ASTR240: Radio Astronomy

Size: px
Start display at page:

Download "ASTR240: Radio Astronomy"

Transcription

1 AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S Jy and S Jy at frequencies of ν 1 6 MHz and ν MHz, respectively. A) Show that its spectral index α [log (S 1 /S 2 )/[log (ν 2 /ν 1 ) (2 points) Spectral index α; S ν ν α S 1 S 2 ( ν1 ν 2 ) α log (S 1/S 2) α log (ν 2/ν 1) ( ) α ν2 ν 1 α log (S 1/S 2)/ log (ν 2/ν 1) B) Calculate its spectral index. (2 points) α log (12.1/8.3)/ log (1415/6).44 C) Is the spectrum thermal or nonthermal? (2 points) Thermal spectra have α-2, so this spectrum is nonthermal. Problem 2 (8 points) (ybicki & Lightman Problem 1.5) A supernova remnant has an angular diameter θ4.3 arc minutes and a flux at 1 MHz of F cm 2 s 1 Hz 1. Assume that the emission is thermal. A) What is the brightness temperature T b? What eny regime of the blackbody curve does this correspond to? (2 points) Definition of brightness temperature: T b Iνc2 2kν 2 1

2 To calculate I ν, need to know the flux density and angular size: I ν Fν Ω Ω π 4 θ2 π 4 I ν ( ) π Sr cm 2 s Hz Sr cm 2 s Hz Sr Now, plug and chug: T b Iνc (3 cm 2 s Hz Sr 11 cm/s) 2 2kν K K (18 Hz) 2 T b K What eny regime does this correspond to? Check hν kt : hν kt s 1 8 Hz /K K hν kt << 1 -J regime (big surprise!) B) The emitting region is actually more compact than indicated by the observed angular diameter. What effect does this have on the value of T b? (2 points) If θ is smaller than assumed, then Ω decreases, I ν increases, T b increases. C) At what frequency will this object s radiation be maximum, if the emission is blackbody? (2 points) Wien displacement law: hν max 2.82 k T ν max 2.82 k K h Hz D) What can you say about the temperature of the material from the above results? (2 points) Graybodies: Planck function gives max emission for temp T. Therefore we know only that the temp of the object is T b calculated above. 2

3 Problem 3 (8 points) (ybicki & Lightman 1.9) A spherical, opaque object emits as a blackbody at temperature T c. Surrounding this central object is a spherical shell of material, thermally emitting at a temperature T s (T s < T c This shell absorbs in a narrow spectral line; that is, its absorption coefficient becomes large at the frequency ν and is negligibly small at other frequencies, such as ν 1 : α ν >> α ν1 (see Fig The object is observed at frequencies ν and ν 1 and along two rays A and B shown above. Assume that the Planck function does not vary appreciably from ν to ν 1. A) At which frequency will the observed brightness be larger when observed along ray A? Along ray B? (4 points) Along ay A: Intensity at surface of BB: I ν B ν (T c ) Since no (or very little) absorption at ν 1, intensity remains constant along the ray at frequency ν 1. Now consider ν. Source function in shell (thermal radiation) is J ν jν α ν B ν (T s Since T s < T c, B ν (T s ) < B ν (T c ), and intensity drops as ray passes through shell (I A ν < I A ν 1 3

4 Along ay B: I B ν 1 I B (no incident radiation Since T s >, B ν (T s ) > B ν (), and intensity increases as ray passes through shell (I B ν > I B ν 1 B) Answer the preceding questions if T s > T c. (4 points) Along ay A: Since T s > T c, B ν (T s ) > B ν (T c ), and intensity increases as ray passes through shell (I A ν > I A ν 1 Along ay B: Since T s > (still), B ν (T s ) > B ν (), and intensity still increases as ray passes through shell (I B ν > I B ν 1 Illustration of all four cases: Problem 4 (8 points) (Courtesy J. Moran) Calculate the quietest (i.e., darkest) place in the radio spectrum. Neglect noise from the earth s atmosphere. At low frequencies the sky noise is dominated by synchrotron emission from relativistic electrons rattling around all over the galaxy. Away from the galaxy plane, the brightness temperature is ( ν T B 18K 18MHz which is more or less independent of direction. At high frequencies, the CMB dominates with T B 2.7 K in all directions ) 2.6 4

5 A) What is the frequency of minimum background brightness temperature? Of minimum background flux density? (4 points) Background brightness temperature: T B (ν) 18 K ( 18 MHz) K. No minimum TB ; asymptotically approaches 2.7 K. ν Minimum flux density: ν 2 S ν I νω 2kT B c Ω 2 S ν ν (small angles) 2kΩ [ 18 K(18 MHz) 2.6 ν K ν 2 at the minimum 2kΩ [ 18 K(18 MHz) 2.6 (.6)ν 1.6 min K ν min ν min 57 MHz B) What is the incident power on the earth from 1 MHz 1 THz ( Hz)? If we intercept this power could we reduce our reliance on fossil fuels? (4 points) I ν 2k [ 18 K(18 MHz) 2.6 ν K ν 2 S ν 2π π/2 I ν cos θ sin θdθdφ 5

6 where S ν is integrated over the total amount of sky visible to a patch of earth s surface: Assume that I ν is uniform and isotropic... F [ [ 1 12 Hz 2π I νdν 1 7 Hz π/2 cos θ sin θdθdφ [ 1 12 Hz [ 2k 1 7 Hz c [18K( Hz) 2.6 ν Kν 2 dν 2π 1 2 (sin2 θ π/2 ) π Sr.28π cm 2 s Sr So flux per unit area is.28π cm 2 s Sr, and multiplying by the surface area of the earth (4π2 ) gives the total power: P (4π 2 )(.28π) /s, or W. Compare this with the power of the sun, P 1 17 W, and the eny used to generate electricity from fossil fuels worldwide, currently around, P ff 1 13 W. Problem 5 (8 points) (Courtesy J. Moran) The full moon at millimeter wavelengths has a brightness temperature distribution that might be approximated as (see figure): T B (θ) T + T 1 cos θ. A) What is the flux density at the earth? Hint: First calculate the brightness temperature as a function of polar angle in the earth coordinate system. (4 points) T B (θ) T + T 1 cos θ Geometry: cos θ 2 x 2, and φ x/d x Dφ S ν I ν cos θdω (In earth-based coordinates, θ φ I ν 2kT Bν 2 Earth-based coordinates: T B (φ) T + T 1 2 D 2 φ 2. Then: 6

7 S ν 2kν2 /D 2 D (T + T 2 φ 2 1 ) cos φ sin φdφ 2π cos φ 1 and sin φ φ (small angles) [ /D /D T φdφ + 4πkν2 4πkν2 2πkν2 ( 1 2 T( D )2 1 2 T1 D D φt 1 (/D)2 φ 2 dφ ) u 1/2 du ( T D 2 ( D )2 T 1 3 ( ( D )3 ) ) Note : u ( D )2 φ 2 S ν 2πkν2 ( D )2 (T T 1) B) What is the mean brightness temperature, i.e., disk temperature? (4 points) Mean T B of the moon: T mean 1 /D Ω moon (T + T 2 D 2 φ 2 1 )2πφdφ where Ω moon π( [ D )2, and we have already evaluated the integral: T mean 1 π ( D )2 2 D (T T 1)π T T 1 7

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Chapter 2 Bremsstrahlung and Black Body

Chapter 2 Bremsstrahlung and Black Body Chapter 2 Bremsstrahlung and Black Body 2.1 Bremsstrahlung We will follow an approximate derivation. For a more complete treatment see [2] and [1]. We will consider an electron proton plasma. Definitions:

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Solutions Mock Examination

Solutions Mock Examination Solutions Mock Examination Elena Rossi December 18, 2013 1. The peak frequency will be given by 4 3 γ2 ν 0. 2. The Einstein coeffients present the rates for the different processes populating and depopulating

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

Oppgavesett kap. 4 (1 av 2) GEF2200

Oppgavesett kap. 4 (1 av 2) GEF2200 Oppgavesett kap. 4 (1 av 2) GEF2200 hans.brenna@geo.uio.no Exercise 1: Wavelengths and wavenumbers (We will NOT go through this in the group session) What's the relation between wavelength and wavenumber?

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 4: The Electromagnetic Spectrum 1 Understanding Stellar and Galaxy Properties, and Cosmology Four

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Ay121 Problem Set 1. TA: Kathryn Plant. October Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios.

Ay121 Problem Set 1. TA: Kathryn Plant. October Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios. Ay2 Problem Set TA: Kathryn Plant October 28 Some parts are based on solutions by previous TAs Yuguang Chen and Rachel Theios. Temperatures One point for each part. (a) Since we are observing at MHz and

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy ASTR240: Radio Astronomy HW#3 Due Feb 27, 2013 Problem 1 (4 points) (Courtesy J. J. Condon & S. M. Ransom) The GBT (Green Bank Telescope, a steerable radio telescope roughly the size of a football field

More information

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang Astro 21 Radiative Processes Solution Set 1 by Roger O Brient and Eugene Chiang Readings: Rybicki & Lightman Chapter 1 except the last section 1.8. Problem 1. Blackbody Flux Derive the blackbody flux formula

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS 12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS TA: NIRAJ INAMDAR 1) Radiation Terminology. We are asked to define a number of standard terms. See also Table 1. Intensity: The amount of energy

More information

THREE MAIN LIGHT MATTER INTERRACTION

THREE MAIN LIGHT MATTER INTERRACTION Chapters: 3and 4 THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into radiative energy Scattering; Radiative energy is

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 11-Radiative Heat Transfer Fausto Arpino f.arpino@unicas.it Nature of Thermal Radiation ü Thermal radiation refers to radiation

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

The Black Body Radiation

The Black Body Radiation The Black Body Radiation = Chapter 4 of Kittel and Kroemer The Planck distribution Derivation Black Body Radiation Cosmic Microwave Background The genius of Max Planck Other derivations Stefan Boltzmann

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 6 Electromagnetic radiation 1 The electromagnetic spectrum To obtain information about the distant universe we have the following sources available: 1. electromagnetic waves at many

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel)

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel) In class quiz - nature of light Moonbow with Sailboats (Matt BenDaniel) Nature of light - review Light travels at very high but finite speed. Light is electromagnetic wave characterized by wavelength (or

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

Interstellar Medium Physics

Interstellar Medium Physics Physics of gas in galaxies. Two main parts: atomic processes & hydrodynamic processes. Atomic processes deal mainly with radiation Hydrodynamics is large scale dynamics of gas. Start small Radiative transfer

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Synchrotron Radiation: II. Spectrum

Synchrotron Radiation: II. Spectrum Synchrotron Radiation: II. Spectrum Massimo Ricotti ricotti@astro.umd.edu University of Maryland Synchrotron Radiation: II. Spectrum p.1/18 ds=v dt_em dt=ds cos(theta)/c=v/c cos(theta)dt_em Synchrotron

More information

Radiative heat transfer

Radiative heat transfer Radiative heat transfer 22 mars 2017 Energy can be transported by the electromagnetic field radiated by an object at finite temperature. A very important example is the infrared radiation emitted towards

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation Bremsstrahlung Rybicki & Lightman Chapter 5 Bremsstrahlung Free-free Emission Braking Radiation Radiation due to acceleration of charged particle by the Coulomb field of another charge. Relevant for (i)

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

2. The Astronomical Context. Fig. 2-1

2. The Astronomical Context. Fig. 2-1 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions * θ * Fig. 2-1 Position usually means angle. Measurement accuracy

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

Photons. Observational Astronomy 2018 Part 1 Prof. S.C. Trager

Photons. Observational Astronomy 2018 Part 1 Prof. S.C. Trager Photons Observational Astronomy 2018 Part 1 Prof. S.C. Trager Wavelengths, frequencies, and energies of photons Recall that λν=c, where λ is the wavelength of a photon, ν is its frequency, and c is the

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 5:Synchrotron and Bremsstrahlung spectra Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics.

More information

Radio Astronomy An Introduction

Radio Astronomy An Introduction Radio Astronomy An Introduction Felix James Jay Lockman NRAO Green Bank, WV References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) Condon & Ransom (nrao.edu) Single Dish School

More information

summary of last lecture

summary of last lecture radiation specific intensity flux density bolometric flux summary of last lecture Js 1 m 2 Hz 1 sr 1 Js 1 m 2 Hz 1 Js 1 m 2 blackbody radiation Planck function(s) Wien s Law λ max T = 2898 µm K Js 1 m

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here)

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) What is color? THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) Light isn t just white: colors is direct evidence that light has

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING - II Dr. A. Bhattacharya The Radiation Framework The information about features on the Earth s surface using RS depends on measuring energy emanating from the

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

ASTRONOMY 304. Research Topics in Astronomy and Astrophysics EXTRASOLAR PLANETS. Paul Hickson

ASTRONOMY 304. Research Topics in Astronomy and Astrophysics EXTRASOLAR PLANETS. Paul Hickson ASTRONOMY 304 Research Topics in Astronomy and Astrophysics EXTRASOLAR PLANETS Paul Hickson 2006 ASTR 304 Research Topics in Astronomy and Astrophysics 2006 EXTRASOLAR PLANETS COURSE INFORMATION Section,

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving 10: The Greenhouse Effect Section Table and Group Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3 Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 1 Sections 1.1 through 1.3 1.1 Fundamental Concepts Attention is focused on thermal radiation, whose origins are associated

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Physics 8.282J EAPS 12.402J May 20, 2005 Final Exam Name Last First (please print) 1. Do any

More information

Parallax: Space Observatories. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & Universe Lecture #7 Outline

Parallax: Space Observatories. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & Universe Lecture #7 Outline Stars, Galaxies & the Universe Announcements HW#4: posted Thursday; due Monday (9/20) Reading Quiz on Ch. 16.5 Monday (9/20) Exam #1 (Next Wednesday 9/22) In class (50 minutes) first 20 minutes: review

More information

Temperature Scales and Telescope Efficiencies

Temperature Scales and Telescope Efficiencies Temperature Scales and Telescope Efficiencies Jeff Mangum (NRAO) April 11, 2006 Contents 1 Introduction 1 2 Definitions 1 2.1 General Terms.................................. 2 2.2 Efficiencies....................................

More information

ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light. Chapters 1 and 5

ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light. Chapters 1 and 5 ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light Chapters 1 and 5 Announcements Research Experience for Undergrads (REU) for summer 2019 applications due soon. ASTRON/JIVE due Feb 1 Arecibo due

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

ETA Observations of Crab Pulsar Giant Pulses

ETA Observations of Crab Pulsar Giant Pulses ETA Observations of Crab Pulsar Giant Pulses John Simonetti,, Dept of Physics, Virginia Tech October 7, 2005 Pulsars Crab Pulsar Crab Giant Pulses Observing Pulses --- Propagation Effects Summary Pulsars

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 CCAT: 25 meter submm telescope CCAT Site on C. Chajnantor Me, at 18,400

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Lecture 2: Transfer Theory

Lecture 2: Transfer Theory Lecture 2: Transfer Theory Why do we study transfer theory? The light we detect arrives at us in two steps: - first, it is created by some radiative process (e.g., blackbody, synchrotron, etc etc ) -

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

3 Some Radiation Basics

3 Some Radiation Basics 12 Physics 426 Notes Spring 29 3 Some Radiation Basics In this chapter I ll store some basic tools we need for working with radiation astrophysically. This material comes directly from Rybicki & Lightman

More information

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell ASTRONOMY 103: THE EVOLVING UNIVERSE Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell Two Blackbody Trends 1. Wein s (Veen s) Law λp 1 / T or λp = 2900 / T (λp is the peak wavelength in micrometers

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

Compton Scattering II

Compton Scattering II Compton Scattering II 1 Introduction In the previous chapter we considered the total power produced by a single electron from inverse Compton scattering. This is useful but limited information. Here we

More information

Electron-Acoustic Wave in a Plasma

Electron-Acoustic Wave in a Plasma Electron-Acoustic Wave in a Plasma 0 (uniform ion distribution) For small fluctuations, n ~ e /n 0

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

Calculating equation coefficients

Calculating equation coefficients Solar Energy 1 Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes Part 1D Electromagnetic radiation Questions to ponder before the lecture 1. Unlike physicists, astrophysicists cannot make direct experiments in the laboratory. We rely completely

More information

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

More information

The Stellar Graveyard

The Stellar Graveyard Life and Death of High Mass Stars (M > 8 M sun ) AST 101 Introduction to Astronomy: Stars & Galaxies Last stage: Iron core surrounded by shells of increasingly lighter elements. Announcements MIDTERM #2

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

2 Radio Astronomy Fundamentals 2.1 Introduction

2 Radio Astronomy Fundamentals 2.1 Introduction 2 Radio Astronomy Fundamentals 2.1 Introduction The atmosphere is transparent to only two bands of the electromagnetic spectrum: optical and radio bands. Optical band: 0.4 0.8 µm Radio band : 1 cm 10 m

More information