arxiv: v1 [math.pr] 20 May 2018

Size: px
Start display at page:

Download "arxiv: v1 [math.pr] 20 May 2018"

Transcription

1 arxiv: v1 mathr 20 May 2018 A DOOB-TYE MAXIMAL INEQUALITY AND ITS ALICATIONS TO VARIOUS STOCHASTIC ROCESSES Abstract We show how an improvement on Doob s inequality leads to new inequalities for several stochastic processes: Lévy processes, processes with independent increments in general, branching processes, and time homogeneous Markov processes 1 Introduction The aim of this note is to show how an improvement on Doob s inequality, already pointed out in 1, leads to new inequalities for various stochastic processes, such as Lévy processes, random walks, processes with independent increments in general, branching processes and continuous state branching processes, as well as some Markov processes, including geometric Brownian motion Despite the proofs being very simple, the inequalities obtained seem to be novel and quite useful 2 Improving Doob s inequality Although the proofs of Theorems A and B below are almost identical to the ones of Theorems 521 and 719 in 4, we present their brief proofs for the sake of completeness As usual, EX;A will denote EX1 A The following maximal inequality is precisely Doob s inequality when a = 1; when a < 1, however, the submartingale property is no longer assumed and so Doob s inequality is not available Theorem A Improved Doob; discrete Let N 0 Let X n,f n, 0 n N be a discrete stochastic process with the last variable satisfying that 0 X N L 1, and assume that 1 EX N F n ax n holds for all 0 n < N with some 0 < a Then max X n α 0 n N where ã := min{a,1} 1 αã E X N ; max 0 n N X n α, α > 0, 2010 Mathematics Subject Classification 60E15, 60G45, 60G48, 60G51, 60J80 Key words and phrases Doob s inequality, maximal-inequalities, Lévy processes, processes with independent increments, submartingales, random walks, branching processes, superprocesses, Markov-processes, geometric Brownian motion 1

2 2 roof It is enough to treat the case when a < 1, otherwise one is simply looking at Doob s inequality Define the mutually disjoint events A 0 := {X 0 α}; A n := {X n α but max 0 m<n X m < α} F n, n = 1,2, Since a < 1 and X N 0, the bound 1 holds even for n = N, and thus N N max X EX n ;A n N EX N ;A n n α = A n 0 n N α αa n=0 n=0 n=0 1 αa E X N ; max X n α, 0 n N as claimed Next, we treat the continuous counterpart Theorem B Improved Doob; continuous Let T > 0 Let Z t,f t, t 0,T be a right-continuous stochastic process with the last variable satisfying that 0 Z T L 1, and assume that EZ T F t az t holds for all 0 t < T where 0 < a Then, for α > 0, sup Z s α 1 αã E Z T ; sup Z s α, where ã := min{a,1} roof We will write Zs instead of Z s for convenience Let n N be given and apply Theorem A to the discrete parameter process W m, G m, 0 m 2 n := Z mt 2,, and N := n FmT 2 n 0 m 2 2n, yielding n max 0 m 2 nw m α Exploiting right-continuity, one has max 0 m 2 nw m = max 0 m 2 nz 1 αã E Z T ; max 0 m 2 nw m α mt 2 n ր sup Zs, as n, and we are done by letting n and using dominated convergence theorem 3 Applications to various processes We now present some useful inequalities which are straightforward applications of Theorems A and B 31 Application to processes with independent increments If the rightcontinuos process Z t,f t, on 0,T has independent increments, then Let Ee ZT F s e Zs = E e ZT Zs F s = E e Z T Z s a := inf EeZT Zs

3 A Doob-type maximal inequality and its applications 3 If 0 < a, then the conditions of Thm B are satisfied for the process Ẑ := ez Therefore, we have Theorem 1 Independent increments If the right-continuos process Z t,f t, on 0,T has independent increments, then for α R, sup Z s α e α ã E e ZT ; sup Z s α Remark If the righthand side is infinite, we still consider the bound valid in the broader sense, and therefore we do not assume any moment condition on Z T As a particular case, we let S n,f n, 0 n N be a a random walk on Z with S 0 = 0 Let the steps Y n := S n+1 S n be independent, and define φ i := Ee Yi and π n := Π N 1 i=n φ i Choosing we obtain a := min 0 n N EeSN Sn = min 0 n N π n, Corollary 1 Random walks with time-inhomogeneous steps For α R, { } max S n α e α max 1, max π n 1 E S N ; max S n α 0 n N 0 n N 0 n N 32 Application to Lévy-processes If we assume even more, namely that Z is actually a Lévy-process, 1 then, for T > 1, the Lévy-Khintchine Theorem implies that a = inf E e ZT Zs = inf E e ZT s = inf Ee Z 1 T s Observethat the infimum is either at 0 or at T So, assuming as usual, that Z 0 0, in terms of the Lévy exponent ψ, we obtain that a = 1 when ψ1 0; a = Ee ZT when ψ1 0 Clearly, T > 1 is not important in the argument above, and so we have obtained that a = min{1,ee ZT } This gives the following result Theorem 2 Lévyprocess A Lévy process Z t,f t, on 0,T satisfies assuming Z 0 0 that for α R, sup Z s α e αe e ZT ; sup Z s α min{1,ee ZT } In particular, sup Z s α e α max{1,ee ZT } Remark i Again, the righthand sides of the bounds are allowed to be infinite, and so we make no moment assumptions on Z T ii When a = 1, that is, ψ1 0, the theorem is simply an exponential Doob s inequality For example, that is the case for standard Brownian motion Nonetheless, when Ee ZT 1, ie ψ1 0, we obtain a new inequality Let a 0, b R, and Λ be the characteristics of Z 1 That is, with hx := x1 x 1, let Z 1 have 1 For background on Lévy processes, see eg 3

4 4 log-characteristic function Φt = ibt 1 2 at2 eitx 1 ithxλdx Then ψ1 0 is equivalent to b a 2 e x 1 hxλdx Of course, this condition is only meaningful when the Lévy measure has light enough tail, guaranteeing that ex 1 hxλdx < 33 Application to subcritical branching processes Let Z t t 0 be a subcritical branching process, with mean offspring number 0 < µ < 1, and with exponential branching clock with rate b > 0 Let m := µ 1 < 0 Since, by the branching property, EZ T Z s = e bmt s Z s for T > s, we pick a = e bmt and obtain that Theorem 3 Subcritical branching processes For α > 0, sup Z s α α 1 e bmt E Z T ; sup Z s α Note: The righthand side is of course bounded by α 1 for any T and µ < 1, in accordance with the fact that for the µ = 1 case, Doob s inequality gives precisely the α 1 bound But if α is large relative to T, our bound is much tighter, as the expectation term tends to zero as α Remark CSB s For a continuous state branching process CSB X that can also be thought of as the total mass of a superprocess, with branching mechanism βu ku 2 with β < 0, k > 0, we get, by a similar argument, that sup X s α α 1 e βt E X T ; sup X s α, α > 0 For background on CSB s, see 3 For another, superprocess-related application, see 1 34 Application to time-homogeneous Markov processes If X is a timehomogenous Markov process, then our condition becomes E Xs X T ax s, s 0,T where a = at > 0 This, besides branching processes, is also satisfied for example by a geometric Brownian motion S solving the stochastic differential equation ds t = µs t dt+σs t dw t, with S 0 = z > 0 Here µ R, σ > 0, while W is a standard Brownian motion Indeed, E r S T = re µt s ra, 0 s T, where a := 1 for µ 0 and a := e µt for µ < 0 In the latter case for instance, we obtain that, Theorem 4 GBM; µ < 0 Assume that the geometric Brownian motion S has drift µ < 0 and S 0 = z Then, for α > z, z t > 0 : S t α z α

5 A Doob-type maximal inequality and its applications 5 roof Using continuity, z t > 0 : S t α = lim T z max S t α 0 t T Now, Theorem B along with the previous comments yields for α > z and T > 0, that z max S t α E zs T = zeµt 0 t T aα e µt α = z α, and we are done For some related results on geometric Brownian motion, see 2 35 Application to proving limits We conclude with a simple application to proving limit theorems The point is that even though the process is defined for continuous times, there is no need to go through the ubiquitous and rather unpleasant discrete time skeleton first procedure This has been utilized in 1 for superprocesses Theorem 5 Almost sure convergence Let X t,f s, t 0 be a nonnegative real valued, filtered stochastic process, such that m t := EX t < Assume that 1 there is an a 0,1 such that EX t F s ax s, 0 s < t; 2 t i i N sequence such that t i as i and i m t i < Then lim t X t = 0 -as roof By Borel-Cantelli, it is enough to show that for any given ǫ > 0, sup X s > ǫ < s t i 1,t i i i 0 By our first assumption along with Theorem B, the lefthand side is bounded by aǫ 1 i i 0 EXt i, and we are done, given our second assumption References 1 Engländer, J; Ren, Y-X; Song, R Weak extinction versus global exponential growth of total mass for superdiffusions Ann Inst Henri oincaré robab Stat , no 1, Graversen, S E; eskir, G Optimal stopping and maximal inequalities for geometric Brownian motion J Appl robab , no 4, Kyprianou, A E Fluctuations of Lévy processes with applications Introductory lectures Second edition Universitext Springer, Heidelberg, Stroock, D W robability theory An analytic view Second edition Cambridge University ress, Cambridge, 2011 Department of Mathematics, University of Colorado at Boulder, Boulder, CO , USA address: janosenglander@coloradoedu URL:

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

ERGODIC PATH PROPERTIES OF PROCESSES WITH STATIONARY INCREMENTS

ERGODIC PATH PROPERTIES OF PROCESSES WITH STATIONARY INCREMENTS J. Austral. Math. Soc. 72 (2002, 199 208 ERGODIC ATH ROERTIES OF ROCESSES WITH STATIONARY INCREMENTS OFFER KELLA and WOLFGANG STADJE (Received 14 July 1999; revised 7 January 2001 Communicated by V. Stefanov

More information

Soo Hak Sung and Andrei I. Volodin

Soo Hak Sung and Andrei I. Volodin Bull Korean Math Soc 38 (200), No 4, pp 763 772 ON CONVERGENCE OF SERIES OF INDEENDENT RANDOM VARIABLES Soo Hak Sung and Andrei I Volodin Abstract The rate of convergence for an almost surely convergent

More information

On Optimal Stopping Problems with Power Function of Lévy Processes

On Optimal Stopping Problems with Power Function of Lévy Processes On Optimal Stopping Problems with Power Function of Lévy Processes Budhi Arta Surya Department of Mathematics University of Utrecht 31 August 2006 This talk is based on the joint paper with A.E. Kyprianou:

More information

Asymptotic Ruin Probabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments

Asymptotic Ruin Probabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments Asymptotic Ruin robabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments Xuemiao Hao and Qihe Tang Asper School of Business, University of Manitoba 181 Freedman

More information

On Reflecting Brownian Motion with Drift

On Reflecting Brownian Motion with Drift Proc. Symp. Stoch. Syst. Osaka, 25), ISCIE Kyoto, 26, 1-5) On Reflecting Brownian Motion with Drift Goran Peskir This version: 12 June 26 First version: 1 September 25 Research Report No. 3, 25, Probability

More information

Asymptotic behaviour near extinction of continuous state branching processes

Asymptotic behaviour near extinction of continuous state branching processes Asymptotic behaviour near extinction of continuous state branching processes G. Berzunza and J.C. Pardo August 2, 203 Abstract In this note, we study the asymptotic behaviour near extinction of sub- critical

More information

A NEW PROOF OF THE WIENER HOPF FACTORIZATION VIA BASU S THEOREM

A NEW PROOF OF THE WIENER HOPF FACTORIZATION VIA BASU S THEOREM J. Appl. Prob. 49, 876 882 (2012 Printed in England Applied Probability Trust 2012 A NEW PROOF OF THE WIENER HOPF FACTORIZATION VIA BASU S THEOREM BRIAN FRALIX and COLIN GALLAGHER, Clemson University Abstract

More information

Lecture 06 01/31/ Proofs for emergence of giant component

Lecture 06 01/31/ Proofs for emergence of giant component M375T/M396C: Topics in Complex Networks Spring 2013 Lecture 06 01/31/13 Lecturer: Ravi Srinivasan Scribe: Tianran Geng 6.1 Proofs for emergence of giant component We now sketch the main ideas underlying

More information

Potentials of stable processes

Potentials of stable processes Potentials of stable processes A. E. Kyprianou A. R. Watson 5th December 23 arxiv:32.222v [math.pr] 4 Dec 23 Abstract. For a stable process, we give an explicit formula for the potential measure of the

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS Abstract. In this note we generalise the Phillips theorem [1] on the subordination of Feller processes by Lévy subordinators

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

Applications of Ito s Formula

Applications of Ito s Formula CHAPTER 4 Applications of Ito s Formula In this chapter, we discuss several basic theorems in stochastic analysis. Their proofs are good examples of applications of Itô s formula. 1. Lévy s martingale

More information

An essay on the general theory of stochastic processes

An essay on the general theory of stochastic processes Probability Surveys Vol. 3 (26) 345 412 ISSN: 1549-5787 DOI: 1.1214/1549578614 An essay on the general theory of stochastic processes Ashkan Nikeghbali ETHZ Departement Mathematik, Rämistrasse 11, HG G16

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

4 Sums of Independent Random Variables

4 Sums of Independent Random Variables 4 Sums of Independent Random Variables Standing Assumptions: Assume throughout this section that (,F,P) is a fixed probability space and that X 1, X 2, X 3,... are independent real-valued random variables

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

Maximum Process Problems in Optimal Control Theory

Maximum Process Problems in Optimal Control Theory J. Appl. Math. Stochastic Anal. Vol. 25, No., 25, (77-88) Research Report No. 423, 2, Dept. Theoret. Statist. Aarhus (2 pp) Maximum Process Problems in Optimal Control Theory GORAN PESKIR 3 Given a standard

More information

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES Applied Probability Trust 7 May 22 UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES HAMED AMINI, AND MARC LELARGE, ENS-INRIA Abstract Upper deviation results are obtained for the split time of a

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

RECENT RESULTS FOR SUPERCRITICAL CONTROLLED BRANCHING PROCESSES WITH CONTROL RANDOM FUNCTIONS

RECENT RESULTS FOR SUPERCRITICAL CONTROLLED BRANCHING PROCESSES WITH CONTROL RANDOM FUNCTIONS Pliska Stud. Math. Bulgar. 16 (2004), 43-54 STUDIA MATHEMATICA BULGARICA RECENT RESULTS FOR SUPERCRITICAL CONTROLLED BRANCHING PROCESSES WITH CONTROL RANDOM FUNCTIONS Miguel González, Manuel Molina, Inés

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Survival probabilities of some iterated processes

Survival probabilities of some iterated processes Survival probabilities of some iterated processes Christoph Baumgarten 1 arxiv:1106.2999v2 math.r] 19 Jul 2011 July 20, 2011 Abstract We study the asymptotic behaviour of the probability that a stochastic

More information

Zeros of lacunary random polynomials

Zeros of lacunary random polynomials Zeros of lacunary random polynomials Igor E. Pritsker Dedicated to Norm Levenberg on his 60th birthday Abstract We study the asymptotic distribution of zeros for the lacunary random polynomials. It is

More information

Sharpness of second moment criteria for branching and tree-indexed processes

Sharpness of second moment criteria for branching and tree-indexed processes Sharpness of second moment criteria for branching and tree-indexed processes Robin Pemantle 1, 2 ABSTRACT: A class of branching processes in varying environments is exhibited which become extinct almost

More information

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION We will define local time for one-dimensional Brownian motion, and deduce some of its properties. We will then use the generalized Ray-Knight theorem proved in

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

University Of Calgary Department of Mathematics and Statistics

University Of Calgary Department of Mathematics and Statistics University Of Calgary Department of Mathematics and Statistics Hawkes Seminar May 23, 2018 1 / 46 Some Problems in Insurance and Reinsurance Mohamed Badaoui Department of Electrical Engineering National

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Feller Processes and Semigroups

Feller Processes and Semigroups Stat25B: Probability Theory (Spring 23) Lecture: 27 Feller Processes and Semigroups Lecturer: Rui Dong Scribe: Rui Dong ruidong@stat.berkeley.edu For convenience, we can have a look at the list of materials

More information

Theoretical Statistics. Lecture 1.

Theoretical Statistics. Lecture 1. 1. Organizational issues. 2. Overview. 3. Stochastic convergence. Theoretical Statistics. Lecture 1. eter Bartlett 1 Organizational Issues Lectures: Tue/Thu 11am 12:30pm, 332 Evans. eter Bartlett. bartlett@stat.

More information

LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE. S. Kurbanov

LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE. S. Kurbanov Serdica Math. J. 34 (2008), 483 488 LIMIT THEOREMS FOR NON-CRITICAL BRANCHING PROCESSES WITH CONTINUOUS STATE SPACE S. Kurbanov Communicated by N. Yanev Abstract. In the paper a modification of the branching

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES Galton-Watson processes were introduced by Francis Galton in 1889 as a simple mathematical model for the propagation of family names. They were reinvented

More information

Mi-Hwa Ko. t=1 Z t is true. j=0

Mi-Hwa Ko. t=1 Z t is true. j=0 Commun. Korean Math. Soc. 21 (2006), No. 4, pp. 779 786 FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS Mi-Hwa Ko Abstract. Let X t be an m-dimensional

More information

On Doob s Maximal Inequality for Brownian Motion

On Doob s Maximal Inequality for Brownian Motion Stochastic Process. Al. Vol. 69, No., 997, (-5) Research Reort No. 337, 995, Det. Theoret. Statist. Aarhus On Doob s Maximal Inequality for Brownian Motion S. E. GRAVERSEN and G. PESKIR If B = (B t ) t

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

9.2 Branching random walk and branching Brownian motions

9.2 Branching random walk and branching Brownian motions 168 CHAPTER 9. SPATIALLY STRUCTURED MODELS 9.2 Branching random walk and branching Brownian motions Branching random walks and branching diffusions have a long history. A general theory of branching Markov

More information

Stochastic Nicholson s blowflies delay differential equation with regime switching

Stochastic Nicholson s blowflies delay differential equation with regime switching arxiv:191.385v1 [math.pr 12 Jan 219 Stochastic Nicholson s blowflies delay differential equation with regime switching Yanling Zhu, Yong Ren, Kai Wang,, Yingdong Zhuang School of Statistics and Applied

More information

Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift

Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift Proc. Math. Control Theory Finance Lisbon 27, Springer, 28, 95-112 Research Report No. 4, 27, Probab. Statist. Group Manchester 16 pp Predicting the Time of the Ultimate Maximum for Brownian Motion with

More information

Two viewpoints on measure valued processes

Two viewpoints on measure valued processes Two viewpoints on measure valued processes Olivier Hénard Université Paris-Est, Cermics Contents 1 The classical framework : from no particle to one particle 2 The lookdown framework : many particles.

More information

Exam Stochastic Processes 2WB08 - March 10, 2009,

Exam Stochastic Processes 2WB08 - March 10, 2009, Exam Stochastic Processes WB8 - March, 9, 4.-7. The number of points that can be obtained per exercise is mentioned between square brackets. The maximum number of points is 4. Good luck!!. (a) [ pts.]

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY J. Korean Math. Soc. 45 (2008), No. 4, pp. 1101 1111 ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY Jong-Il Baek, Mi-Hwa Ko, and Tae-Sung

More information

arxiv: v2 [math.pr] 4 Feb 2009

arxiv: v2 [math.pr] 4 Feb 2009 Optimal detection of homogeneous segment of observations in stochastic sequence arxiv:0812.3632v2 [math.pr] 4 Feb 2009 Abstract Wojciech Sarnowski a, Krzysztof Szajowski b,a a Wroc law University of Technology,

More information

A REFINED FACTORIZATION OF THE EXPONENTIAL LAW P. PATIE

A REFINED FACTORIZATION OF THE EXPONENTIAL LAW P. PATIE A REFINED FACTORIZATION OF THE EXPONENTIAL LAW P. PATIE Abstract. Let ξ be a (possibly killed) subordinator with Laplace exponent φ and denote by I φ e ξs ds, the so-called exponential functional. Consider

More information

The Azéma-Yor Embedding in Non-Singular Diffusions

The Azéma-Yor Embedding in Non-Singular Diffusions Stochastic Process. Appl. Vol. 96, No. 2, 2001, 305-312 Research Report No. 406, 1999, Dept. Theoret. Statist. Aarhus The Azéma-Yor Embedding in Non-Singular Diffusions J. L. Pedersen and G. Peskir Let

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Part III Stochastic Calculus and Applications

Part III Stochastic Calculus and Applications Part III Stochastic Calculus and Applications Based on lectures by R. Bauerschmidt Notes taken by Dexter Chua Lent 218 These notes are not endorsed by the lecturers, and I have modified them often significantly

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Probability Lecture III (August, 2006)

Probability Lecture III (August, 2006) robability Lecture III (August, 2006) 1 Some roperties of Random Vectors and Matrices We generalize univariate notions in this section. Definition 1 Let U = U ij k l, a matrix of random variables. Suppose

More information

A Note on the Central Limit Theorem for a Class of Linear Systems 1

A Note on the Central Limit Theorem for a Class of Linear Systems 1 A Note on the Central Limit Theorem for a Class of Linear Systems 1 Contents Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 560-8531, Japan.

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

18.175: Lecture 14 Infinite divisibility and so forth

18.175: Lecture 14 Infinite divisibility and so forth 18.175 Lecture 14 18.175: Lecture 14 Infinite divisibility and so forth Scott Sheffield MIT 18.175 Lecture 14 Outline Infinite divisibility Higher dimensional CFs and CLTs Random walks Stopping times Arcsin

More information

GARCH processes continuous counterparts (Part 2)

GARCH processes continuous counterparts (Part 2) GARCH processes continuous counterparts (Part 2) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D 85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

More information

Lecture 5. 1 Chung-Fuchs Theorem. Tel Aviv University Spring 2011

Lecture 5. 1 Chung-Fuchs Theorem. Tel Aviv University Spring 2011 Random Walks and Brownian Motion Tel Aviv University Spring 20 Instructor: Ron Peled Lecture 5 Lecture date: Feb 28, 20 Scribe: Yishai Kohn In today's lecture we return to the Chung-Fuchs theorem regarding

More information

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION DAVAR KHOSHNEVISAN, DAVID A. LEVIN, AND ZHAN SHI ABSTRACT. We present an extreme-value analysis of the classical law of the iterated logarithm LIL

More information

On the expected diameter of planar Brownian motion

On the expected diameter of planar Brownian motion On the expected diameter of planar Brownian motion James McRedmond a Chang Xu b 30th March 018 arxiv:1707.0375v1 [math.pr] 1 Jul 017 Abstract Knownresultsshow that thediameter d 1 ofthetrace of planarbrownian

More information

Connection to Branching Random Walk

Connection to Branching Random Walk Lecture 7 Connection to Branching Random Walk The aim of this lecture is to prepare the grounds for the proof of tightness of the maximum of the DGFF. We will begin with a recount of the so called Dekking-Host

More information

Risk Bounds for Lévy Processes in the PAC-Learning Framework

Risk Bounds for Lévy Processes in the PAC-Learning Framework Risk Bounds for Lévy Processes in the PAC-Learning Framework Chao Zhang School of Computer Engineering anyang Technological University Dacheng Tao School of Computer Engineering anyang Technological University

More information

1 Martingales. Martingales. (Ω, B, P ) is a probability space.

1 Martingales. Martingales. (Ω, B, P ) is a probability space. Martingales January 8, 206 Debdee Pati Martingales (Ω, B, P ) is a robability sace. Definition. (Filtration) filtration F = {F n } n 0 is a collection of increasing sub-σfields such that for m n, we have

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Lecture Characterization of Infinitely Divisible Distributions

Lecture Characterization of Infinitely Divisible Distributions Lecture 10 1 Characterization of Infinitely Divisible Distributions We have shown that a distribution µ is infinitely divisible if and only if it is the weak limit of S n := X n,1 + + X n,n for a uniformly

More information

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES S.S. DRAGOMIR Abstract. The main aim of this paper is to establish some connections that exist between the numerical

More information

Tail Approximation of the Skew-Normal by the Skew-Normal Laplace: Application to Owen s T Function and the Bivariate Normal Distribution

Tail Approximation of the Skew-Normal by the Skew-Normal Laplace: Application to Owen s T Function and the Bivariate Normal Distribution Journal of Statistical and Econometric ethods vol. no. 3 - ISS: 5-557 print version 5-565online Scienpress Ltd 3 Tail Approimation of the Skew-ormal by the Skew-ormal Laplace: Application to Owen s T Function

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 7: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on the same probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω,

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Math 180B Homework 9 Solutions

Math 180B Homework 9 Solutions Problem 1 (Pinsky & Karlin, Exercise 5.1.3). Let X and Y be independent Poisson distributed random variables with parameters α and β, respectively. Determine the conditional distribution of X, given that

More information

Jump Processes. Richard F. Bass

Jump Processes. Richard F. Bass Jump Processes Richard F. Bass ii c Copyright 214 Richard F. Bass Contents 1 Poisson processes 1 1.1 Definitions............................. 1 1.2 Stopping times.......................... 3 1.3 Markov

More information

SOLUTIONS OF SEMILINEAR WAVE EQUATION VIA STOCHASTIC CASCADES

SOLUTIONS OF SEMILINEAR WAVE EQUATION VIA STOCHASTIC CASCADES Communications on Stochastic Analysis Vol. 4, No. 3 010) 45-431 Serials Publications www.serialspublications.com SOLUTIONS OF SEMILINEAR WAVE EQUATION VIA STOCHASTIC CASCADES YURI BAKHTIN* AND CARL MUELLER

More information

The tail does not determine the size of the giant

The tail does not determine the size of the giant The tail does not determine the size of the giant arxiv:1710.01208v2 [math.pr] 20 Jun 2018 Maria Deijfen Sebastian Rosengren Pieter Trapman June 2018 Abstract The size of the giant component in the configuration

More information

Point Process Control

Point Process Control Point Process Control The following note is based on Chapters I, II and VII in Brémaud s book Point Processes and Queues (1981). 1 Basic Definitions Consider some probability space (Ω, F, P). A real-valued

More information

Limiting behaviour of moving average processes under ρ-mixing assumption

Limiting behaviour of moving average processes under ρ-mixing assumption Note di Matematica ISSN 1123-2536, e-issn 1590-0932 Note Mat. 30 (2010) no. 1, 17 23. doi:10.1285/i15900932v30n1p17 Limiting behaviour of moving average processes under ρ-mixing assumption Pingyan Chen

More information

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS Qiao, H. Osaka J. Math. 51 (14), 47 66 EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS HUIJIE QIAO (Received May 6, 11, revised May 1, 1) Abstract In this paper we show

More information

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM STEVEN P. LALLEY 1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion)

More information

Lectures on Stochastic Stability. Sergey FOSS. Heriot-Watt University. Lecture 4. Coupling and Harris Processes

Lectures on Stochastic Stability. Sergey FOSS. Heriot-Watt University. Lecture 4. Coupling and Harris Processes Lectures on Stochastic Stability Sergey FOSS Heriot-Watt University Lecture 4 Coupling and Harris Processes 1 A simple example Consider a Markov chain X n in a countable state space S with transition probabilities

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Probability Theory Overview and Analysis of Randomized Algorithms

Probability Theory Overview and Analysis of Randomized Algorithms Probability Theory Overview and Analysis of Randomized Algorithms Analysis of Algorithms Prepared by John Reif, Ph.D. Probability Theory Topics a) Random Variables: Binomial and Geometric b) Useful Probabilistic

More information