Statistical Mechanics and Combinatorics : Lecture II

Size: px
Start display at page:

Download "Statistical Mechanics and Combinatorics : Lecture II"

Transcription

1 Statistical Mechanics and Combinatorics : Lecture II Kircho s matrix-tree theorem Deinition (Spanning tree) A subgraph T o a graph G(V, E) is a spanning tree i it is a tree that contains every vertex in V We deine a map rom unctions on V to unctions on directed edges by d(xy) = (y) (x) This map is a -orm, that is, satisies d( e) = d(e) where e represents the edge with the reversed orientation Once we choose a preerred direction or each edge, we can think o d as a unction on (undirected) edges and thus represent d as a m n matrix Deinition 2 (Incidence matrix) The incidence matrix o a directed graph G is a m n matrix (d ij ), where n = V and m = E, such that i the edge e j enters vertex v i d ij = i the edge e j leaves vertex v j 0 otherwise Example 3 Let G be a directed graph as ollowing The incidence matrix d o G is d = 2 3 a 0 b 0 c 0 Let E e be an energy on each edge and C : E R 0 (the conductance) be deined by c e = e βee

2 Deinition 4 (The Laplacian) Assign a positive real weight (a conductance) c e to each edge The Laplacian on R V is the linear operator : R V R V deined by (v) = w v c e ((v) (w)) Lemma 5 The Laplacian matrix satisies where C is the set o conductances Example 6 For the example above, = d T Cd = 2 3 b + c c b 2 c a + c a 3 b a a + b Theorem 7 (Kircho 847) Let c e, be deined as above Let be the matrix obtained rom by removing row and column i rom Denote the determinant o by det Then we have the equation c e ) = det Idea o Proo: sptree T ( e T Write A = d T and B = Cd, so by lemma 5, = AB Then = A B where A is the matrix given by deleting a row rom A and B is the matrix by deleting a column rom B 2 Recall Cauchy-Binet ormula: Let [m] = {,, m} I A is an n m matrix, B is an m n matrix, then det(ab) = det(a S ) det(b S ) S [m], S =n where A S is the n n matrix whose columns are the columns o A indices rom S and B S is the n n matrix whose rows are the rows o B at indices S So, det(a B ) = det(a S ) det(b S ) S [m ], S =n 3 I S is disconnected, then B S is singular since it contains a row o zeros So nonsingular matrix corresponds to spanning trees 4 I S is a spanning tree, then det d S = ± We have 5 det ( ) = S [m ], S =n det B S = det(c S d S ) = ± e T det(a S ) det(b S ) = c e sptreet e T c e 2

3 2 Cayley s Theorem Theorem 2 (Cayley s theorem) Let k n be the directed complete graph on n vertices Let κ(k n ) be the number o spanning trees o k n without weights κ(k n ) = n n 2 Proo We apply the Matrix-Tree theorem so that κ(k n ) = det The Laplacian matrix n n = = ni M n where M is the n n matrix o s Since M has rank so M has eigenvalues n, 0,, 0 with 0 having multiplicity n This implies that has eigenvalues 0, n,, n with n having multiplicity n It means that det = n n 2 Thereore, 3 Spanning Tree Model κ(k n ) = n n 2 Let the coniguration space be the set o all spanning trees o graph G(V, E) Let Z be the partition unction deined as Z = det = c e sptreet e T The Boltzmann measure µ o a spanning tree T is µ(t ) = c e Z The probability o an edge e in a random spanning tree T is Write P r(e) = c e Z c e Z e T Z = Z 0 + Z c e = c ln Z e c e where Z 0 are the spanning trees without edge c e and Z c e are the weighted trees containing edge c e Let x, y be the vertices contained in edge e Write ab or the matrix obtained rom by deleting column a and row b with a, b {x, y} Then, P r(e) = c e d dc e det det = c e det( xx) + det( yy) det( xy) det( yx) det = c e (G xx + G yy G xy G yx ), 3

4 where G ab = ( ) ab or a, b {x, y} What about the probability o a subset o edges in uniorm spanning trees? Theorem 3 (Transer-Impedance Theorem) Let G(V, E) be any inite connected graph Let T be a weighted uniorm random spanning tree o G For any e,, e k G, Pr(e,, e k T ) = det(t ei e j ) k C ei where T : R E R E is the transer impedance matrix deined by Note that T 2 = T T = Cd ( ) d i= How do we take the limit or larger and larger determinant? Example 32 Let the graph G be a n n grid in Z 2, that is, Z 2 /nz 2 with conductance C e =, e E Since commutes with all translates with {T x,y } x,y Zn Z n, and T x,y are simultaneously diagonalizable (T,0 ) n = I The eigenvalues o T,0 are nth root o unity z = e 2πi n The eigenspace o z is c b a az n az Similarly, (T 0, ) n = I The eigenvalues o T 0, are nth root o unity ω = e 2πj n The eigenspace o ω is eω eω e g 4

5 Intersection the eigenspace o z with the eigenspace o ω Denote the -dimensional subspace by W aω aω a az The Laplacian : W (z, ω) W (z, ω) is given by az az = (4 z z ω ω ) aω a aω az The eigenvalues o on W (z, ω) are 4 z ω where z, ω ranges over the nth z ω root o unity The Laplacian determinant is det = z n =,ω n = The number o spanning tress in (Z n ) 2 is The ree energy F is det = F = lim n n log Z 2 n = z n =,ω n = (z,ω) (,) 4 z z ω ω (4 z z ω ω ) log(4 z S S z ω ω ) dz dω 2πiz 2πiω Example 33 Let, g be unctions on V The connections φ vv : V v V v ollowing graph are given by the b b b 2 b 2 a a 2 a (T 2,0 ) n 2 = I The eigenvalues o T 2,0 are n 4πj th root o unity z = e n 2 (T 0, ) n = I The eigenvalues o T 0, are nth root o unity ω = e 2πi n 5

6 Let W (z, ω) be the intersection o eigenspaces o z and ω respectively ω ω g z The Laplacian : W (z, ω) W (z, ω) is given by ( ) = g ( (a + a 2 + 2b ) ga gza 2 b ω b ω (a + a 2 + 2b 2 )g a a 2 ω b 2gω b 2 ω ) Let P (z, w) = det( W (z,ω) ) Then det Z 2 /nz 2 = z n 2 =,ω n = (z,ω) (,) P (z, ω)tr( W (,) ) Theorem 34 (Pemantle 90) For any sequence o graphs in Z 2 converging to Z 2, the spanning tree measure converges to a measure independent o approximation sequence 4 Spanning tress and random walks The problem we discuss in this section is that o sampling a uniorm spanning tree T Loop-erased random walk Let G be a graph and γ is some inite path o length n on G The ith vertex visited by γ is denoted by γ(i) beginning at γ(0) The loop erasure LE(γ) o γ is a new simple path obtained by erasing all the loops o γ in chronological order Intuitively, i γ is a sel-avioding path (ie the vertices γ(i) are distinct), then LE(γ) = γ I γ(i) = γ(j), i < j and j is minimal satisying the equation, delete all the vertices γ(k) with i < k j rom the sequence {γ(k)} I the step until the result is sel-avoiding Theorem 4 (Pemantle) For any a, b V in a uniorm spanning tree, the unique path connecting a to b is distributed as a LERW rom a to b David Wilson Algorithm Wilson provides an algorithm or sampling a uniorm spanning tree: Do LERW rom a vertex a to a root r 6

7 2 Pick any other vertex b in G and do LERW until hitting the already constructed path 3 Continue until the tree spans all the vertices Theorem 42 Wilson s algorithm generates a uniorm spanning tree Proo Associate with vertex r an empty stack and associate with each vertex u r an ininite stack S u The ininite stack is constructed by choosing a neighbor o u uniormly at random rom all neighbors, pushing it onto the stack and repeat ininitely All the items in all the stacks are mutually independent I S u,i is the ith element in the stack, we have P r(s u,i = v) = P r(randomsuccessor(u) = v) The tops o the stacks deine a directed graph G S = (V, E S ) where E S = {(u, top(u) : u r)} I there is a directed cycle in G S, we pop the top item o the stack o each vertex in the cycle by replacing the current stack {S u,i } with {S u,i+ } Apply the cycle popping algorithm while G has a cycle Choose a cycle C in G S at random and pop it return tree let on stacks I this process terminates, the resulting tree T will be a directed spanning tree with root r By the act that the order o popped-cycle is irrelevant, T is uniquely determined by the stacks Wilson s algorithm is an implementation o the cycle popping algorithm Consider the Prob(T ) Let C be the set o cycles Since the cycle weights ω(c) is independent o T, we have P rob(t ) = ω(c)ω(t ) = c deg(v) v V or a ixed constant c 7

The Matrix-Tree Theorem

The Matrix-Tree Theorem The Matrix-Tree Theorem Christopher Eur March 22, 2015 Abstract: We give a brief introduction to graph theory in light of linear algebra. Our results culminates in the proof of Matrix-Tree Theorem. 1 Preliminaries

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information

Lecture 1 and 2: Random Spanning Trees

Lecture 1 and 2: Random Spanning Trees Recent Advances in Approximation Algorithms Spring 2015 Lecture 1 and 2: Random Spanning Trees Lecturer: Shayan Oveis Gharan March 31st Disclaimer: These notes have not been subjected to the usual scrutiny

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19 832: Algebraic Combinatorics Lionel Levine Lecture date: April 2, 20 Lecture 9 Notes by: David Witmer Matrix-Tree Theorem Undirected Graphs Let G = (V, E) be a connected, undirected graph with n vertices,

More information

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact.

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact. ORIE 6334 Spectral Graph Theory September 8, 2016 Lecture 6 Lecturer: David P. Williamson Scribe: Faisal Alkaabneh 1 The Matrix-Tree Theorem In this lecture, we continue to see the usefulness of the graph

More information

Topics in Graph Theory

Topics in Graph Theory Topics in Graph Theory September 4, 2018 1 Preliminaries A graph is a system G = (V, E) consisting of a set V of vertices and a set E (disjoint from V ) of edges, together with an incidence function End

More information

Statistical Mechanics and Combinatorics : Lecture IV

Statistical Mechanics and Combinatorics : Lecture IV Statistical Mechanics and Combinatorics : Lecture IV Dimer Model Local Statistics We ve already discussed the partition function Z for dimer coverings in a graph G which can be computed by Kasteleyn matrix

More information

Circuit Complexity / Counting Problems

Circuit Complexity / Counting Problems Lecture 5 Circuit Complexity / Counting Problems April 2, 24 Lecturer: Paul eame Notes: William Pentney 5. Circuit Complexity and Uniorm Complexity We will conclude our look at the basic relationship between

More information

1 Counting spanning trees: A determinantal formula

1 Counting spanning trees: A determinantal formula Math 374 Matrix Tree Theorem Counting spanning trees: A determinantal formula Recall that a spanning tree of a graph G is a subgraph T so that T is a tree and V (G) = V (T ) Question How many distinct

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

CLASS NOTES MATH 527 (SPRING 2011) WEEK 6

CLASS NOTES MATH 527 (SPRING 2011) WEEK 6 CLASS NOTES MATH 527 (SPRING 2011) WEEK 6 BERTRAND GUILLOU 1. Mon, Feb. 21 Note that since we have C() = X A C (A) and the inclusion A C (A) at time 0 is a coibration, it ollows that the pushout map i

More information

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron Laplacian eigenvalues and optimality: II. The Laplacian of a graph R. A. Bailey and Peter Cameron London Taught Course Centre, June 2012 The Laplacian of a graph This lecture will be about the Laplacian

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

CHOOSING A SPANNING TREE FOR THE INTEGER LATTICE UNIFORMLY

CHOOSING A SPANNING TREE FOR THE INTEGER LATTICE UNIFORMLY CHOOSING A SPANNING TREE FOR THE INTEGER LATTICE UNIFORMLY Running Head: RANDOM SPANNING TREES Robin Pemantle 1 Dept. of Mathematics, White Hall 2 Cornell University Ithaca, NY 14853 June 26, 2003 ABSTRACT:

More information

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Maximum Flow Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Flow Network A low network G ( V, E) is a directed graph with a source node sv, a sink node tv, a capacity unction c. Each edge ( u,

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Theorem Let J and f be as in the previous theorem. Then for any w 0 Int(J), f(z) (z w 0 ) n+1

Theorem Let J and f be as in the previous theorem. Then for any w 0 Int(J), f(z) (z w 0 ) n+1 (w) Second, since lim z w z w z w δ. Thus, i r δ, then z w =r (w) z w = (w), there exist δ, M > 0 such that (w) z w M i dz ML({ z w = r}) = M2πr, which tends to 0 as r 0. This shows that g = 2πi(w), which

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

6.842 Randomness and Computation February 24, Lecture 6

6.842 Randomness and Computation February 24, Lecture 6 6.8 Randomness and Computation February, Lecture 6 Lecturer: Ronitt Rubinfeld Scribe: Mutaamba Maasha Outline Random Walks Markov Chains Stationary Distributions Hitting, Cover, Commute times Markov Chains

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture (u, v) is a horizontal edge K u,v = i (u, v) is a vertical edge 0 else

18.312: Algebraic Combinatorics Lionel Levine. Lecture (u, v) is a horizontal edge K u,v = i (u, v) is a vertical edge 0 else 18.312: Algebraic Combinatorics Lionel Levine Lecture date: Apr 14, 2011 Lecture 18 Notes by: Taoran Chen 1 Kasteleyn s theorem Theorem 1 (Kasteleyn) Let G be a finite induced subgraph of Z 2. Define the

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS Problem Set Problems on Unordered Summation Math 5323, Fall 2001 Februray 15, 2001 ANSWERS i 1 Unordered Sums o Real Terms In calculus and real analysis, one deines the convergence o an ininite series

More information

On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs. Enqiang Zhu*, Chanjuan Liu and Jin Xu

On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs. Enqiang Zhu*, Chanjuan Liu and Jin Xu TAIWANESE JOURNAL OF MATHEMATICS Vol. xx, No. x, pp. 4, xx 20xx DOI: 0.650/tjm/6499 This paper is available online at http://journal.tms.org.tw On Adjacent Vertex-distinguishing Total Chromatic Number

More information

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank David Glickenstein November 3, 4 Representing graphs as matrices It will sometimes be useful to represent graphs

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS

THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS ARICK SHAO In this short note, we solve the Cauchy, or initial value, problem or general ully nonlinear irst-order PDE. Throughout, our PDE will be

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

The Clifford algebra and the Chevalley map - a computational approach (detailed version 1 ) Darij Grinberg Version 0.6 (3 June 2016). Not proofread!

The Clifford algebra and the Chevalley map - a computational approach (detailed version 1 ) Darij Grinberg Version 0.6 (3 June 2016). Not proofread! The Cliord algebra and the Chevalley map - a computational approach detailed version 1 Darij Grinberg Version 0.6 3 June 2016. Not prooread! 1. Introduction: the Cliord algebra The theory o the Cliord

More information

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016.

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016. Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 216 Ravi N Banavar banavar@iitbacin September 24, 216 These notes are based on my readings o the two books Nonlinear Control

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh 27 June 2008 1 Warm-up 1. (A result of Bourbaki on finite geometries, from Răzvan) Let X be a finite set, and let F be a family of distinct proper subsets

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Lecture 18 Classification of Dynkin Diagrams

Lecture 18 Classification of Dynkin Diagrams 18745 Introduction to Lie Algebras October 21, 2010 Lecture 18 Classification of Dynkin Diagrams Prof Victor Kac Scribe: Benjamin Iriarte 1 Examples of Dynkin diagrams In the examples that follow, we will

More information

Theoretical Computer Science. The hitting and cover times of random walks on finite graphs using local degree information,

Theoretical Computer Science. The hitting and cover times of random walks on finite graphs using local degree information, Theoretical Computer Science 410 (2009) 94 100 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs The hitting and cover times o random

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs Fluctuationlessness Theorem and its Application to Boundary Value Problems o ODEs NEJLA ALTAY İstanbul Technical University Inormatics Institute Maslak, 34469, İstanbul TÜRKİYE TURKEY) nejla@be.itu.edu.tr

More information

1.3 Vertex Degrees. Vertex Degree for Undirected Graphs: Let G be an undirected. Vertex Degree for Digraphs: Let D be a digraph and y V (D).

1.3 Vertex Degrees. Vertex Degree for Undirected Graphs: Let G be an undirected. Vertex Degree for Digraphs: Let D be a digraph and y V (D). 1.3. VERTEX DEGREES 11 1.3 Vertex Degrees Vertex Degree for Undirected Graphs: Let G be an undirected graph and x V (G). The degree d G (x) of x in G: the number of edges incident with x, each loop counting

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

VALUATIVE CRITERIA BRIAN OSSERMAN

VALUATIVE CRITERIA BRIAN OSSERMAN VALUATIVE CRITERIA BRIAN OSSERMAN Intuitively, one can think o separatedness as (a relative version o) uniqueness o limits, and properness as (a relative version o) existence o (unique) limits. It is not

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

1 Random Walks and Electrical Networks

1 Random Walks and Electrical Networks CME 305: Discrete Mathematics and Algorithms Random Walks and Electrical Networks Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous applications.

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Recall that or prevarieties, we had criteria or being a variety or or being complete in terms o existence and uniqueness o limits, where

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh June 2009 1 Linear independence These problems both appeared in a course of Benny Sudakov at Princeton, but the links to Olympiad problems are due to Yufei

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Classification of effective GKM graphs with combinatorial type K 4

Classification of effective GKM graphs with combinatorial type K 4 Classiication o eective GKM graphs with combinatorial type K 4 Shintarô Kuroki Department o Applied Mathematics, Faculty o Science, Okayama Uniervsity o Science, 1-1 Ridai-cho Kita-ku, Okayama 700-0005,

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

MATH 235. Final ANSWERS May 5, 2015

MATH 235. Final ANSWERS May 5, 2015 MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

GENERALIZED ABSTRACT NONSENSE: CATEGORY THEORY AND ADJUNCTIONS

GENERALIZED ABSTRACT NONSENSE: CATEGORY THEORY AND ADJUNCTIONS GENERALIZED ABSTRACT NONSENSE: CATEGORY THEORY AND ADJUNCTIONS CHRIS HENDERSON Abstract. This paper will move through the basics o category theory, eventually deining natural transormations and adjunctions

More information

Course : Algebraic Combinatorics

Course : Algebraic Combinatorics Course 18.312: Algebraic Combinatorics Lecture Notes #29-31 Addendum by Gregg Musiker April 24th - 29th, 2009 The following material can be found in several sources including Sections 14.9 14.13 of Algebraic

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A Spielman September 9, 202 7 About these notes These notes are not necessarily an accurate representation of what happened in

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

q FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) Spring L. Blum. REVIEW for Midterm 2 TURING MACHINE

q FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) Spring L. Blum. REVIEW for Midterm 2 TURING MACHINE FLAC (15-45) Spring 214 - L. Blum THURSDAY APRIL 15-45 REVIEW or Midterm 2 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY TUESDAY April 8 Deinition: A Turing Machine is a 7-tuple T = (Q, Σ, Γ,, q, q accept,

More information

Midterm Exam Solutions February 27, 2009

Midterm Exam Solutions February 27, 2009 Midterm Exam Solutions February 27, 2009 (24. Deine each o the ollowing statements. You may assume that everyone knows the deinition o a topological space and a linear space. (4 a. X is a compact topological

More information

Energy of Graphs. Sivaram K. Narayan Central Michigan University. Presented at CMU on October 10, 2015

Energy of Graphs. Sivaram K. Narayan Central Michigan University. Presented at CMU on October 10, 2015 Energy of Graphs Sivaram K. Narayan Central Michigan University Presented at CMU on October 10, 2015 1 / 32 Graphs We will consider simple graphs (no loops, no multiple edges). Let V = {v 1, v 2,..., v

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS There will be eight problems on the final. The following are sample problems. Problem 1. Let F be the vector space of all real valued functions on

More information

CS 361 Meeting 28 11/14/18

CS 361 Meeting 28 11/14/18 CS 361 Meeting 28 11/14/18 Announcements 1. Homework 9 due Friday Computation Histories 1. Some very interesting proos o undecidability rely on the technique o constructing a language that describes the

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Last quarter, we introduced the closed diagonal condition or a prevariety to be a prevariety, and the universally closed condition or a variety to be complete.

More information

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID:

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID: Math 2030, Matrix Theory and Linear Algebra I, Fall 20 Final Exam, December 3, 20 FIRST NAME: LAST NAME: STUDENT ID: SIGNATURE: Part I: True or false questions Decide whether each statement is true or

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1 E2 212: Matrix Theory (Fall 2010) s to Test - 1 1. Let X = [x 1, x 2,..., x n ] R m n be a tall matrix. Let S R(X), and let P be an orthogonal projector onto S. (a) If X is full rank, show that P can be

More information

(Practice)Exam in Linear Algebra

(Practice)Exam in Linear Algebra (Practice)Exam in Linear Algebra May 016 First Year at The Faculties of Engineering and Science and of Health This test has 10 pages and 16 multiple-choice problems. In two-sided print. It is allowed to

More information

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them. Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

More information

Lecture 16: Roots of the Matching Polynomial

Lecture 16: Roots of the Matching Polynomial Counting and Sampling Fall 2017 Lecture 16: Roots of the Matching Polynomial Lecturer: Shayan Oveis Gharan November 22nd Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

Eigenvectors and Reconstruction

Eigenvectors and Reconstruction Eigenvectors and Reconstruction Hongyu He Department of Mathematics Louisiana State University, Baton Rouge, USA hongyu@mathlsuedu Submitted: Jul 6, 2006; Accepted: Jun 14, 2007; Published: Jul 5, 2007

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.]

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.] Lectures 16-17: Random walks on graphs CSE 525, Winter 2015 Instructor: James R. Lee 1 Random walks Let G V, E) be an undirected graph. The random walk on G is a Markov chain on V that, at each time step,

More information

On the adjacency matrix of a block graph

On the adjacency matrix of a block graph On the adjacency matrix of a block graph R. B. Bapat Stat-Math Unit Indian Statistical Institute, Delhi 7-SJSS Marg, New Delhi 110 016, India. email: rbb@isid.ac.in Souvik Roy Economics and Planning Unit

More information

Comptes rendus de l Academie bulgare des Sciences, Tome 59, 4, 2006, p POSITIVE DEFINITE RANDOM MATRICES. Evelina Veleva

Comptes rendus de l Academie bulgare des Sciences, Tome 59, 4, 2006, p POSITIVE DEFINITE RANDOM MATRICES. Evelina Veleva Comtes rendus de l Academie bulgare des ciences Tome 59 4 6 353 36 POITIVE DEFINITE RANDOM MATRICE Evelina Veleva Abstract: The aer begins with necessary and suicient conditions or ositive deiniteness

More information

SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN The notions o separatedness and properness are the algebraic geometry analogues o the Hausdor condition and compactness in topology. For varieties over the

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Uniform spanning trees and loop-erased random walks on Sierpinski graphs

Uniform spanning trees and loop-erased random walks on Sierpinski graphs Uniform spanning trees and loop-erased random walks on Sierpinski graphs Elmar Teufl Eberhard Karls Universität Tübingen 12 September 2011 joint work with Stephan Wagner Stellenbosch University Elmar Teufl

More information

MATH 369 Linear Algebra

MATH 369 Linear Algebra Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Math 216A. A gluing construction of Proj(S)

Math 216A. A gluing construction of Proj(S) Math 216A. A gluing construction o Proj(S) 1. Some basic deinitions Let S = n 0 S n be an N-graded ring (we ollows French terminology here, even though outside o France it is commonly accepted that N does

More information

Ring Sums, Bridges and Fundamental Sets

Ring Sums, Bridges and Fundamental Sets 1 Ring Sums Definition 1 Given two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) we define the ring sum G 1 G 2 = (V 1 V 2, (E 1 E 2 ) (E 1 E 2 )) with isolated points dropped. So an edge is in G 1 G

More information

A Simple Explanation of the Sobolev Gradient Method

A Simple Explanation of the Sobolev Gradient Method A Simple Explanation o the Sobolev Gradient Method R. J. Renka July 3, 2006 Abstract We have observed that the term Sobolev gradient is used more oten than it is understood. Also, the term is oten used

More information

Strongly Regular Decompositions of the Complete Graph

Strongly Regular Decompositions of the Complete Graph Journal of Algebraic Combinatorics, 17, 181 201, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Strongly Regular Decompositions of the Complete Graph EDWIN R. VAN DAM Edwin.vanDam@uvt.nl

More information

CHOW S LEMMA. Matthew Emerton

CHOW S LEMMA. Matthew Emerton CHOW LEMMA Matthew Emerton The aim o this note is to prove the ollowing orm o Chow s Lemma: uppose that : is a separated inite type morphism o Noetherian schemes. Then (or some suiciently large n) there

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Laplacians of Graphs, Spectra and Laplacian polynomials Lector: Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Networks and Matrices

Networks and Matrices Bowen-Lanford Zeta function, Math table talk Oliver Knill, 10/18/2016 Networks and Matrices Assume you have three friends who do not know each other. This defines a network containing 4 nodes in which

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information