CS151 Complexity Theory. Lecture 9 May 1, 2017

Size: px
Start display at page:

Download "CS151 Complexity Theory. Lecture 9 May 1, 2017"

Transcription

1 CS151 Complexity Theory Lecture 9

2 Hardness vs. randomness We have shown: If one-way permutations exist then BPP δ>0 TIME(2 nδ ) ( EXP simulation is better than brute force, but just barely stronger assumptions on difficulty of inverting OWF lead to better simulations

3 Hardness vs. randomness We will show: If E requires exponential size circuits then BPP = P by building a different generator from different assumptions. E = k DTIME(2 kn )

4 Hardness vs. randomness BMY: for every δ > 0, G δ is a PRG with seed length t = m δ output length m error ε < 1/m d (all d) fooling size s = m e (all e) running time m c running time of simulation dominated by 2 t

5 Hardness vs. randomness To get BPP = P, would need t = O(log m) BMY building block is one-waypermutation: f:{0,1} t {0,1} t required to fool circuits of size m e (all e) with these settings a circuit has time to invert f by brute force! can t get BPP = P with this type of PRG

6 Hardness vs. randomness BMY pseudo-random generator: one generator fooling all poly-size bounds one-way-permutation is hard function implies hard function in NP conp New idea (Nisan-Wigderson): for each poly-size bound, one generator hard function allowed to be in E = k DTIME(2 kn )

7 Comparison BMY: 8 δ > 0 PRG G δ NW: PRG G seed length t = m δ t = O(log m) running time t c m m c output length m << m > error ε < 1/m d (all d) ε < 1/m fooling size s = m e (all e) s = m

8 NW PRG NW: for fixed constant δ, G = {G n } with seed length t = O(log n) t = O(log m) running time n c output length m = n δ error ε < 1/m fooling size s = m m c m Using this PRG we obtain BPP = P to fool size n k use G n k/δ running time O(n k + n ck/δ )2 t = poly(n)

9 NW PRG First attempt: build PRG assuming E contains unapproximable functions Definition: The function family f = {f n }, f n :{0,1} n {0,1} is s(n)-unapproximable if for every family of size s(n) circuits {C n }: Pr x [C n (x) = f n (x)] ½ + 1/s(n).

10 One bit Suppose f = {f n } is s(n)-unapproximable, for s(n) = 2 Ω(n), and in E a 1-bit generator family G = {G n }: G n (y) = y f log n (y) Idea: if not a PRG then exists a predictor that computes f log n with better than ½ + 1/ s(log n) agreement; contradiction.

11 One bit Suppose f = {f n } is s(n)-unapproximable, for s(n) = 2 δn, and in E a 1-bit generator family G = {G n }: G n (y) = y f log n (y) seed length t = log n output length m = log n + 1 (want n δ ) fooling size s s(log n) = n δ running time n c error ε 1/s(log n) = 1/n δ

12 Many bits Try outputting many evaluations of f: G(y) = f(b 1 (y)) f(b 2 (y)) f(b m (y)) Seems that a predictor must evaluate f(b i (y)) to predict i-th bit Does this work?

13 Many bits Try outputting many evaluations of f: G(y) = f(b 1 (y)) f(b 2 (y)) f(b m (y)) predictor might notice correlations without having to compute f but, more subtle argument works for a specific choice of b 1 b m

14 Nearly-Disjoint Subsets Definition: S 1,S 2,,S m {1 t} is an (h, a) design if for all i, S i = h for all i j, S i S j a S 2 {1..t} S 1 S 3

15 Nearly-Disjoint Subsets Lemma: for every ε > 0 and m < n can in poly(n) time construct an (h = log n, a = εlog n) design S 1,S 2,,S m {1 t} with t = O(log n).

16 Nearly-Disjoint Subsets Proof sketch: pick random (log n)-subset of {1 t} set t = O(log n) so that expected overlap with a fixed S i is εlog n/2 probability overlap with S i is > εlog n is at most 1/n union bound: some subset has required small overlap with all S i picked so far find it by exhaustive search; repeat n times.

17 The NW generator f E s(n)-unapproximable, for s(n) = 2 δn S 1,,S m {1 t} (log n, a = δlog n/3) design with t = O(log n) G n (y)=f log n (y S 1 ) f log n (y S2 ) f log n (y Sm ) f log n : seed y

18 The NW generator Theorem (Nisan-Wigderson): G={G n } is a pseudo-random generator with: seed length t = O(log n) output length m = n δ/3 running time n c fooling size s = m error ε = 1/m

19 The NW generator Proof: assume does not ε-pass statistical test C = {C m } of size s: Pr x [C(x) = 1] Pr y [C( G n (y) ) = 1] > ε can transform this distinguisher into a predictor P of size s = s + O(m): Pr y [P(G n (y) 1 i-1 ) = G n (y) i ] > ½ + ε/m

20 The NW generator G n (y)=f log n (y S 1 ) f log n (y S2 ) f log n (y Sm ) f log n : α y β S i Proof (continued): Pr y [P(G n (y) 1 i-1 ) = G n (y) i ] > ½ + ε/m fix bits outside of S i to preserve advantage: Pr y [P(G n (αy β) 1 i-1 ) = G n (αy β) i ] > ½ + ε/m

21 The NW generator G n (y)=f log n (y S 1 ) f log n (y S2 ) f log n (y Sm ) f log n : Proof (continued): G n (αy β) i is exactly f log n (y ) α y β S i for j i, as vary y, G n (αy β) j varies over 2 a values! hard-wire up to (m-1) tables of 2 a values to provide G n (αy β) 1 i-1

22 The NW generator G n (y)=f log n (y S 1 ) f log n (y S2 ) f log n (y Sm ) f log n : output f log n (y ) size m + O(m) + (m-1)2 a < s(log n) = n δ advantage ε/m=1/m 2 > 1/ y s(log n) = n -δ contradiction P hardwired tables

23 Worst-case vs. Average-case Theorem (NW): if E contains 2 Ω(n) -unapproximable functions then BPP = P. How reasonable is unapproximability assumption? Hope: obtain BPP = P from worst-case complexity assumption try to fit into existing framework without new notion of unapproximability

24 Worst-case vs. Average-case Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan) If E contains functions that require size 2 Ω(n) circuits, then E contains 2 Ω(n) unapproximable functions. Proof: main tool: error correcting code

25 Error-correcting codes Error Correcting Code (ECC): C:Σ k Σ n message m Σ k C(m) received word R C(m) with some positions corrupted if not too many errors, can decode: D(R) = m parameters of interest: rate: k/n distance: d = min m m Δ(C(m), C(m )) R

26 Distance and error correction C is an ECC with distance d can uniquely decode from up to d/2 errors d Σ n

27 Distance and error correction can find short list of messages (one correct) after closer to d errors! Theorem (Johnson): a binary code with distance (½ - δ 2 )n has at most O(1/δ 2 ) codewords in any ball of radius (½ - δ)n.

28 Example: Reed-Solomon alphabet Σ = F q : field with q elements message m Σ k polynomial of degree at most k-1 p m (x) = Σ i=0 k-1 m i x i codeword C(m) = (p m (x)) x F q rate = k/q

29 Example: Reed-Solomon Claim: distance d = q k + 1 suppose Δ(C(m), C(m )) < q k + 1 then there exist polynomials p m (x) and p m (x) that agree on more than k-1 points in F q polnomial p(x) = p m (x) - p m (x) has more than k-1 zeros but degree at most k-1 contradiction.

30 Example: Reed-Muller Parameters: t (dimension), h (degree) alphabet Σ = F q : field with q elements message m Σ k multivariate polynomial of total degree at most h: p m (x) = Σ i=0 k-1 m i M i {M i } are all monomials of degree h

31 Example: Reed-Muller M i is monomial of total degree h e.g. x 12 x 2 x 4 3 need # monomials (h+t choose t) > k codeword C(m) = (p m (x)) x (F q)t rate = k/q t Claim: distance d = (1 - h/q)q t proof: Schwartz-Zippel: polynomial of degree h can have at most h/q fraction of zeros

32 Codes and hardness Reed-Solomon (RS) and Reed-Muller (RM) codes are efficiently encodable efficient unique decoding? yes (classic result) efficient list-decoding? yes (RS on problem set)

33 Codes and Hardness Use for worst-case to average case: truth table of f:{0,1} log k {0,1} (worst-case hard) m: truth table of f :{0,1} log n {0,1} (average-case hard) Enc(m):

34 Codes and Hardness if n = poly(k) then f E implies f E Want to be able to prove: if f is s -approximable, then f is computable by a size s = poly(s ) circuit

35 Codes and Hardness Key: circuit C that approximates f implicitly gives received word R R: Enc(m): Decoding procedure D computes f exactly D C Requires special notion of efficient decoding

36 Codes and Hardness f:{0,1} log k {0,1} m: f :{0,1} log n {0,1} Enc(m): R: decoding procedure i 2 {0,1} log k D C small circuit C approximating f small circuit that computes f exactly f(i)

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2 CMPT 881: Pseudorandomness Prof. Valentine Kabanets Lecture 20: N W Pseudorandom Generator November 25, 2004 Scribe: Ladan A. Mahabadi 1 Introduction In this last lecture of the course, we ll discuss the

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem IITM-CS6845: Theory Toolkit February 08, 2012 Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem Lecturer: Jayalal Sarma Scribe: Dinesh K Theme: Error correcting codes In the previous lecture,

More information

Notes for Lecture 18

Notes for Lecture 18 U.C. Berkeley Handout N18 CS294: Pseudorandomness and Combinatorial Constructions November 1, 2005 Professor Luca Trevisan Scribe: Constantinos Daskalakis Notes for Lecture 18 1 Basic Definitions In the

More information

Lecture 4: Codes based on Concatenation

Lecture 4: Codes based on Concatenation Lecture 4: Codes based on Concatenation Error-Correcting Codes (Spring 206) Rutgers University Swastik Kopparty Scribe: Aditya Potukuchi and Meng-Tsung Tsai Overview In the last lecture, we studied codes

More information

Lecture Introduction. 2 Formal Definition. CS CTT Current Topics in Theoretical CS Oct 30, 2012

Lecture Introduction. 2 Formal Definition. CS CTT Current Topics in Theoretical CS Oct 30, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 30, 0 Lecturer: Elena Grigorescu Lecture 9 Scribe: Vivek Patel Introduction In this lecture we study locally decodable codes. Locally decodable codes are

More information

Lecture 21: P vs BPP 2

Lecture 21: P vs BPP 2 Advanced Complexity Theory Spring 206 Prof. Dana Moshkovitz Lecture 2: P vs BPP 2 Overview In the previous lecture, we began our discussion of pseudorandomness. We presented the Blum- Micali definition

More information

List Decoding in Average-Case Complexity and Pseudorandomness

List Decoding in Average-Case Complexity and Pseudorandomness List Decoding in Average-Case Complexity and Pseudorandomness Venkatesan Guruswami Department of Computer Science and Engineering University of Washington Seattle, WA, U.S.A. Email: venkat@cs.washington.edu

More information

Polynomial Identity Testing and Circuit Lower Bounds

Polynomial Identity Testing and Circuit Lower Bounds Polynomial Identity Testing and Circuit Lower Bounds Robert Špalek, CWI based on papers by Nisan & Wigderson, 1994 Kabanets & Impagliazzo, 2003 1 Randomised algorithms For some problems (polynomial identity

More information

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit.

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit. Questions Pool Amnon Ta-Shma and Dean Doron January 2, 2017 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to solve. Do not submit.

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Hardness Amplification

Hardness Amplification Hardness Amplification Synopsis 1. Yao s XOR Lemma 2. Error Correcting Code 3. Local Decoding 4. Hardness Amplification Using Local Decoding 5. List Decoding 6. Local List Decoding 7. Hardness Amplification

More information

Computational Complexity: A Modern Approach

Computational Complexity: A Modern Approach i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ complexitybook@gmail.com Not to be reproduced or distributed

More information

: Error Correcting Codes. October 2017 Lecture 1

: Error Correcting Codes. October 2017 Lecture 1 03683072: Error Correcting Codes. October 2017 Lecture 1 First Definitions and Basic Codes Amnon Ta-Shma and Dean Doron 1 Error Correcting Codes Basics Definition 1. An (n, K, d) q code is a subset of

More information

On the optimal compression of sets in P, NP, P/poly, PSPACE/poly

On the optimal compression of sets in P, NP, P/poly, PSPACE/poly On the optimal compression of sets in P, NP, P/poly, PSPACE/poly Marius Zimand Towson University CCR 2012- Cambridge Marius Zimand (Towson U.) Compression P, NP, P/poly sets 2011 1 / 19 The language compression

More information

: On the P vs. BPP problem. 18/12/16 Lecture 10

: On the P vs. BPP problem. 18/12/16 Lecture 10 03684155: On the P vs. BPP problem. 18/12/16 Lecture 10 Natural proofs Amnon Ta-Shma and Dean Doron 1 Natural proofs The ultimate goal we have is separating classes (or proving they are equal if they are).

More information

CS 880: Advanced Complexity Theory Final Project: Hardness Amplification within NP. Abstract

CS 880: Advanced Complexity Theory Final Project: Hardness Amplification within NP. Abstract CS 880: Advanced Compleity Theory Final Project: Hardness Amplification within NP Priyananda Shenoy May 2008 1 Introduction Abstract We survey the current status of the problem of Hardness amplification

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

Lecture 22: Derandomization Implies Circuit Lower Bounds

Lecture 22: Derandomization Implies Circuit Lower Bounds Advanced Complexity Theory Spring 2016 Lecture 22: Derandomization Implies Circuit Lower Bounds Prof. Dana Moshkovitz 1 Overview In the last lecture we saw a proof presented by Madhu Sudan that E SIZE(2

More information

PRGs for space-bounded computation: INW, Nisan

PRGs for space-bounded computation: INW, Nisan 0368-4283: Space-Bounded Computation 15/5/2018 Lecture 9 PRGs for space-bounded computation: INW, Nisan Amnon Ta-Shma and Dean Doron 1 PRGs Definition 1. Let C be a collection of functions C : Σ n {0,

More information

Notes for the Hong Kong Lectures on Algorithmic Coding Theory. Luca Trevisan. January 7, 2007

Notes for the Hong Kong Lectures on Algorithmic Coding Theory. Luca Trevisan. January 7, 2007 Notes for the Hong Kong Lectures on Algorithmic Coding Theory Luca Trevisan January 7, 2007 These notes are excerpted from the paper Some Applications of Coding Theory in Computational Complexity [Tre04].

More information

Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels

Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels Ronen Shaltiel 1 and Jad Silbak 2 1 Department of Computer Science, University of Haifa, Israel ronen@cs.haifa.ac.il

More information

Decoding Reed-Muller codes over product sets

Decoding Reed-Muller codes over product sets Rutgers University May 30, 2016 Overview Error-correcting codes 1 Error-correcting codes Motivation 2 Reed-Solomon codes Reed-Muller codes 3 Error-correcting codes Motivation Goal: Send a message Don t

More information

Lecture 03: Polynomial Based Codes

Lecture 03: Polynomial Based Codes Lecture 03: Polynomial Based Codes Error-Correcting Codes (Spring 016) Rutgers University Swastik Kopparty Scribes: Ross Berkowitz & Amey Bhangale 1 Reed-Solomon Codes Reed Solomon codes are large alphabet

More information

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS Venkatesan Guruswami and Valentine Kabanets Abstract. We prove a version of the derandomized Direct Product lemma for deterministic space-bounded

More information

Lecture 12: November 6, 2017

Lecture 12: November 6, 2017 Information and Coding Theory Autumn 017 Lecturer: Madhur Tulsiani Lecture 1: November 6, 017 Recall: We were looking at codes of the form C : F k p F n p, where p is prime, k is the message length, and

More information

Two Query PCP with Sub-Constant Error

Two Query PCP with Sub-Constant Error Electronic Colloquium on Computational Complexity, Report No 71 (2008) Two Query PCP with Sub-Constant Error Dana Moshkovitz Ran Raz July 28, 2008 Abstract We show that the N P-Complete language 3SAT has

More information

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 4, 01 Lecturer: Elena Grigorescu Lecture 14 Scribe: Selvakumaran Vadivelmurugan 1 Introduction We introduced error-correcting codes and linear codes in

More information

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS

PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS PSEUDORANDOMNESS AND AVERAGE-CASE COMPLEXITY VIA UNIFORM REDUCTIONS Luca Trevisan and Salil Vadhan Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators

More information

A list-decodable code with local encoding and decoding

A list-decodable code with local encoding and decoding A list-decodable code with local encoding and decoding Marius Zimand Towson University Department of Computer and Information Sciences Baltimore, MD http://triton.towson.edu/ mzimand Abstract For arbitrary

More information

Uniform Derandomization

Uniform Derandomization Uniform Derandomization Simulation of BPP, RP and AM under Uniform Assumptions A. Antonopoulos (N.T.U.A.) Computation and Reasoning Laboratory 1 Uniform Derandomization of BPP Main Theorem Proof: Step

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 9

CPSC 536N: Randomized Algorithms Term 2. Lecture 9 CPSC 536N: Randomized Algorithms 2011-12 Term 2 Prof. Nick Harvey Lecture 9 University of British Columbia 1 Polynomial Identity Testing In the first lecture we discussed the problem of testing equality

More information

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes Introduction to Coding Theory CMU: Spring 010 Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes April 010 Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Ali Kemal Sinop DRAFT

More information

Majority is incompressible by AC 0 [p] circuits

Majority is incompressible by AC 0 [p] circuits Majority is incompressible by AC 0 [p] circuits Igor Carboni Oliveira Columbia University Joint work with Rahul Santhanam (Univ. Edinburgh) 1 Part 1 Background, Examples, and Motivation 2 Basic Definitions

More information

Lecture B04 : Linear codes and singleton bound

Lecture B04 : Linear codes and singleton bound IITM-CS6845: Theory Toolkit February 1, 2012 Lecture B04 : Linear codes and singleton bound Lecturer: Jayalal Sarma Scribe: T Devanathan We start by proving a generalization of Hamming Bound, which we

More information

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai

PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions. My T. Thai PCPs and Inapproximability Gap-producing and Gap-Preserving Reductions My T. Thai 1 1 Hardness of Approximation Consider a maximization problem Π such as MAX-E3SAT. To show that it is NP-hard to approximation

More information

1 Nisan-Wigderson pseudorandom generator

1 Nisan-Wigderson pseudorandom generator CSG399: Gems of Theoretical Computer Science. Lecture 3. Jan. 6, 2009. Instructor: Emanuele Viola Scribe: Dimitrios Kanoulas Nisan-Wigderson pseudorandom generator and design constuction Nisan-Wigderson

More information

Lecture 3: Error Correcting Codes

Lecture 3: Error Correcting Codes CS 880: Pseudorandomness and Derandomization 1/30/2013 Lecture 3: Error Correcting Codes Instructors: Holger Dell and Dieter van Melkebeek Scribe: Xi Wu In this lecture we review some background on error

More information

CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4. Theorem 1. A non-zero, univariate polynomial with degree d has at most d roots.

CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4. Theorem 1. A non-zero, univariate polynomial with degree d has at most d roots. CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4 Lecture 14: Schwartz-Zippel Lemma and Intro to Coding Theory Lecturer: Yuan Zhou Scribe: Haoyu Zhang 1 Roots of polynomials Theorem 1. A non-zero, univariate

More information

Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders

Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders Linear-algebraic pseudorandomness: Subspace Designs & Dimension Expanders Venkatesan Guruswami Carnegie Mellon University Simons workshop on Proving and Using Pseudorandomness March 8, 2017 Based on a

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 18, 2012 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Tutorial: Locally decodable codes. UT Austin

Tutorial: Locally decodable codes. UT Austin Tutorial: Locally decodable codes Anna Gál UT Austin Locally decodable codes Error correcting codes with extra property: Recover (any) one message bit, by reading only a small number of codeword bits.

More information

Simple extractors via crypto pseudo-random generators

Simple extractors via crypto pseudo-random generators Simple extractors via crypto pseudo-random generators Marius Zimand (Towson University) Extractors vs. Pseudo-Rand. Generators Fundamental primitives in derandomization, cryptography,... They manufacture

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree d polynomials is a set S F n, where F is a finite field, such that any degree

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 229B ERROR CONTROL CODING Spring 2005 Solutions for Homework 1 1. Is there room? Prove or disprove : There is a (12,7) binary linear code with d min = 5. If there were a (12,7) binary linear code with

More information

Error-Correcting Codes:

Error-Correcting Codes: Error-Correcting Codes: Progress & Challenges Madhu Sudan Microsoft/MIT Communication in presence of noise We are not ready Sender Noisy Channel We are now ready Receiver If information is digital, reliability

More information

Extractors using hardness amplification

Extractors using hardness amplification Extractors using hardness amplification Anindya De and Luca Trevisan Computer Science Division University of California, Berkeley, CA, USA {anindya,luca}@cs.berkeley.edu Abstract. Zimand [4] presented

More information

1 The Low-Degree Testing Assumption

1 The Low-Degree Testing Assumption Advanced Complexity Theory Spring 2016 Lecture 17: PCP with Polylogarithmic Queries and Sum Check Prof. Dana Moshkovitz Scribes: Dana Moshkovitz & Michael Forbes Scribe Date: Fall 2010 In this lecture

More information

1 Distributional problems

1 Distributional problems CSCI 5170: Computational Complexity Lecture 6 The Chinese University of Hong Kong, Spring 2016 23 February 2016 The theory of NP-completeness has been applied to explain why brute-force search is essentially

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree-d polynomials is a set S F n, where F is a finite field, such that any degree-d

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes

Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes Lecture 9: List decoding Reed-Solomon and Folded Reed-Solomon codes Error-Correcting Codes (Spring 2016) Rutgers University Swastik Kopparty Scribes: John Kim and Pat Devlin 1 List decoding review Definition

More information

On the Complexity of Approximating the VC Dimension

On the Complexity of Approximating the VC Dimension University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 12-2002 On the Complexity of Approximating the VC Dimension Elchanan Mossel University of Pennsylvania Christopher

More information

On Uniform Amplification of Hardness in NP

On Uniform Amplification of Hardness in NP On Uniform Amplification of Hardness in NP Luca Trevisan November 4, 2004 Abstract We continue the study of amplification of average-case complexity within NP, and we focus on the uniform case. We prove

More information

Making Hard Problems Harder

Making Hard Problems Harder Electronic Colloquium on Computational Complexity, Report No. 3 (2006) Making Hard Problems Harder Joshua Buresh-Oppenheim Simon Fraser University jburesho@cs.sfu.ca Rahul Santhanam Simon Fraser University

More information

Towards NEXP versus BPP?

Towards NEXP versus BPP? Towards NEXP versus BPP? Ryan Williams Stanford University Abstract. We outline two plausible approaches to improving the miserable state of affairs regarding lower bounds against probabilistic polynomial

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 8: Introduction to Randomized Complexity: - Randomized complexity classes, - Error reduction, - in P/poly - Reingold s Undirected Graph Reachability in RL Randomized

More information

Pseudorandom generators without the XOR Lemma. May 18, Abstract

Pseudorandom generators without the XOR Lemma. May 18, Abstract Pseudorandom generators without the XOR Lemma Madhu Sudan y Luca Trevisan z Salil Vadhan x May 18, 2000 Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem

More information

In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time

In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time Russell Impagliazzo Department of Computer Science University of California, San Diego La Jolla, CA 92093-0114 russell@cs.ucsd.edu

More information

Worst-Case to Average-Case Reductions Revisited

Worst-Case to Average-Case Reductions Revisited Worst-Case to Average-Case Reductions Revisited Dan Gutfreund 1 and Amnon Ta-Shma 2 1 SEAS, Harvard University, Cambridge, MA 02138 danny@eecs.harvard.edu 2 Computer Science Department, Tel-Aviv University,

More information

Lecture 4: Proof of Shannon s theorem and an explicit code

Lecture 4: Proof of Shannon s theorem and an explicit code CSE 533: Error-Correcting Codes (Autumn 006 Lecture 4: Proof of Shannon s theorem and an explicit code October 11, 006 Lecturer: Venkatesan Guruswami Scribe: Atri Rudra 1 Overview Last lecture we stated

More information

Lecture Examples of problems which have randomized algorithms

Lecture Examples of problems which have randomized algorithms 6.841 Advanced Complexity Theory March 9, 2009 Lecture 10 Lecturer: Madhu Sudan Scribe: Asilata Bapat Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA. Includes

More information

Limits of Minimum Circuit Size Problem as Oracle

Limits of Minimum Circuit Size Problem as Oracle Limits of Minimum Circuit Size Problem as Oracle Shuichi Hirahara(The University of Tokyo) Osamu Watanabe(Tokyo Institute of Technology) CCC 2016/05/30 Minimum Circuit Size Problem (MCSP) Input Truth table

More information

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory 6895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 3: Coding Theory Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz 1 Motivation In the course we will make heavy use of

More information

Error Correcting Codes Questions Pool

Error Correcting Codes Questions Pool Error Correcting Codes Questions Pool Amnon Ta-Shma and Dean Doron January 3, 018 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to

More information

List Decoding of Noisy Reed-Muller-like Codes

List Decoding of Noisy Reed-Muller-like Codes List Decoding of Noisy Reed-Muller-like Codes Martin J. Strauss University of Michigan Joint work with A. Robert Calderbank (Princeton) Anna C. Gilbert (Michigan) Joel Lepak (Michigan) Euclidean List Decoding

More information

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2009 Homework Due Monday March 23, 2009 in class You can collaborate in groups of up to 3. However, the write-ups must be done

More information

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem Channel Definition (Channel) A channel is defined by Λ = (X, Y, Π), where X is the set of input alphabets, Y is the set of output alphabets and Π is the transition probability of obtaining a symbol y Y

More information

The Unified Theory of Pseudorandomness

The Unified Theory of Pseudorandomness Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010 The Unified Theory of Pseudorandomness Salil Vadhan Abstract. Pseudorandomness is the theory of efficiently generating

More information

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study Plan of the talk Computational complexity -- efficient algorithms, hard and easy problems, P

More information

Language Compression and Pseudorandom Generators

Language Compression and Pseudorandom Generators Language Compression and Pseudorandom Generators Harry Buhrman Troy Lee CWI and University of Amsterdam Harry.Buhrman@cwi.nl Troy.Lee@cwi.nl Dieter van Melkebeek University of Wisconsin-Madison dieter@cs.wisc.edu

More information

for some error exponent E( R) as a function R,

for some error exponent E( R) as a function R, . Capacity-achieving codes via Forney concatenation Shannon s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However, exhaustive search for the code has double-exponential

More information

Pseudorandomness and combinatorial constructions

Pseudorandomness and combinatorial constructions Pseudorandomness and combinatorial constructions Luca Trevisan Abstract. In combinatorics, the probabilistic method is a very powerful tool to prove the existence of combinatorial objects with interesting

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

Locally Decodable Codes

Locally Decodable Codes Foundations and Trends R in sample Vol. xx, No xx (xxxx) 1 114 c xxxx xxxxxxxxx DOI: xxxxxx Locally Decodable Codes Sergey Yekhanin 1 1 Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View,

More information

Pseudorandomness When the Odds are Against You

Pseudorandomness When the Odds are Against You Pseudorandomness When the Odds are Against You Sergei Aemenko 1, Russell Impagliazzo 2, Valentine Kabanets 3, and Ronen Shaltiel 4 1 Depament of Computer Science, University of Haifa, Haifa, Israel saemen@gmail.com

More information

Length-Increasing Reductions for PSPACE-Completeness

Length-Increasing Reductions for PSPACE-Completeness Length-Increasing Reductions for PSPACE-Completeness John M. Hitchcock 1 and A. Pavan 2 1 Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu 2 Department of Computer Science, Iowa

More information

Theory of Computer Science to Msc Students, Spring Lecture 2

Theory of Computer Science to Msc Students, Spring Lecture 2 Theory of Computer Science to Msc Students, Spring 2007 Lecture 2 Lecturer: Dorit Aharonov Scribe: Bar Shalem and Amitai Gilad Revised: Shahar Dobzinski, March 2007 1 BPP and NP The theory of computer

More information

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Matt Brown Date: January 25, 2012 LECTURE 5 Nondeterminism In this lecture, we introduce nondeterministic

More information

List-Decodable Codes

List-Decodable Codes 5 List-Decodable Codes The field of coding theory is motivated by the problem of communicating reliably over noisy channels where the data sent over the channel may come out corrupted on the other end,

More information

On the Average-case Complexity of MCSP and Its Variants. Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford)

On the Average-case Complexity of MCSP and Its Variants. Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford) On the Average-case Complexity of MCSP and Its Variants Shuichi Hirahara (The University of Tokyo) Rahul Santhanam (University of Oxford) CCC 2017 @Latvia, Riga July 6, 2017 Minimum Circuit Size Problem

More information

The Unified Theory of Pseudorandomness

The Unified Theory of Pseudorandomness The Unified Theory of Pseudorandomness Salil Vadhan October 16, 2007 Abstract We survey the close connections between a variety of pseudorandom objects, namely pseudorandom generators, expander graphs,

More information

Three Query Locally Decodable Codes with Higher Correctness Require Exponential Length

Three Query Locally Decodable Codes with Higher Correctness Require Exponential Length Three Query Locally Decodable Codes with Higher Correctness Require Exponential Length Anna Gál UT Austin panni@cs.utexas.edu Andrew Mills UT Austin amills@cs.utexas.edu March 8, 20 Abstract Locally decodable

More information

: On the P vs. BPP problem. 30/12/2016 Lecture 12

: On the P vs. BPP problem. 30/12/2016 Lecture 12 03684155: On the P vs. BPP problem. 30/12/2016 Lecture 12 Time Hierarchy Theorems Amnon Ta-Shma and Dean Doron 1 Diagonalization arguments Throughout this lecture, for a TM M, we denote M t to be the machine

More information

Efficiency Improvements in Constructing Pseudorandom Generators from One-way Functions

Efficiency Improvements in Constructing Pseudorandom Generators from One-way Functions Efficiency Improvements in Constructing Pseudorandom Generators from One-way Functions Iftach Haitner Microsoft Research New England Campus iftach@microsoft.com Omer Reingold Microsoft Research Silicon

More information

Lecture 17. In this lecture, we will continue our discussion on randomization.

Lecture 17. In this lecture, we will continue our discussion on randomization. ITCS:CCT09 : Computational Complexity Theory May 11, 2009 Lecturer: Jayalal Sarma M.N. Lecture 17 Scribe: Hao Song In this lecture, we will continue our discussion on randomization. 1 BPP and the Polynomial

More information

Block Codes :Algorithms in the Real World

Block Codes :Algorithms in the Real World Block Codes 5-853:Algorithms in the Real World Error Correcting Codes II Reed-Solomon Codes Concatenated Codes Overview of some topics in coding Low Density Parity Check Codes (aka Expander Codes) -Network

More information

2 Completing the Hardness of approximation of Set Cover

2 Completing the Hardness of approximation of Set Cover CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 15: Set Cover hardness and testing Long Codes Nov. 21, 2005 Lecturer: Venkat Guruswami Scribe: Atri Rudra 1 Recap We will first

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions Due: March 22, 2018 CS 151: Intro. to Cryptography and Computer Security 1 Fun with PRFs a. F a s = F 0 k(x) F s (x) is not a PRF, for any choice of F. Consider a distinguisher D a

More information

Determinant Versus Permanent

Determinant Versus Permanent Determinant Versus Permanent Manindra Agrawal Abstract. We study the problem of expressing permanent of matrices as determinant of (possibly larger) matrices. This problem has close connections with complexity

More information

Randomness and non-uniformity

Randomness and non-uniformity Randomness and non-uniformity JASS 2006 Course 1: Proofs and Computers Felix Weninger TU München April 2006 Outline Randomized computation 1 Randomized computation 2 Computation with advice Non-uniform

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

Determinant versus permanent

Determinant versus permanent Determinant versus permanent Manindra Agrawal Abstract. We study the problem of expressing permanents of matrices as determinants of (possibly larger) matrices. This problem has close connections to the

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Impagliazzo s Hardcore Lemma

Impagliazzo s Hardcore Lemma Average Case Complexity February 8, 011 Impagliazzo s Hardcore Lemma ofessor: Valentine Kabanets Scribe: Hoda Akbari 1 Average-Case Hard Boolean Functions w.r.t. Circuits In this lecture, we are going

More information

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 So far our notion of realistic computation has been completely deterministic: The Turing Machine

More information

SIGACT News Complexity Theory Column 25

SIGACT News Complexity Theory Column 25 SIGACT News Complexity Theory Column 25 Lane A. Hemaspaandra Dept. of Computer Science, University of Rochester Rochester, NY 14627, USA lane@cs.rochester.edu Introduction to Complexity Theory Column 25

More information