference for Linear Regression

Ch Inference for Linear Regression Ch. 12-1 Inference for Linear Regression ACT = 6.71 + 5.17(GPA) For every increase of 1 in GPA, we predict the ACT score to increase by 5.17. population regression line β (true slope) μ y = α + βx mean

More information

Multiple Regression Introduction to Statistics Using R (Psychology 9041B)

Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Paul Gribble Winter, 2016 1 Correlation, Regression & Multiple Regression 1.1 Bivariate correlation The Pearson product-moment

More information

STA 101 Final Review

STA 101 Final Review STA 101 Final Review Statistics 101 Thomas Leininger June 24, 2013 Announcements All work (besides projects) should be returned to you and should be entered on Sakai. Office Hour: 2 3pm today (Old Chem

More information

Generalised linear models. Response variable can take a number of different formats

Generalised linear models. Response variable can take a number of different formats Generalised linear models Response variable can take a number of different formats Structure Limitations of linear models and GLM theory GLM for count data GLM for presence \ absence data GLM for proportion

More information

Cherry.R. > cherry d h v <portion omitted> > # Step 1.

Cherry.R. > cherry d h v <portion omitted> > # Step 1. Cherry.R ####################################################################### library(mass) library(car) cherry < read.table(file="n:\\courses\\stat8620\\fall 08\\trees.dat",header=T) cherry d h v 1

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

SCHOOL OF MATHEMATICS AND STATISTICS

SCHOOL OF MATHEMATICS AND STATISTICS RESTRICTED OPEN BOOK EXAMINATION (Not to be removed from the examination hall) Data provided: Statistics Tables by H.R. Neave MAS5052 SCHOOL OF MATHEMATICS AND STATISTICS Basic Statistics Spring Semester

More information

Multiple Regression Part I STAT315, 19-20/3/2014

Multiple Regression Part I STAT315, 19-20/3/2014 Multiple Regression Part I STAT315, 19-20/3/2014 Regression problem Predictors/independent variables/features Or: Error which can never be eliminated. Our task is to estimate the regression function f.

More information

R Hints for Chapter 10

R Hints for Chapter 10 R Hints for Chapter 10 The multiple logistic regression model assumes that the success probability p for a binomial random variable depends on independent variables or design variables x 1, x 2,, x k.

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Checking the Poisson assumption in the Poisson generalized linear model

Checking the Poisson assumption in the Poisson generalized linear model Checking the Poisson assumption in the Poisson generalized linear model The Poisson regression model is a generalized linear model (glm) satisfying the following assumptions: The responses y i are independent

More information

MODULE 6 LOGISTIC REGRESSION. Module Objectives:

MODULE 6 LOGISTIC REGRESSION. Module Objectives: MODULE 6 LOGISTIC REGRESSION Module Objectives: 1. 147 6.1. LOGIT TRANSFORMATION MODULE 6. LOGISTIC REGRESSION Logistic regression models are used when a researcher is investigating the relationship between

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

Regression on Faithful with Section 9.3 content

Regression on Faithful with Section 9.3 content Regression on Faithful with Section 9.3 content The faithful data frame contains 272 obervational units with variables waiting and eruptions measuring, in minutes, the amount of wait time between eruptions,

More information

Log-linear Models for Contingency Tables

Log-linear Models for Contingency Tables Log-linear Models for Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Log-linear Models for Two-way Contingency Tables Example: Business Administration Majors and Gender A

More information

Poisson Regression. The Training Data

Poisson Regression. The Training Data The Training Data Poisson Regression Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following

More information

STAT 420: Methods of Applied Statistics

STAT 420: Methods of Applied Statistics STAT 420: Methods of Applied Statistics Model Diagnostics Transformation Shiwei Lan, Ph.D. Course website: http://shiwei.stat.illinois.edu/lectures/stat420.html August 15, 2018 Department

More information