LEBESGUE MEASURE AND L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L 2 Space 4 Acknowledgments 9 References 9

Size: px
Start display at page:

Download "LEBESGUE MEASURE AND L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L 2 Space 4 Acknowledgments 9 References 9"

Transcription

1 LBSGU MASUR AND L2 SPAC. ANNI WANG Abstract. This paper begins with an introduction to measure spaces and the Lebesgue theory of measure and integration. Several important theorems regarding the Lebesgue integral are then developed. Finally, we prove the completeness of the L 2 (µ) space and show that it is a metric space, and a Hilbert space. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L 2 Space 4 Acknowledgments 9 References 9 1. Measure Spaces Definition 1.1. Suppose is a set. Then is said to be a measure space if there exists a σ-ring M (that is, M is a nonempty family of subsets of closed under countable unions and under complements)of subsets of and a non-negative countably additive set function µ (called a measure) defined on M. If M, then is said to be a measurable space. For example, let = R p, M the collection of Lebesgue-measurable subsets of R p, and µ the Lebesgue measure. Another measure space can be found by taking to be the set of all positive integers, M the collection of all subsets of, and µ() the number of elements of. We will be interested only in a special case of the measure, the Lebesgue measure. The Lebesgue measure allows us to extend the notions of length and volume to more complicated sets. Definition 1.2. Let R p be a p-dimensional uclidean space. We denote an interval of R p by the set of points x = (x 1,..., x p ) such that (1.3) a i x i b i (i = 1,..., p) Definition 1.4. Let I be an interval in R p and define p (1.5) m(i) = (b i a i ) i=1 Date:

2 2 ANNI WANG If A is a union of finite intervals A = I 1... I n and these intervals are pairwise disjoint, we set (1.6) m(a) = m(i 1 ) m(i n ) Definition 1.7. Let f be a function defined on a measurable space with values in the extended real number system. The function f is said to be measurable if the set (1.8) {x f(x) > a} is measurable for all real a. Measurability is also preserved with respect to addition, multiplication, and limit processes of measurable functions. 2. Lebesgue Integration Definition 2.1. A real-valued function s defined on is called a simple function if the range of s is finite. Let and define { 1 x (2.2) K (x) = 0 x / K is called the characteristic function or indicator function of. Any simple function can be written as a finite linear combination of characteristic functions. Suppose s is a simple function which takes on values c 1,..., c n and let (2.3) i = {x s(x) = c i } i = 1,..., n Then (2.4) s = n c i K i i=1 Theorem 2.5. Let f be a real function on. For every x, there exists a sequence {s n } such that s n (x) f(x) as n. If f is measurable {s n } may be chosen as a sequence of measurable functions. If f is nonnegative, {s n } may be chosen to be a monotonically increasing sequence. This theorem shows that any measurable function can be approximated by simple functions, and therefore also by linear combinations of simple functions. We will use this to define the Lebesgue integral. Definition 2.6. Let (2.7) s(x) = n c i K i (x) (x, c i > 0) i=1 as in (2.1). Suppose s is measurable, and suppose M. Define n (2.8) I (s) = c i µ( i ) i=1

3 LBSGU MASUR AND L2 SPAC. 3 If f is measurable and nonnegative, we define (2.9) f dµ = sup I (s) where the sup is taken over all measurable simple functions s such that 0 s f The left side of (2.9) is called the Lebesgue integral of f (with respect to the measure µ over the set ). To extend the integral to functions that are not nonnegative is an easy addition. Definition Let f be defined on a measure space with values in the extended real numbers. We may write (2.11) f = f + f where (2.12) f + (x) = { f(x) if f(x) 0 0 otherwise (2.13) f (x) = { f(x) if f(x) 0 0 otherwise Then f + and f are nonnegative measurable functions. We define (2.14) f = f + + f Integration can also be extended to complex functions. Definition Let f be a complex-valued function defined on a measure space and f = u + iv, with u and v real. We say that f is measurable if and only if u and v are measurable. Suppose µ is a measure on, is a measurable subset of, and f is a complex function on. We say that f L(µ) on (and f is complex square-integrable) if f is measurable and (2.16) f dµ < + We define the integral of f (with respect to µ and over ) as (2.17) f dµ = u dµ + i v dµ Intuitively, the Lebesgue integral measures the area under a function by making partitions of the range of the function, whereas the Riemann integral partitions the domain. The Lebesgue integral has many desirable properties compared to the Riemann integral. The one we will be most concerned with is the fact that any Lebesgue measurable function is Lebesgue integrable (while a function is Riemann integrable on an interval if and only if it is continuous almost everywhere). This allows us to integrate additional functions on much more diverse sets.

4 4 ANNI WANG 3. L 2 Space The L 2 space is a special case of an L p space, which is also known as the Lebesgue space. Definition 3.1. Let be a measure space. Given a complex function f, we say f L 2 on if f is (Lebesgue) measurable and if (3.2) f 2 dµ < + Then the function f is also said to be square-integrable. In other words, L 2 is the set of square-integrable functions. For f L 2 (µ) define ( ) 1/2 (3.3) f = f 2 dµ We call f the L 2 (µ) norm of f. To give a notion of distance in L 2 (µ), we define the distance between between two functions f and g in L 2 (µ) as (3.4) d(f, g) = f g We define the L p space and the L p norm similarly (merely switching the 2 above with p ). Definition 3.5. Let be a measure space. The measurable function f is said to be in L p if it is p-integrable; that is, if (3.6) f p dµ < + The L p norm of f is defined by ( (3.7) f p = ) 1/p f p dµ We also identify functions which differ only on a set of measure zero. This allows L 2 (µ) to satisfy the properties of a metric space, namely f f = 0 f g > 0 if f g f g = g f f g f h + g h for any h L 2 (µ) Theorem 3.8. (Schwarz inequality) Suppose f L 2 (µ) and g L 2 (µ). fg L 2 (µ), and (3.9) fg dµ f g Proof. We have for all real λ, (3.10) 0 ( f + λ g ) 2 dµ = f 2 + 2λ For g 0, let λ = f g to obtain the desired inequality. fg dµ + λ 2 g 2 Then

5 LBSGU MASUR AND L2 SPAC. 5 Theorem (Lebesgue s monotone convergence theorem) Suppose M. Let {f n } be a sequence of measurable functions such that (3.12) 0 f 1 (x) f 2 (x)... (x ) Let f be such that (3.13) f n (x) f(x) (x ) as n. Then (3.14) Proof. We have (3.15) f n dµ as n. Since f n f, we have (3.16) α f n dµ α f dµ f dµ Choose c such that 0 < c < 1 and s a simple measurable function such that 0 s f. Let (3.17) n = {x f n (x) cs(x)} (n = 1, 2, 3,...) Then By (), (3.18) = For every n, (3.19) Letting n, we obtain (3.20) α c Letting c 1, we see that (3.21) α which by (3.13) implies (3.22) α c n=1 n f n dµ f n dµ c n s dµ n s dµ s dµ f dµ The theorem then follows from (3.15), (3.16), and (3.22). Theorem Suppose M. If {f n } is a sequence of nonnegative measurable functions and (3.24) f(x) = f n (x) x n=1

6 6 ANNI WANG then (3.25) f dµ = f n dµ Proof. Apply Lebesgue s monotone convergence theorem to the partial sums of (3.15). Theorem (Fatou s theorem) Suppose M. If f n is a sequence of nonnegative measurable functions and n=1 (3.27) f(x) = lim inf f n(x) (x ) then (3.28) Proof. Let g n be such that fdµ lim inf f n dµ (3.29) g n (x) = inff i (x) (i n, n = 1, 2, 3,...) Then g n is measurable on and (3.30) 0 g 1 (x) g 2 (x)... (3.31) g n (x) f n (x) (3.32) g n (x) f(x) (n ) By Lebesgue s monotone convergence theorem, it follows that (3.33) g n dµ f dµ which, with (3.31), implies the desired inequality. Theorem If f, g L 2 (µ), then f + g L 2 (µ), and (3.35) f + g f + g Theorem (Lebesgue s dominated convergence theorem) Suppose M. Let {f n } be a sequence of measurable functions such that (3.37) f n (x) f(x) (x ) as n. If there exists a function g in Lµ on such that (3.38) f n (x) g(x) (x, n = 1, 2, 3,...) then (3.39) lim f n dµ = f dµ. Proof. We have that f n L(µ) and f L(µ) on. Since f n + g 0, Fatou s theorem implies that (3.40) (f + g) dµ lim inf (f n + g)dµ or (3.41) f dµ lim inf f n dµ

7 LBSGU MASUR AND L2 SPAC. 7 Since g f n 0, we also have that (3.42) (g f) dµ lim inf Therefore (3.43) which is the same as saying (3.44) (g f n )dµ [ ] f dµ lim inf f n dµ f dµ lim sup f n dµ The conclusion of the theorem then follows from (3.40) and (3.44). Theorem (The set of continuous functions is dense in L 2 on [a, b].) For any f L 2 on [a, b] and any ɛ > 0, there exists continuous function g on [a, b] such that { 1/2 b (3.46) f g = (f g) dx} 2 < ɛ a Proof. Let A be a closed subset of [a, b] and K A be its characteristic function. Let (3.47) t(x) = inf x y (y A)and (3.48) g n (x) = 1/1 + nt(x) (n = 1, 2, 3,...) Then g n is continuous on [a, b], g n (x) = 1, and g n (x) 0 on B, defined by B = [a, b] A. By Lebesgue s dominated convergence theorem, it follows that ( 1/2 (3.49) g n K A = g n (x) dx) 2 0 Therefore characteristic functions of closed sets can be approximated by continuous functions in L 2, which implies the same for simple measurable functions. If f is nonnegative and f L 2, by Theorem 2.5 we may let {s n (x)} be a monotonically increasing sequence of simple nonnegative measurable functions such that s n (x) f(x). Since f s n 2 f 2, Lebesgue s dominated convergence theorem shows that f s n 0. The general case follows from (2.10). Definition Let f, f n L 2 (µ)(n = 1, 2, 3,...). We say that {f n } converges to f in L 2 (µ) if f n f 0. We say that {f n } is a Cauchy sequence in L 2 (µ) if for every ɛ > 0 there exists an integer N such that n N, m N implies f n f m < ɛ We will now give a proof that every Cauchy sequence in L 2 (µ) converges - that is, that L 2 (µ) is complete. Theorem (L 2 (µ) is complete.) If {f n } is a Cauchy sequence in L 2 (µ), then there exists a function f L 2 (µ) such that {f n } converges to f in L 2 (µ). Proof. By definition, there exists a sequence {n k }(k N) such that (3.52) f ( n k ) f ( n k+1 ) < 1 (k N) 2k

8 8 ANNI WANG Choose a function g L 2 (µ). By the Schwarz inequality, (3.53) g(f ( n k ) f ( n k+1 ) dµ f ( n k ) f ( n k+1 g g 2 k Adding the inequalities (3.54) for each k, we obtain (3.55) k=1 g(f ( n k ) f ( n k+1 ) dµ g 2 k g(f ( n k ) f ( n k+1 ) dµ g By Theorem 3.15 we may interchange the summation and integration above. It follows that (3.56) g(x) f ( n k )(x) f ( n k+1 (x) < + k=1 almost everywhere on (since its integral is also finite). Then (3.57) f ( n k )(x) f ( n k+1 (x) < + k=1 almost everywhere on. If the series above diverged on a set of positive measure, then we could take g(x) to be nonzero on a subset of of positive measure, contradicting (3.56). Since the kth partial sum of the telescoping series (3.58) f nk+1 (x) f nk (x) < + k=1 which converges almost everywhere on, is (3.59) f nk+1 (x) f n1 (x) we see that (3.60) f(x) = lim k f n k (x) defines f(x) for almost all x. Now let ɛ > 0 be given and choose an integer N such that n N, m N implies f n f m ɛ. By Fatou s theorem, if n k > N then (3.61) f f nk lim inf f n i f nk (x) ɛ k Thus f f nk L (µ). Since f = (f f nk ) + f nk, we see that f L (µ) also. Since ɛ was arbitrary, (3.62) lim k f f n k = 0. Finally, the inequality (3.63) f f n f f nk + f nk f n shows that f n converges to f in L (µ), since by taking n and n k large enough each of the terms on the right can be made arbitrarily small.

9 LBSGU MASUR AND L2 SPAC. 9 In addition, by defining the inner product for L 2 of two functions f and g on a measure space with (3.64) f, g = fgdµ L 2 (µ) becomes a Hilbert space. A Hilbert space is a complete vector space with an inner product, and is also a complete metric space. In particular, L 2 is an infinite-dimensional vector space. The space L 2 is unique among L p spaces as a Hilbert space. Hilbert spaces have many useful properties. In particular, its similarity to uclidean space makes possible the use of geometric notions such as distance and orthogonality. The Pythagorean identity also holds true in L 2. In addition, Hilbert spaces, and in particular the L 2 Hilbert space, are crucial to and arise naturally in areas as diverse as quantum mechanics, Fourier series, and stochastic calculus. Acknowledgments. I would like to thank my mentor, Daping Weng, for helping me understand and gain intuition for many otherwise confusing proofs and concepts; this paper would have been much more difficult to complete without him. His impressive mathematical knowledge and clarity were inspiring. I also thank the University of Chicago Mathematics department for making this RU program possible. References [1] Rudin, Walter. Principles of Mathematical Analysis. McHraw-Hilll, Inc [2] Taylor, Michael. Measure Theory and Integration. American Mathematical Society [3] Tung, Diana. Lebesgue Integration and Measure:Its Properties and Implications. cims.nyu.edu/vigrenew/ug_research/dianatung05.pdf [4] Bieren, Herman J. Introduction to Hilbert Spaces. HILBRT.PDF

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

i. v = 0 if and only if v 0. iii. v + w v + w. (This is the Triangle Inequality.)

i. v = 0 if and only if v 0. iii. v + w v + w. (This is the Triangle Inequality.) Definition 5.5.1. A (real) normed vector space is a real vector space V, equipped with a function called a norm, denoted by, provided that for all v and w in V and for all α R the real number v 0, and

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

MEASURE THEORY AND LEBESGUE INTEGRAL 15

MEASURE THEORY AND LEBESGUE INTEGRAL 15 MASUR THORY AND LBSGU INTGRAL 15 Proof. Let 2Mbe such that µ() = 0, and f 1 (x) apple f 2 (x) apple and f n (x) =f(x) for x 2 c.settingg n = c f n and g = c f, we observe that g n = f n a.e. and g = f

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 4 General integration theory Mikael Skoglund, Probability and random processes 1/15 Measurable xtended Real-valued Functions R = the extended real numbers; a subset

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Notes on the Lebesgue Integral by Francis J. Narcowich November, 2013

Notes on the Lebesgue Integral by Francis J. Narcowich November, 2013 Notes on the Lebesgue Integral by Francis J. Narcowich November, 203 Introduction In the definition of the Riemann integral of a function f(x), the x-axis is partitioned and the integral is defined in

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

MTH 404: Measure and Integration

MTH 404: Measure and Integration MTH 404: Measure and Integration Semester 2, 2012-2013 Dr. Prahlad Vaidyanathan Contents I. Introduction....................................... 3 1. Motivation................................... 3 2. The

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 9 September 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014.

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm SOME QUESTIONS FOR MATH 766, SPRING 2016 SHUANGLIN SHAO Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm f C = sup f(x). 0 x 1 Prove that C([0, 1]) is a

More information

212a1214Daniell s integration theory.

212a1214Daniell s integration theory. 212a1214 Daniell s integration theory. October 30, 2014 Daniell s idea was to take the axiomatic properties of the integral as the starting point and develop integration for broader and broader classes

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Wednesday, April 18, 27 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm.

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014

Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014 1 Introduction Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014 In the definition of the Riemann integral of a function f(x), the x-axis is partitioned and the integral is defined

More information

A List of Problems in Real Analysis

A List of Problems in Real Analysis A List of Problems in Real Analysis W.Yessen & T.Ma December 3, 218 This document was first created by Will Yessen, who was a graduate student at UCI. Timmy Ma, who was also a graduate student at UCI,

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Lebesgue Integration on R n

Lebesgue Integration on R n Lebesgue Integration on R n The treatment here is based loosely on that of Jones, Lebesgue Integration on Euclidean Space We give an overview from the perspective of a user of the theory Riemann integration

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

TERENCE TAO S AN EPSILON OF ROOM CHAPTER 3 EXERCISES. 1. Exercise 1.3.1

TERENCE TAO S AN EPSILON OF ROOM CHAPTER 3 EXERCISES. 1. Exercise 1.3.1 TRNC TAO S AN PSILON OF ROOM CHAPTR 3 RCISS KLLR VANDBOGRT 1. xercise 1.3.1 We merely consider the inclusion f f, viewed as an element of L p (, χ, µ), where all nonmeasurable subnull sets are given measure

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Tuesday, April 18, 26 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm. INSTRUCTIONS

More information

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1 MATH 5310.001 & MATH 5320.001 FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING 2016 Scientia Imperii Decus et Tutamen 1 Robert R. Kallman University of North Texas Department of Mathematics 1155

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions FUNDAMNTALS OF RAL ANALYSIS by Doğan Çömez IV. DIFFRNTIATION AND SIGND MASURS IV.1. Differentiation of Monotonic Functions Question: Can we calculate f easily? More eplicitly, can we hope for a result

More information

Summary of Real Analysis by Royden

Summary of Real Analysis by Royden Summary of Real Analysis by Royden Dan Hathaway May 2010 This document is a summary of the theorems and definitions and theorems from Part 1 of the book Real Analysis by Royden. In some areas, such as

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Real Analysis, 2nd Edition, G.B.Folland Signed Measures and Differentiation

Real Analysis, 2nd Edition, G.B.Folland Signed Measures and Differentiation Real Analysis, 2nd dition, G.B.Folland Chapter 3 Signed Measures and Differentiation Yung-Hsiang Huang 3. Signed Measures. Proof. The first part is proved by using addivitiy and consider F j = j j, 0 =.

More information

f(x)dx = lim f n (x)dx.

f(x)dx = lim f n (x)dx. Chapter 3 Lebesgue Integration 3.1 Introduction The concept of integration as a technique that both acts as an inverse to the operation of differentiation and also computes areas under curves goes back

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

4 Integration 4.1 Integration of non-negative simple functions

4 Integration 4.1 Integration of non-negative simple functions 4 Integration 4.1 Integration of non-negative simple functions Throughout we are in a measure space (X, F, µ). Definition Let s be a non-negative F-measurable simple function so that s a i χ Ai, with disjoint

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

Methods of Applied Mathematics

Methods of Applied Mathematics Methods of Applied Mathematics Todd Arbogast and Jerry L. Bona Department of Mathematics, and Institute for Computational Engineering and Sciences The University of Texas at Austin Copyright 1999 2001,

More information

A PRIMER OF LEBESGUE INTEGRATION WITH A VIEW TO THE LEBESGUE-RADON-NIKODYM THEOREM

A PRIMER OF LEBESGUE INTEGRATION WITH A VIEW TO THE LEBESGUE-RADON-NIKODYM THEOREM A PRIMR OF LBSGU INTGRATION WITH A VIW TO TH LBSGU-RADON-NIKODYM THORM MISHL SKNDRI Abstract. In this paper, we begin by introducing some fundamental concepts and results in measure theory and in the Lebesgue

More information

Compendium and Solutions to exercises TMA4225 Foundation of analysis

Compendium and Solutions to exercises TMA4225 Foundation of analysis Compendium and Solutions to exercises TMA4225 Foundation of analysis Ruben Spaans December 6, 2010 1 Introduction This compendium contains a lexicon over definitions and exercises with solutions. Throughout

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Having completed our study of Lebesgue measure, we are now ready to consider the Lebesgue integral. Before diving into the details of its construction, though, we would like to give

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus Homework 3 Solutions, Real Analysis I, Fall, 2010. (9) Let f : (, ) [, ] be a function whose restriction to (, 0) (0, ) is continuous. Assume the one-sided limits p = lim x 0 f(x), q = lim x 0 + f(x) exist

More information

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Monday, August 26, 2013

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Monday, August 26, 2013 NAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts Monday, August 26, 2013 Instructions 1. This exam consists of eight (8) problems all

More information

convergence theorem in abstract set up. Our proof produces a positive integrable function required unlike other known

convergence theorem in abstract set up. Our proof produces a positive integrable function required unlike other known https://sites.google.com/site/anilpedgaonkar/ profanilp@gmail.com 218 Chapter 5 Convergence and Integration In this chapter we obtain convergence theorems. Convergence theorems will apply to various types

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

FUNCTIONAL ANALYSIS CHRISTIAN REMLING

FUNCTIONAL ANALYSIS CHRISTIAN REMLING FUNCTIONAL ANALYSIS CHRISTIAN REMLING Contents 1. Metric and topological spaces 2 2. Banach spaces 12 3. Consequences of Baire s Theorem 30 4. Dual spaces and weak topologies 34 5. Hilbert spaces 50 6.

More information